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Supplementary Figure 1. Model of metabolic pathways connected to serine biosynthesis 

This pathway diagram depicts the major biomolecules known to be derived from serine, 
including nucleic acids (purines), lipids (sphingosine and phosphatidylserine), and protein 
(glycine and cysteine). As shown in this study, the serine biosynthesis pathway also promotes 
anaplerotic flux, via alpha-ketoglutarate, to Citric Acid cycle intermediates, which are known to 
be used for biosynthesis of lipids (citrate), porphyrin (succinyl-CoA) and ATP (via NADH). 
Dashed lines indicate pathways with intermediate steps not shown. 
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Supplementary Figure 7. Metabolite Utilization by Breast Cancer Cell Lines

a, Bars indicate the percentage of intracellular or extracellular serine that becomes labelled 24 hours 
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Supplementary Figure 10. Contributions of Alanine Aminotransferase to alpha-Ketoglutarate production.
 a-b, Quantitative RT-PCR for (a) GPT2 or (b) PSAT1 mRNA in MDA-MB-468 cells transfected with the indicated siRNAs.
 c-d, Relative �ux from glutamine to (c) alanine or (d) serine in MDA-MB-468 cells transfected with the indicated siRNAs.
 e, Relative steady state alpha-ketoglutarate levels in MDA-MB-468 cells transfected with the indicated siRNAs.
 f, Isotopic labeling of aKG at indicated time points after treatment with isotopically labeled glutamine  in MDA-MB-468 
 cells transfected with the indicated siRNAs. Asterisks indicate a probability value p < 0.05 relative to cotrols. Error bars 
 are SEM with n=3 (a, b), n=4 (c, d, f ) or n=5 (e).
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Supplementary Discussion 
 
Clinical Implications of PHGDH suppression 
From our analysis of human breast tumour sections by immunohistochemistry, ~70% of ER-

negative breast cancers exhibit elevated PHGDH (Fig. 2d). Our in vivo and in vitro RNAi data 

suggest that targeting the serine synthesis pathway may be therapeutically valuable in breast 

cancers with elevated PHGDH expression or PHGDH amplifications. Existing clinical data 

suggests that PHGDH inhibition might be tolerated in patients. Homozygous PHGDH loss-of-

function mutations that result in little to no detectable PHGDH activity in humans and a knockout 

of PHGDH in mice have been described (1, 2). In both cases, loss of PHGDH activity causes 

low serine and glycine levels in the brain which affect neuronal function, but in humans this 

phenotype can been reversed by antenatal serine supplementation (3). Because small 

molecules targeting PHGDH could be designed to not cross the blood-brain barrier, such 

inhibitors may not exhibit on-target toxicity. Furthermore, because PHGDH suppression inhibits 

cell proliferation in the presence of serine and serine supplementation reverses the toxicity of 

the loss-of-function mutation, serine supplementation would be predicted to mitigate any on-

target toxicity while not interfering with the potential anti-tumor effects of a PHGDH inhibitor. 

 

The role of transaminases other than PSAT1 in aKG flux 
The seine biosynthesis pathway produces equimolar amounts of several molecules whose 

levels could be affected by its forward flux, including the citric acid (TCA) cycle intermediate 

alpha-ketoglutarate (aKG), which is produced during the transamination reaction catalyzed by 

PSAT1 (Supplementary Fig. 1). It is well established that cancer cells utilize a significant 

amount of glutamine for nucleotide biosynthesis and anaplerosis of carbon into the TCA cycle 

as aKG (4). Because proliferating cells utilize intermediates of the TCA cycle as biosynthetic 

precursors, they upregulate anaplerotic reactions that restore molecules, such as aKG, to the 

TCA cycle and thus counterbalance the biosynthetic efflux (5). Glutaminases and asparagine 

synthetase catalyze the first step in this anaplerotic process, the conversion of glutamine into 

glutamate, and we find that these enzymes are upregulated in ER-negative breast cancer 

(Supplementary Fig. 5). Transaminases, like PSAT1, GPT/GPT2, GOT1/2 or the glutamate 

dehydrogenases, GLUD1 and GLUD2, catalyze a second step in this anaplerotic process, 

converting glutamate into aKG. In ER-negative cancers, the serine biosynthetic pathway 

contributes ~50% of the glutamate to aKG flux. The remainder of the flux likely comes 

predominantly from these remaining reactions. In particular, the mitochondrial form of glutamic 



pyruvate transaminase (GPT2, commonly referred to as alanine aminotransferate or ALT) is 

expressed in ER-negative cancers and converts mitochondrial pyruvate and glutamate into 

alanine and aKG. However, suppression of GPT2 by RNAi is not sufficient to reduce aKG flux or 

steady state aKG levels, suggesting that the serine biosynthetic pathway is a major driver of 

glutamate to aKG flux in PHGDH amplified lines (Supplementary Fig. 10).  In cancers without 

elevated serine biosynthesis, conversion of glutamate to aKG is likely driven by other reactions. 

For example, the expression of two other enzymes that perform this reaction (GLUD1 and 

GLUD2) significantly anti-correlate with that of PHGDH in breast cancer (Supplementary Fig. 

