Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants

Bing Fang Luo, Shao Ting Du, Kai Xing Lu, Wen Jing Liu, Xian Yong Lin, and Chong Wei Jin

Supplementary Material

Supplement Materials

Table S1. Comparison of Cd and Fe forms between NO_3^- and NH_4^+ mediums. The compositions of Cd, Fe and other nutrients in NO_3^- and NH_4^+ mediums were described in "Materials and Methods". The metal form in the medium as a percentage of total metal, was estimated by GEOCHEM-PC.

	Metal form	Predicted percentage of Cd form (%)		Predicted percentage of Fe form (%)	
	Hour form	NO ₃ ⁻ medium	NH ₄ ⁺ medium	NO ₃ ⁻ medium	NH ₄ ⁺ medium
Soluble forms	Free metal	22.86	22.62	0	0
	Complexed with EDTA	70.94	67.42	92.42	92.76
	Complexed with SO_4^{2-}	2.61	6.50	0	0
	Complexed with Cl	3.18	3.12	0	0
	Complexed with PO ₄ ³⁻	0.36	0.33	0.01	0.01
	Complexed with NO ₃	0.05	0	0	0
	In solid form with PO ₄ ³⁻	0	0	7.56	7.22

Fig. S1. Effects of N-form on P concentrations in tomato plants during Cd exposure. (a) P concentration in roots. (b) P concentration in shoots. The plants were pre-cultured in the growth solution contained both NO_3^- and NH_4^+ for 12 days, and then were transferred to Cd-free or $2\mu M$ Cd-added growth solutions with either NO_3^- or NH_4^+ as the sole nitrogen source. The pH in the all treatments was buffered at 5.5 using MES. The roots and shoots of plants after 8 d of treatments were harvested for P analysis. Data are means \pm SD (n = 4). *, Significant differences (P < 0.05) between NO_3^- and NH_4^+ treatments.