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The supporting material includes 6 figures in 4 sections. Section S1: Additional 
experimental CpεT receptor trajectories and inferred potentials. Section S2: 
Parameters for the correction of the inferred values expands the investigation of the 
performance of the inference technique in section 4.2 of the manuscript. Section S3: 
Robustness to Noise examines the influence of positioning noise on the inferred 
variables.Here we examine the inferred values in terms of the noise level of the system 
through numerical trajectories. Section S4: The Flat-Well Potential expands section 4.4 
of the manuscript where we show that the inferred forces in a flat-well potential are 
negligible. Here we explore a greater parameter space by varying the size of the 
confining box. 



S1 Additional experimental CpεT receptor trajectories and inferred potentials 

 

 

 

 

 

 

FIGURE S1: Inferred confining potentials (right column) and diffusivity maps (left 
column) from experimental trajectories (left column). Top row: a CSαT receptor 
trajectory with DInf of 0.11 ± 0.04μm2/s and inferred kr of 0.28 ± 0.02pN/μm. Middle 
row: a CPεT receptor trajectory with DInf of 0.2 ± 0.1μm2/s and inferred kr of 0.23 ± 
0.04pN/μm.Bottom row: a CPεT receptor trajectory with DInf of 0.14 ± 0.04μm2/s and 
inferred kr of 0.48 ± 0.08pN/μm. 
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S2 Parameters for the correction of the inferred values 

The performance of the inference technique in extracting the diffusion coefficient and 
spring constant is tested with numerical trajectories, whose input parameters are varied. A 
systematic deviation from the input value can be corrected for and we determined the two 
parameters A and B (Eqs. 11-12) that are required to correct the inferred values. 

The deviation from the input values is due to the non-linearities in theoptimization 
process. Here we test the extent of the parameter space for which A and B can be used. 
The numerical trajectories have a step size of 51.3 ms, 1000 points (this parameter is 
varied in Fig. S2), and DInput=0.075 μm2/s (varied in Fig. S3). We vary the confinement 
factor u by linearly varying the input spring constant kr. 2500 trajectories were calculated 
for each set of parameters. 
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FIGURE S2: Normalized values of inferred parameters for diffusion coefficients (A) and 
radial spring constants (B) for trajectories of varying length N. The underestimation of 
the diffusion coefficient remains constant, even for short trajectories of 200 points. The 
correction factor A for the diffusion coefficient in Eq. 11 remains constant. The 
correction factor B in Eq. 12 for the spring constant does change for short trajectories, but 
remains the same, once trajectories are longer than 400 points. 
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FIGURE S3: Normalized values of inferred parameters for diffusion coefficients (A) and 
radial spring constants (B) for trajectories of two input diffusion coefficients. The 
underestimation of the diffusion coefficient remains constant. The correction factor A for 
the diffusion coefficient in Eq. 11 and the correction factor B for the spring constant in 
Eq. 12 remain constant.  
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FIGURE S4: Normalized values of inferred parameters for diffusion coefficients (A) and 
radial spring constants (B) for trajectories analyzed with a different mesh size. The 
underestimation of the diffusion coefficient remains constant, because we infer a global 
diffusion coefficient. The correction factor A for the diffusion coefficient in Eq. 11 
remains constant. The correction factor B for the spring constant in Eq. 12 also remains 
constant down to a coarse mesh of 6 by 6. The 6 by 6 mesh shows less bias because more 
data points fall in each mesh square. This is compatible with the results shown in Fig. S2, 
where fewer data points induce a greater deviation. For the 4 by 4 case, the factor B in 
Eq. 12 has to be reevaluated. 

 



S3 Robustness to noise 

If there were no noise on the biomolecule positioning, the probability of going from 
(r1,t1) to (r2,t2) would read: 
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with (ij) the subdomain where the motion takes place, Dij the diffusivity, Fij the force, γij 

the friction coefficient and Δt= t2-t1. All sources of noise, i.e. Poissonian photon shot 
noise due to signal and background, pixelization effects, detector noise, and error of the 
localization algorithm can be modeled by a Gaussian noise with standard deviation σ. 
Therefore, the transition probability should read: 
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where the transition probability has been convoluted by two Gaussians modeling 
positioning uncertainties. From the above equation, it is obvious that inference in the 
presence of noise will lead to an apparent diffusion coefficient Dij+σ2/Δt. For numerical 
trajectories, the input positioning noise is known and its effect on the inferred diffusion 
coefficient can be directly subtracted. 

