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Abstract

This note provides supporting information for the paper “A linear framework for time-
scale separation in nonlinear biochemical systems”. It should be read in conjunction with
the paper. The material is roughly organised in the order in which it appears in the paper
but the table of contents provides more information.
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1 Kernel of the Laplacian for a general graph
We sketch a proof of Paper Equation (5) which gives a basis for the kernel of the Laplacian.
While the essential ideas are introduced we leave it to the reader to fill in some of the details.

Let G be an arbitrary labelled, directed graph on the vertices, 1, · · · , n. As always, we as-
sume thatG has no self loops. Choose x ∈ kerL(G). LetG be the acyclic directed graph on the
strongly connected components (SCCs) of G, as in Paper Figure 2C. Suppose that the vertices
of G are c1, · · · , cm and that c1 is an initial SCC that is not also terminal. By construction, there
must be some vertex, i1 ∈ c1, with an edge leaving c1, i1 → k, where k 6∈ c1. If xi1 > 0, there is
a positive flux of material along this edge. For x to be a steady state, this flux must be balanced
by some flux coming into i1. This can only arise from some edge i2 → i1 with xi2 > 0. Tak-
ing all such vertices, recursively, yields a subset of vertices that can be the only source of the
balancing flux into i1. However, because i1 is an initial SCC, this subset is entirely contained
in c1. This SCC has only a limited amount of starting material and therefore cannot indefinitely
balance the outgoing flux on the edge i1 → k. It follows that xi1 ≤ 0. However, if xi1 < 0
then there is positive flux coming into i1 along the edge i1 → k. This can only be balanced by
an edge i3 → i1 with xi3 < 0. Arguing recursively in a similar way as above yields a similar
contradiction. We conclude that xi1 = 0. But then xj = 0 for any vertex j with j → i1. Since
c1 is strongly connected, it is then easy to see that xj = 0 for any j ∈ c1. It follows that x has no
support on any initial SCC that is not also terminal. (The support of x is the subset of vertices,
i, such that xi 6= 0.)

It is now easy to argue by induction over those SCCs that are not terminal to show that the
support of x contains only vertices that are in terminal SCCs. Consider each terminal SCC, t,
as a labelled, directed graph, Gt, in its own right, in isolation from the rest of G. Assume that
Gt has nt vertices. Let xt ∈ Rnt be the vector obtained from x by restricting x to those vertices
lying in t. Since x has no support outside the terminal SCCs and there are no edges between the
terminal SCCs, it should be clear that xt ∈ kerL(Gt). Let vt ∈ Rnt is the vector coming from
the MTT applied to Gt. Since t is strongly connected and dim kerL(Gt) = 1, it must be that
xt = λtvt, for some λt ∈ R. Now let ρt ∈ Rn be the vector constructed in the Paper,

(ρt)i =

{
(vt)i if i ∈ t

0 otherwise.

Since the terminal SCCs are disjoint, the vectors, ρ1, · · · , ρT , are linearly independent by con-
struction. Evidently, x =

∑T
t=1 λ

tρt. Hence, these vectors form a basis for the kernel of the
Laplacian,

kerL(G) = 〈 ρ1, · · · , ρT 〉 ,

which proves Paper Equation (5).
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2 Ligand binding at thermodynamic equilibrium
Suppose that we have a graph, G, constructed as described in the section of the Paper on “Lig-
and binding, at equilibrium and beyond”. We assume that the vertices are enumerated, 1, 2, · · ·,
omitting the details of conformation and ligand binding, and that the reference vertex 1 cor-
responds to a microstate in which no ligands are bound. The labels are either rate constants,
corresponding to conformational transitions or ligand unbinding events, or expressions of the
form k[L], corresponding to the binding of ligand L with rate constant k. We assume that
the system is at thermodynamic equilibrium, so that every edge is reversible. As long as G is
connected, which we assume, it is automatically strongly connected.

We want to show that the cycle condition holds on G if, and only, if every equilibrium state
satisfies DB. Recall that an equilibrium state, x, satisfies detailed balance (DB) if every pair of
reversible edges

j
a
⇀↽
b
i

is independently at equilibrium, irrespective of any other edges in which the vertices play a role.
It follows that,

xi = Kxj , (1)

where K = a/b is the equilibrium constant. The cycle condition on G states that, for any cycle
of reversible edges, the product of the rate constants on the edges going clockwise is equal to
the product of the rate constants on the edges going counterclockwise.

Suppose first that every equilibrium state satisfies DB. Choose an equilibrium state, x. Since
DB is satisfied, the net flux through any reversible edge is zero. Hence, the net flux around any
cycle of reversible edges is also zero. Choose any such cycle and pick any two vertices on it,
say i′ and j′. The cycle can be broken into a pair of directed paths between i′ to j′. Applying (1)
repeatedly on each path gives two expressions for xj′ in terms of xi′ , as in Paper Equation 17.
Equating these expressions, cancelling ligand concentrations and clearing denominators, yields
the cycle condition. Since the cycle was chosen arbitrarily, this proves the “if” part.

