## **Supplementary Material**

Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the *Nar*I sequence

Vipin Jain, Benjamin Hilton, Satyakam Patnaik, Yue Zou, M. Paul Chiarelli, and Bongsup P. Cho\*



**Figure S1:** Schematic representation of strategy used for nucleotide excision repair by *E.coli* UvrABC for FAAF- and FAF-modified *Nar*I duplexes.



**Figure S2:** (a) HPLC chromatogram of a reaction mixture between 12-mer *Nar*I sequence (5'-CTCG<sub>1</sub>G<sub>2</sub>CG<sub>3</sub>CCATC-3') and N-acetoxy-N-2-(acetylamino)-7-fluorofluorene. The mono-, di-, and tri-FAAF adducts were eluted in the 33-41, 47-65, and 76-78 min ranges. The asterisked peaks could not be resolved. The gradient condition was 3-15% acetonitrile in ammonium acetate buffer (pH 7.0, 100 mM) for 40 min, followed by 15-35% for 60 min, and back to 3% acetonitrile in 10 min, flow rate 2 mL/min.



**Figure S3:** Molecular ion spectra of peak 1 obtained from FAAF-modification of *Nar*I 16-mer template conducted on Waters SYNAPT ESI-QTOF-mass spectrometer in negative ion and V-modes.

## *Nar*l **G**<sub>1</sub> 3'exonuclease digestion



**Figure S4:** Molecular ion spectra of peak 1 after 3'-exonuclease digestion conducted on Waters SYNAPT ESI-QTOF-mass spectrometer in negative ion and V-modes.



**Figure S5:** Molecular ion spectra of peak 2 after 5'-exonuclease digestion conducted on Waters SYNAPT ESI-QTOF-mass spectrometer in negative ion and V-modes (a) complete m/z range and (b) m/z range from 900-1240. The 5'-exonuclease digest products are labeled Y consistent with the accepted nomenclature first proposed by McLuckey and Habibigoudarzi (*J. Am. Chem. Soc.* **1993**, *115*, 12085–12095).





**Figure S6:** Molecular ion spectra of peak 3 after 3'-exonuclease digestion conducted on Waters SYNAPT ESI-QTOF-mass spectrometer in negative ion and V-modes.



**Figure S7:** Molecular ion spectra of peak 3 after 5'-exonuclease digestion conducted on Waters SYNAPT ESI-QTOF-mass spectrometer in negative ion and V-modes.



**Figure S8:** UV-melting curves of the three FAAF-*Nar*I duplexes and an unmodified control duplex, all at 6.4  $\mu$ M in 0.2 M NaCl, 10 mM sodium phosphate, and 0.2 mM EDTA at pH 7.



Figure S9: Line simulation of fully paired FAAF-modified NarI 16-mer (5'-CTCTCG<sub>1</sub>G<sub>2</sub>CG<sub>3</sub>CCATCAC-3') duplexes at 5 °C.



Figure S10: Imino proton region (10-15 ppm) of proton NMR of fully paired FAAF-modified NarI 16-mer duplexes at 5 °C.



**Figure S11:** <sup>19</sup>F NMR chemical shifts comparison of FAAF-modified *Nar*I 16-mer and FAAF-modified non-*Nar*I 12-mer duplexes. a) -CGG-, b) -GGC-, and c) -CGG- sequence context at 5 °C. \* unknown conformers; # impurity.



**Figure S12:** The 5'-terminally labeled DNA substrates containing the FAAF modified *Nar*I sequence (2 nM) were incubated with UvrABC (UvrA, 10 nM, UvrB, 250 nM, and UvrC, 100 nM) in UvrABC reaction buffer at 37°C for the time period mentioned above. The incision products were then analyzed on a 12% polyacrylamide sequencing gel under denaturing condition. The 55-mer represents the intact DNA substrates, and the 18mer, 19mer and 21mer represent the 5'-incised DNA fragments for *Nar*I G<sub>1</sub>, *Nar*I G<sub>2</sub> and *Nar*I G<sub>3</sub>, respectively.