We explore the performance of the method for a range of positioning noise values. To 
this end, we define the noise level, which is the ratio between the apparent displacement 
due to the noise, B2=σ , and the displacement due to the Brownian motion, LD. We 
generate 50 trajectories with 1000 points, a diffusion coefficient of 0.075 μm2/s, a radial 
spring constant of 0.5 pN/µm and an acquisition time of 51.3 ms. At each frame we add a 
static positioning noise from a Gaussian distribution. 

We show that the introduced inference method is robust even for very high noise levels. 
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FIGURE S5: Normalized values of inferred diffusion coefficients as a function of noise 
level. The black (blue) curve shows the diffusion coefficient before (after) correction for 
the positioning noise. Then using the parameters A and B (Eq. 11-12), the diffusion 
coefficient can be corrected to give the final inferred value (red). These corrected values 
show that the method is very robust even when the noise masks the Brownian motion at 
the noise level of 1. 



S4 The flat-well potential 

We use this potential in section 4.3 in the main textto test if the algorithm that we use for 
the experimental data will show that there are no forces (or no significant forces) within 
this hard wall potential. Because the walker cannot leave the well, we have no 
information about the wall of the potential. That is why we do not expect to infer the 
potential with walls using our algorithm for the experimental trajectories. We rather 
expect to see the completely flat part of the bottom of the well. If this part is not flat, i.e. 
the algorithm shows significant forces within the domain, we cannot be confident in the 
inferred forces from the experimental trajectories. In contrast, if the inference algorithm, 
which is looking for a non-flat potential shows that the potential well is flat, i.e. extracts 
the correct input potential, we can be confident in the significance of the extracted forces 
from the experimental trajectories. 

We generate numerical trajectories in a flat-well potential, where we vary the length of 
the confining box L from 100 nm to 1000 nm. The position is captured every 51.3 ms and 
the input diffusion coefficient is 0.1 μm2/s. The trajectory length is 100, 400 or 1000 
points with 1000 sub-steps that are not averaged. Before the position is recorded, we add 
a positioning noise B=60 nm from a Gaussian distribution. We then evaluate the potential 
assuming a 2nd order potential.In order to be confident that the kr values extracted from 
experimental trajectories represent real potentials, the inferred kr values must lie well 
above the kr values that the inference extracts from these flat-well trajectories. Figure S6 
represents the kr values extracted from these numerical trajectories as a function of the 
length L of the confining box together with the experimental data for CpεT and CsαT 
receptors. For trajectory lengths of 400 or 1000 points, the kr valuesinferred from 
experimental trajectories lie well above the spring constants inferred from numerical 
trajectories with a flat-well potential. Note that all the experimental trajectories consist of 
at least 500 points. Furthermore, the use of a higher order potential leads to the extraction 
of potentials much closer to zero. We here restricted ourselves to a second order potential 
to directly compare with the potential used on experimental trajectories.  
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FIGURE S6: Comparison of spring constants extracted from numerical trajectories in a 
flat-well potential and spring constants extracted from experimental trajectories of 
CpεTand CsαTreceptors.Trajectories in a flat-well potential should yield an inferred kr of 
0. However, due to the optimization process and the reflections of the walls, the inferred 
potential, using the algorithm that is expecting a spring potential, is not perfectly flat. The 
determined kr is shown for trajectories of varying length N. The calculated data points 
(squares) show the mean value and the standard deviation obtained from 100 numerical 
trajectories, the solid lines are a guide to the eye. The kr values inferred from 
experimental trajectories are shown as red and black circles for CpεTand CsαTreceptors, 
respectively.Given that the experimental trajectories are circular or elliptical, the 
experimental data points are attributed to square-box domain lengths with equal 
confinement domain area.  