Now suppose the cycle condition holds. Let x be any equilibrium state. We need to show
that x satisfies DB. We construct an alternative steady state y, which we show to satisfy DB,
and then prove that y = x. Recall that the reference microstate, 1, has no ligands bound and
set y1 = x1. For any other microstate j, choose some path of reversible edges from 1 to j,
which must exist since G is strongly connected, and use (1) to express yj in terms of y1, as in
Paper Equation 17. Now choose some other path from 1 to j and obtain a second expression
for yj in terms of y1. The two paths together form a cycle of reversible edges, to which the
cycle condition applies. Reorganising the cycle condition and putting in the appropriate ligand
concentrations shows that the two path expressions give the same result for yj . Hence, this
quantity is well defined, irrespective of the path chosen.

We have unambiguously defined a state, y, of G but we have yet to show that it is a steady
state. Consider any reversible edge between the microstates i and j. Choose a pair of reversible
paths from 1 to i and from 1 to j. Together with the reversible edge between i and j, this gives
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a cycle of reversible edges. Applying the cycle condition, it is easy to see that, in the state y, the
reversible edge between i and j must be independently at equilibrium. This not only implies
that y is a steady state but also that y satisfies DB. But now, G is strongly connected and so
dim kerL(G) = 1. Hence, y = λx for some λ ∈ R. Since y1 = x1, λ = 1. Hence, y = x and
therefore x satisfies DB. This completes the proof.

For applications of the framework at equilibrium, it is necessary to calculate various ag-
gregate measures, as shown in Paper Figure 3. We briefly discuss here various techniques for
calculating fractional saturation, which is widely used to quantify allosteric enzyme activity.

Provided the reference vertex, 1, has no ligands bound, as we have assumed, then, in any
steady state x, the quantity xi/x1 is a monomial in the ligand concentrations and the power to
which [L] appears is the number of Lmolecules bound in microstate i. Hence, the concentration
of states in which L is bound is given by

[L](∂xtot/∂[L])

and the fractional saturation, or average concentration of states bound by L, is the logarithmic
derivative, (

[L]

xtot

)
∂xtot

∂[L]
. (2)

More complex aggregate concentrations can be worked out in a similar way.
The calculation of xtot needed in (2) can be simplified by suitably decomposing the graph,

as illustrated by the sum and product formulas below.
DB implies that any equilibrium state xG of G gives, by restriction, an equilibrium state xR

of any subgraph, R. If R and T are subgraphs that are disjoint (no vertex in common), which
together span G, we get the sum formula

(xG)tot = (xR)tot + (xT )tot . (3)

If ligands bind independently, so that the site-specific rate constants are independent of the
microstate in which ligand binds, then the graph may be decomposed into a product of the
graphs for single site binding. The product of two graphs is defined as follows. Suppose that G
is a labelled, directed graph on the vertices g1, · · · , gn and that H is a labelled, directed graph
on the vertices h1, · · · , hm. The product G × H is the labelled, directed graph on the vertices
gi × hj in which there is a labelled edge

gi1 × hj1
a→ gi2 × hj1

whenever there is a labelled edge gi1
a→ gi2 in G and, symmetrically, there is a labelled edge

gi1 × hj1
b→ gi1 × hj2

whenever there is a labelled edge hj1
b→ hj2 in H . There are no edges in G × H other than

these. This construction captures the fact that a change in state of either factor is independent
of the state of the other factor.

3



The equilibrium state of a product may be obtained from those of its factors as follows.
Define the normalised total by π(G) = xtot/x1, where x is any equilibrium state. It follows
from Paper Equation 4 that π(G) is independent of x, although it may depend on the choice of
reference vertex. With 1 × 1 as the reference in G × H , it is not difficult to prove the product
formula,

π(G×H) = π(G)× π(H) . (4)

Independent binding allows π(G) to be factorised.
Formulas (2), (3) and (4) are helpful for typical calculations at thermodynamic equilibrium.

3 Synthesis and degradation
For the partial graph,G+, in Paper Figure 4A, the corresponding labelled, directed graph,G∗, in
Paper Figure 4B is strongly connected, with the Laplacian shown in Paper Figure 4D. Applying
the MTT leads to the spanning trees in Figure 1, from which the components of the basis element
ρG∗ ∈ kerL(G∗) can be read off according to the prescription in Paper Figure 4, to give

ρG∗

1 = a1s2d2 + a4s1d2 + a1s1d2

ρG∗

2 = a2s1d2 + a3s2d2 + s2d1d2 + a2s2d2

ρG∗

3 = a1a3s2 + a3a4s1 + a2a4s1 + a4s2d1 + a3a4s2 + a1a3s1 + a2a4s2

ρG∗

∗ = a1d1d2 + a4d1d2 + a3a4d2 + a1a3d2 + a2a4d2 .

The unique steady state of G+ can now be calculated from Paper Equation 23.
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Figure 1: Spanning trees for the labelled, directed graph in Paper Figure 4B. The 19 trees are
listed, with each root indicated by a black circle around the corresponding vertex.
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