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Appendix A. Supplementary Data

Gap Function

The gap function represents the distance between the contacting surfaces
71 and v . Each surface 49 (i = 1,2) is described by the positition of
points on the surface, x® <77(1i), 17(22.)), as a function of the given parametric

coordinates 7 (v =1,2). Then, the covariant basis vectors on each surface

are )
. ox\t
gg) _ox . a=1,2. (A.1)
oGy

The unit outward normal on each surface is

(@) (@)
n® — % (A.2)
g1 X &

The gap function ¢ is defined from

Directional Derivatives

The directional derivatives of the position, effective pressure and effective
concentration, as well as equivalent virtual increments, are given by

DxW = Au®,  Dx® = Au® +g® A,

2 ~ ~ ~ op? N
Dp® = ApV . Dp® = AR + oy )
2)
~(2
De® = A0, pa — pg 1 O\ o
a [e} (2)
"2
Sy (@ A4
Dsv® =0, Dv® — %AU&) (A.4)
e
9692
DV =0, D5 = ZP_ Angyy
o
@)
96¢2)
DséM =0,  DsE® = T Angy
one
@)
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333 In these expressions,

OAuM
Anfy = (Au® — Au®) - 0% — ¢*Fgn®. an‘; . (A5)
1)

134 where a®® = (Aag)_l and A,p = g,(ll) . gg). Similarly, it can be shown that

Dt, =¢, (Au(z) — Aul + gg)Ané)) -nW
op?
Dw, = ¢, | ApW — ApD — = A
: < 077?‘2) @ ) (A.6)
o¢2)
Dj, = €. (Aé(” — AP — a%Angg)
"2)

335 Given these relations, the directional derivative of the various terms ap-
;36 pearing in the integrand of 0G,. are

D (tn (5V(1) - 5V(2)) -g§1) X ggl))

= Pz, (0vV — 6v@) - (0D ©nD) - (Au — Au?)
9ov®

+ IS (0@ @ gh) - (Au?) — Au®) : (A7)
e

8A11(1) 1 1 8A11(1)
( ) Oy T T onfy
337
D (wa (55 - 552) |g" x &)

— Jr(ll)ep (525(1) — 525(2)) (Aﬁ(l) — AZ;(Q))

opH 26p?
1 ~(1 ~(2 « «@ 1 2
— Jé ) lap (5]3( ) — opt )) o, gy + wniaﬁf‘g) g (Au( ) — Aul )) :

_ 3 oAu 9Au
+w, (6p — 5@ ) n®) - ( G % g5 + gtV x
My "y
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338

339

340

341

342

343

344

345

346

347

348

349

and
D (j (669 — 622 [g" x )
::%”ggﬁm—ﬁéﬂ(AéU—Aam)

ot - 9o

— Jél) [56 (50(1 — 0 )

on (a &)
8 oAu
+ jy (62 — 6¢P) n gl 4 gt >
Iz
(A.9)
where
1
_ ‘gg x gl (A.10)
Discretization
The contact integral may be discretized as
oD )
_ (1) M _ sv@) .M
mc;;MQMW ov?) -n (A11)

+w, (6pM) —0p@) + j, (661 — 66@)]

where nt" is the number of element faces on ), nl(flz is the number of inte-

gration points on the e—th element face of v, W}, is the weight associated
with the k—th integration point. In this expression it should be understood
that terms associated with (! (such as Jél),dv(l), tn, etc.) are evaluated

at the parametric coordinates (77(11)7 7](21) of the k—th integration point x(!
on Y1), whereas terms associated with ¥ (such as dv®, 65?) etc.) are
evaluated at the parametric coordinates <77(12), 77(22)) of the point x® on v®

closest to that integration point on v(!)| in accordance with (A.3).
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350 The variables may be interpolated over each element face according to

mD m(2)

ovl) = Z N(gl)évg) ovi? = Z N£2)5v£2)
a=1 b=1

mD m(2)

AuV = Z Nél)Au((jl) Au®? = Z Nf)Auff)
c=1 d=1

m@ m(2)

op =3 NP op® =Y NPop,”
a=1 E
o :’n(; (A.12)

AP =3 NIAGY AP =" NPAR
c=1 d=1
m@ m(2)

