Α 60 E220 activity nmol/ul/min 40 20 0 519-1220 Conditioned 30845 14 0845 Conditioned 1'0845 100245 14 0815 7 0845. 1 021 N. rileyi N. Hedium nedium Cellular Medium lysate Cells lipofected with pIZT-E22O В Ecdysone 22-Dehydroecdysone Control medium Sf9-E22O medium С 100 Relative E220 activity (%) 80 60 40 20 0-3 5 Ō 2 4 1 Months

Fig. S1. **E22O activity in various media and cellular lysates.** *A*, Comparison of the ecdysone-oxidizing activity found in the *N. rileyi* conditioned media, in the media and cellular lysates of Sf9 cells transiently expressing the E22O gene, and in the conditioned media of the Sf9-E22O cells. Each sample was appropriately diluted and then incubated with 100 μ M of ecdysone. Amount of 22-dehydroecdysone produced was measured after 10 min. Error bars represent SD (N=4-8). *B*, Chromatograms showing the oxidation of ecdysone by the conditioned medium of Sf9 and Sf9-E22O cells. Each medium was mixed with an equal volume of 200 μ M ecdysone solution, incubated for 10 min, and then analyzed by HPLC. *C*, Changes in the ecdysone-oxidizing activity of the Sf9-E22O conditioned media stored at 4°C. Error bars represent SEM (N=4).

Fig. S2. **pH-dependent activity of E22O.** Appropriately diluted *N. rileyi* conditioned medium was incubated with 50 μ M of ecdysone in various buffers and the amount of 22-dehydroecdysone produced under each experimental condition was measured after 10 min. N=2.

E220	MRSKHIVWALSLLPSTWALALPOGG	25
HsAOX	MFCIIRAQLLLLHLLVLALLLVGTVCNAHPQHGHPSELEPLALKRGGSPRDDGNTLAPR	60
FiAPS9		20
AOIAAO	MPSLSTLKLGAFLGLAAIAPSIEAADSSS	29
E220	CRCIPGEACWPSDETWDAFNSTVDGKLIKSVPLAKPCYTSTEGSGDQCQNVNNAWSTE	83
HsAOX	CRCIPGEACWPSTQIWDSFNRTIGGSLIKTAPLAESCYPGPKKNTRKCAVVSRKWTDQ	118
FiAPS9	CKCAPEQSCWPSVREWTRFNVSISGRLIETSPVAKPCYPGPDNDNEACIIVRNNWSSA	78
AOIAAO	CRCFPGDDCWPSVSTWDAFNQSVDGRLVATVPLATPCHT-PNYDQTKCEALKEDWLLPED	88
E220	RFQTAQALGRFYPFNTTCPPVANGQQPGTCSLGQIPVYVVRATEHSDVEKTLGFVQDH	141
HsAOX	DFQTDSPVGRTYPYNITCAPVNYFAGQRPTTCSLGQI <mark>PVYAIDARTRQSVAQGLRFAKD</mark> N	178
FiAPS9	TFQLSQPLGYAYPLNESCPLPDPGDEVTNANCSLGHSPIYAVNVTTEQDISRSIDFARAR	138
AOIAAO	HYQSSSSLMAPWFTNGTCDPYHPVSQPCTLGNFVRYAVNVSTPAHVAKTLQFANEH	144
E220	NIRLSITNTGHDLNGRGDGFGSLGLWVQNLRKGLFFHESFKSATQCTESGWNGKSIHIDG	201
HsAOX	NLRVTVVSTGHDLLGRADGYGSLEIWLRHHRNEIRFERQYMATDGCRESGWTGSAIDIDG	238
FiAPS9	NLRLVIKSTGHDAMQRSTGYGSLSIWLHNFRKGFEFHENNPVASVCPETNWQGSTLTIKG	198
AOIAAO	NIRFVIRNTGHDYNGKSTGAGALSVWTHHLKGIEFKDWKDEHYTGKAVKLGA	196
E220	AYQWGDVYGFAEKHNVIVVGGGSSSVGATGGWLSGGGHGPASRNYGLGADQLLEAEVMLA	261
HsAOX	AYQWRDVHIKARANNVIVVGGGSVSPGAIGGWPSGGGHGPASRNYGLGADQILEAEVMLA	298
FiAPS9	VYAWSDIYPEAQKQGVIVLGGLNVVTTRYFGMGADQVLSARVVLA	243
AOIAAO	GVQGFEAYEAANAQGLRVVGGECPSVGIAGGYSQGGGHSFLSSMYGLGADQVLEWEVIDG	256
E220	NGTVVVANHCQHADLFRALRGGGPG-YGVVLGVKVKAYPNVDKVTAHHLTIAPSPSRLNT	320
HsAOX	DGSVVLANHCQHTDLFRALRGGGPG-FGVVLKTKIKAYPNVASVSVHHLTITPIRQTPNN	357
FiAPS9	SGKVAIANACENKALFYAIRGGGGGTYGVVTEITVKTYP-TAQVSTIDLVVG-STGEATT	301
AOIAAO	TGRLLVANRQNNTDLYWALSGGGGGGTYGVVWSMTSKAYPDSQVSGLNLTFTTTGISD	313
E220	SALVDAVSIMMQSFPALNERGYAGYATWFRYLPGPYIANSTS-AYTHSFWTIGMNQADAS	379
HsAOX	SDLLDAVAVLMQAYPKLSDDGYAGYAFWLRNCKSFFIGSAKS-GYRHGIWMIGKTTEEAE	416
FiAPS9	SRFLDAVATVYSLLPKLSKVGFAGYGNWVARSPLPIGATAYTNLYGQSFTLLGATQPEAI	361
AOIAAO	DTFYKAVELYNARLPSFVDQGIMSLNFMTNVSFSLSPMTAPGMPLEKLE	362
E220	AVFEPLRRKLADPGLNVVINSDFQEYNDYWSFFHNELDKADIPGDTLLLTSRMLDKK	436
HsAOX	HSFAPVREALDKFKSKLTISESYMTYNDYWSFYTSESGLYESVGTTSVLTSRLIDRP	473
FiAPS9	KLFKPFREEIAKYNKSGSGVEVTITSSTHKDYWAYYFSRRDNDVPVGGVSALASRLLDAQ	421
AOIAAO	SLIKPFLNELKALGIKYQYHAESFPAYLDQFNAQAPLVEIAVAQYGSWLLPRSVV	417
E220	ALHDFDR-VRHMVEVVSGRPQEYTMNLAMLVSGGKVFADAADTSSGLNPAWRTSPVVL	493
HsAOX	AVEDYNR-VREAVEVIGGKPEDYATNVMMLVSNGQVFADAADKSSGLNPAWRVSPYVV	530
FiAPS9	ALQGNQQDLRKALETISGGSPVFHTIVHHGLEAASDVKADPTSAVQPGWYVSIILD	477
AOIAAO	ENNSTNRELIQSYRTILSTGANFTNVGLKVSKEVAGDVDNAVNPAWRNAISHMLL	472
E220	LTGRKIPKTQTLSLQERQAIAEDMTSHKGQATKELAPDTAGYMSEGDGNDPDYINSFYGR	553
HSAOX	ISSRGIPMVVDQASRKEVADDITYVKGAALQKLAPNTGGYMNEGDRNDPNYIKNFFGT	588
FiAPS9	IFELQMNGTQVRSNLDTFAYLRNEIVPIYEKLSPRTGTYMNEADWGNVNWKDDFFGS	534
AOIAAO	YTGWEFDQREKMVEAQKLMTEVLVPAFSKLAPESGAYLNEADFHQPDFKTAFFGN	527
E220	NYAAHLAAKDKYDPKHVFYCRTCVGAERFISRPEGALCRAF	594
HSAOX	IYPTHLATKKKYDPWGLFYCPTCVGAELFEETSRGELCRR-	628
FiAPS9	NWEGLSQAKAKYDPEGVFYCPHCVGSDEWIEGKR-SLCRVK	574
AOIAAO	NYDKLRAIKAKYDPNDLFYALTAVGSDEWTVSESGRMCRV-	567