9c). Furthermore, the expression of the cytoplasmic form of glutamic-oxaloacetic transaminase 

(GOT1, commonly referred to as aspartate aminotransferase or AAT) has been shown to be 

essential in MDA-MB-231 cells, which express PHGDH at undetectable levels (6). 

 

Glucose and glutamine flux analyses 
To investigate how flux through glycolysis, the serine biosynthesis pathway, and glutamine 

anaplerosis to the TCA cycle are related to one another, we undertook kinetic flux experiments 

using U-13C-glucose in cell lines with PHGDH amplification and without. These experiments 

revealed that in cells with high PHGDH expression, flux through the serine biosynthesis 

pathway shunts 8-9% of the glycolytic flux towards serine production, compared to 1-2% in the 

cell line with low PHGDH expression. These kinetic flux experiments also indicated that the net 

flux from glutamate to aKG is approximately 10-fold lower than glycolytic flux (Fig. 4f and 

Supplementary Fig. 9a). As such, the 8-9% diversion of glycolysis toward serine production is 

responsible for at least 50% of net flux from glutamate to aKG in the line with the PHGDH 

amplification (Fig. 4f). Therefore, increased flux through the serine biosynthesis pathway has a 

major impact on aKG production, but a smaller effect on glycolysis or serine availability in these 

cells.  

In our pathway modeling and direct measurements, 75-85% of glucose derived carbon is 

converted to lactate. If 10% is converted to serine in the PHGDH amplified cells, this leaves 5-

15% of glucose derived carbon to contribute to the pentose phosphate pathway, glycerol 

biosynthesis, the TCA cycle via acetyl CoA or malate, and ALT transamination of pyruvate, 

among other minor reactions. Therefore, after accounting for the major amount of glucose 

derived carbon lost as lactate, the serine biosynthetic pathway is a major shunt of the glycolytic 

carbon utilized for biosynthesis in PHGDH-amplified lines. 

 

 



Choice of mouse models 
Numerous model systems are available for studying essential genes in cancer. These include 

patient derived cancer cell lines grown in vitro, injected and grown subcutaneously in mice, 

injected and grown subcutaneously at orthotopic sites, human or murine primary cells stepwise 

transformed using specific genetic elements, and murine germline conditional or constitutive 

models. These models vary with respect to their ease of use and manipulation and their 

relevance to human cancer. Cellular metabolism is dramatically affected by the environment, 

including the extracellular concentration and availability of oxygen and glucose as well as 

numerous other metabolites, the concentrations of which are not specifically understood and 

may vary even within a particular tumour. One primary reason for studying the essentiality of 

metabolic genes and transporters in a xenograft model system was to place the cells in a more 

physiologically relevant concentration of extracellular metabolites, in contrast to in vitro systems 

which assume certain levels of various nutrients. The results presented here demonstrate that 

our system is capable of detecting differences in the in vivo proliferation of cells containing 

various shRNA constructs, thereby allowing for the assessment of gene essentiality directly in 

the context of in vivo metabolite levels. 

With respect to the comparison between subcutaneous and orthotopic model systems, 

previous studies have found that mammary fat pad injection was superior to subcutaneous 

injection with respect to tumour formation frequency, tumour growth rate, and formation of 

metastases (7). These phenotypes were dependent upon the cell type of origin, with breast 

cancer cell lines responding favorably to the fat pad environment, while non-breast cell lines 

performed equally well in the fat pad as subcutaneously. As tumour initiation is of particular 

concern for in vivo RNAi screening, these finding argue that the site of injection may be 

important. 

 
Comparisons between in vivo and in vitro essentiality  
In this manuscript, we attempt to draw comparisons between the in vivo and in vitro proliferation 

of cells using various RNAi methods. By measuring a large number of shRNAs within a pool in 

both environments, the relative lethality of each shRNA can be easily compared given the 

assumption that the distribution of shRNA enrichment or depletion scores is similar between 

these two groups. In contrast, the growth of a tumour derived from constitutive expression of a 

single shRNA in vitro and the introduction of those cells into a mouse can be affected by the 

outgrown of a minority of cells within the population which have suppressed the shRNA in 

question. Furthermore, these systems measures the additive affects of the shRNA on 



establishment and maintenance of the tumour.  These problems can be overcome by the use of 

inducible shRNA constructs, although the degree of gene silencing in such systems are limited 

by the delivery of a drug (e.g. doxycycline) to cells within a developing tumour. Therefore, while 

it is very easy to maintain a consistent level of the drug in vitro, we do not know the 

concentration that the tumour cells are subjected to in vivo. This concentration may be 

inconsistent or vary due to the degree of vascularization within the tumour. As such, it would not 

be at all surprising if gene suppression in the population in vivo did not approach that seen in 

vitro. For these reasons, a given shRNA may show some variation in phenotype across all of 

the systems used. While the xenograft model screening system that we have established here 

allows for medium-throughput evaluation of gene essentiality in the most physiologically 

relevant system currently possible, other systems, such as those utilizing mouse genetics, are 

needed to vet and further promote potential cancer targets. 
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