0e =3 NWoelh 6@ =" NPse?
a=1 b=1
m® m(2)

AV =3 NBA AP =3 NPAD
c=1 d=1

51 where Néi) (n(li),n?i)) are the shape functions of element faces on v(i) and

52 m® is the number of nodes on an element face. Then

n e m® £V
6= S Yol | [ ot e ]|
e=1 k=1 a=1 jc(zl)
" (1) (A.13)
< 1) (1) <~(1) Kl
+Z [ OVyj OPyi Gy, ] " Yok
b=1 (1)
ok
353 where
£ = NOgn® £ = _NOg @
o) = N, wfl = N, (A1)
4 (2 2
]L(ll) = Nél)]n ]157]2 = le )]n
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ssa  Similarly,

(1) )
Ne int
1
DG = Y W
e=1 k=1
m(D
xS0 avi sl el
a=1
20 | KEY 0 o AulV
S el o0 o || a0
Snid o w0 | | ad
1,2
a K('(ld”; o o Auég?))
1,2 1,2 (2
+Z 8adk  Yadr | APy , (A.15)
S 0 ] fad
m?
LT
b=1
el Kgi? 0 0 Auﬁl)
21 2.1 _
| ah gy o || s
— 21 2,1 (1
! L hl()c,k) 0 hl()c,k) ACC
(2,2) 2
it K<b2d’2'3 (22> ) Aué))
e e 0| A
=1 by 0 Ay Ac,
355 Where
KD = N (2 NONO 1 4,A0)
1,2 2
KLY = e, NONEN
(A.16)

K = V7 (NG )
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356

357

358

359

h() = NO (e, NOg® — j,AD . n)
hfiﬁg = —e. NONZ g

b = N (=g + jamf? )+ NP AD -

2,2 2 2 . 2
hz(;d,k) = N <5ch( 'q® — j,mj ))

hg1c,1) _ —EcNél)Nc(l)

I e NON)
Fhe, = Ny N

Y

20
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(A.17)

(A.18)

(A.19)
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360 and

(2)
@ _ N (A.21)
m, - = ——""8(2) ' '
Iy
op
1 _ a
p - a (1)
oy
¢
1 _ a
q o 8(1)
gy

31 Note that the operator A {v} represents the skew-symmetric tensor whose
362 dual vector is v. These relations provide the contributions to the global finite
363 element stiffness matrix and load vector resulting from the contact interface.

s Flur Relations

365 The solvent volumetric flux relative to the solid, w, and the solute molar
366 flux relative to the solid, j, are related to the gradients of the effective fluid
367 pressure and solute concentration via

w=-k- (gradﬁ + Redid - grad é)
0 : (A.22)
O - G
j=kd- <—g0w grad ¢ + —W>
do
368 where - 1
k- [k—l ¢ TR (1_ i)}
pvdo \" do )| (A.23)
¥ =1- 3
J

se0 and 7 is the solid volume fraction in the reference configuration. In these
a0 expressions d is the solute diffusivity tensor in the mixture, dy is the solute
snn diffusivity in free solution (no solid matrix), and k is the hydraulic perme-
a2 ability tensor for the flow of pure solvent through the porous solid matrix;
ws k is the hydraulic permeability of the solution (solvent-solute) through the
374 porous matrix.
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375

376

377

378

379

380

381

382

383

384

385

Reduction to Classical Diffusion-Convection Relations

The biphasic-solute equations summarized in (2.1)-(2.3) and (A.22) may
be reduced to the classical equations of diffusion-convection by assuming that
the solid deformation is static, v® = 0; that the physico-chemical behavior of
dilute solutions is ideal and there is no volume exclusion of solute from the
pore space of the solid matrix, & = 1, ® = 1; and that the solute diffusivity
in the porous medium is the same as in free solution, d = dpl. In that case,
¢ =c¢, p=p— Rfc, and the flux relations of (A.22) become

w = —k - gradp
j=—p"dogradc+ cw

Furthermore, (2.2)-(2.3) reduce to

divw =0
o (A.24)
@wa—j —¢Ydylapc+w-gradc =0
where ’lap’ is the laplacian operator. For pure diffusion, let w = 0; for
steady-state convection, let dc/0t = 0.
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