Fig. S3. **Sequence alignment of E22O with three fungal oxidases.** Protein sequences of E22O (this study), *Hypomyces subiculosus* alcohol oxidase (HsAOX, GenBank accession number: ACD39759), *Fusarium incarnatum* APS9 (FiAPS9, GenBank accession number: ACZ66255) and *Aspergillus oryzae* isoamyl alcohol oxidase (AoIAAO, GenBank accession number: BAB13480) were aligned. Amino acid residues conserved in all four proteins are shown in red letters and those conserved between E22O and one or two of the oxidases are shown in orange letters. Putative secretion signals of all four proteins, the N-terminal amino acid sequences of the purified E22O and its limited V8-proteolysis product are underlined using black, red and blue lines, respectively. The putative FAD binding domains in all four enzymes are shown within a green box.

Fig. S4. Effects of E22O gene expression on the growth of silkworm. *A*, Larvae lipofected with pIZT-E22O at the beginning of the 3rd instar continued eating and grew much bigger than the pIZT/V5-his-lipofected control. Left: control 4th instar larvae just after the ecdysis, right: *E22O*-expressing 3rd instar larvae. *B*, Some of the 3rd instar larvae that were lipofected with pIZT-E22O pupated precociously after molting to 4th instar larvae. Left: control pupae metamorphosed from the 5th instar larvae, right: precocious pupae. *C*, Larvae lipofected with pIZT-E22O at the beginning of the penultimate (4th) instar also continued eating and grew much bigger than the pIZT/V5-his-lipofected control. Note that some of them precociously started spinning in the instar but none of them completed metamorphosis. Left: control 5th instar larvae just after the ecdysis, right: *E22O*-expressing 4th instar larvae. *D*, Lipofection of pIZT-E22O into the spinning last instar larvae did not prevent their pupation but prevented adult emergence. Upper left: dead pupae; lower left: dead pharate adult; upper and lower right 1-3 rows: unsuccessful emergence.