**Supplementary Table S1.** Thermal and thermodynamic parameters of FAAF modified *Nar*I duplexes obtained from UV-melting curves

|                                        | 5'-CTCTCG <sub>1</sub> G <sub>2</sub> CG <sub>3</sub> CCATCAC-3'<br>3'-GAGAGC C GCGGTAGAG-5' |           |                                 |                     |                          |                        |                                             |                         |
|----------------------------------------|----------------------------------------------------------------------------------------------|-----------|---------------------------------|---------------------|--------------------------|------------------------|---------------------------------------------|-------------------------|
|                                        | -∆H<br>kcal/mol                                                                              | -∆S<br>eu | -ΔG <sub>37°C</sub><br>kcal/mol | $T_m^{\ b} {}^{o}C$ | <u>ДДН</u> с<br>kcal/mol | ΔΔS <sup>d</sup><br>eu | $\Delta\Delta G_{37^{\circ}C}^{e}$ kcal/mol | $\Delta T_m^{\ f}_{oC}$ |
| Control <sup>a</sup>                   | 121.9                                                                                        | 324.7     | 21.2                            | 70.6                | -                        | -                      | -                                           | -                       |
| NarI-G <sub>1</sub> -FAAF <sup>a</sup> | 117.2                                                                                        | 315.8     | 19.2                            | 66.0                | 4.7                      | 8.9                    | 2.0                                         | -4.6                    |
| NarI-G <sub>2</sub> -FAAF <sup>a</sup> | 116.2                                                                                        | 317.1     | 17.9                            | 61.9                | 5.7                      | 7.6                    | 3.3                                         | -8.7                    |
| NarI-G <sub>3</sub> -FAAF <sup>a</sup> | 111.9                                                                                        | 304.4     | 17.5                            | 61.8                | 10.0                     | 20.3                   | 3.7                                         | -8.8                    |

a) The results of curve fit and  $T_{\rm m}$ -lnC<sub>t</sub> dependence were within 15% of each other, and these numbers are averages of the two methods. The average standard deviations for  $-\Delta G$ ,  $-\Delta H$ , and  $T_{\rm m}$  are  $\pm 0.2$ ,  $\pm 3.2$ , and  $\pm 0.4$ , respectively.

b)  $T_{\rm m}$  values at 0.1mM extrapolated from these two methods.

c)  $\Delta \Delta H = \Delta H$  (modified duplex) -  $\Delta H$  (control duplex).

d)  $\Delta \Delta S = \Delta S$  (modified duplex) -  $\Delta S$  (control duplex).

*e*)  $\Delta\Delta G = \Delta G$  (modified duplex) -  $\Delta G$  (control duplex).

*f*)  $\Delta Tm$  = Tm (modified duplex) - Tm (control duplex).

| FAAF modified<br>duplexes      | <sup>19</sup> F     | Chemical S<br>(ppm | hifts at 5°C |        |
|--------------------------------|---------------------|--------------------|--------------|--------|
|                                | Minor<br>conformers | В                  | S            | W      |
| $NarI-CG_1G_2$                 |                     | -115.4             | -116.4       | -117.4 |
| $NarI-G_1G_2C$                 | -114.4, -114.7      | -115.4             | -115.8       | -116.7 |
| <i>Nar</i> I-CG <sub>3</sub> C | -114.7              | -115.5             | -115.8       | -117.3 |
| non-NarI-C <mark>G</mark> G    |                     | -115.6             | -116.4       | -117.4 |
| non-NarI-GGC                   | -115.0              | -115.6             | -115.8       | -116.9 |
| non-NarI-CGC                   |                     | -115.4             | -116.2       | -117.8 |

## **Supplementary Table S2.** Chemical shift information of different conformers exhibited by FAAF-modified *Nar*I and non-*Nar*I duplexes