Polycyclic Aromatic Triptycenes: Oxygen Substitution Cyclization Strategies

Brett VanVeller, Derek J. Schipper, and Timothy M. Swager*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Email: tswager@mit.edu

Contents	Page
Materials	S 3
General Experimental	S3
Synthetic Procedures	
Synthesis of 6	S4
Synthesis of 7	S4
Synthesis of 9	S5
Synthesis of 10	S5
Synthesis of 12	S 6
Synthesis of 13	S 6
Synthesis of 14	S 7
Synthesis of 15	S7
Synthesis of 16	S 8
X-ray Crystal Structures	
Figure S1: Crystal Structure of 7	S 8
Figure S2: Crystal Structure of 14	S9
Figure S3: Crystal Structure of 16	S9
NMR Spectra	
Figure S4: ¹ H NMR spectrum of 6 in CDCl ₃ (400 MHz)	S10
Figure S5: ¹³ C NMR spectrum of 6 in CDCl ₃ (400 MHz)	S10
Figure S6: ¹ H NMR spectrum of 7 in CDCl ₃ (400 MHz)	S10
Figure S7: ¹³ C NMR spectrum of 7 in CDCl ₃ (400 MHz)	S11
Figure S8: ¹ H NMR spectrum of 9 in CDCl ₃ (400 MHz)	S11
Figure S9: ¹³ C NMR spectrum of 9 in CDCl ₃ (400 MHz)	S11
Figure S10: ¹ H NMR spectrum of 10 in CDCl ₃ (400 MHz)	S12
Figure S11: 13 C NMR spectrum of 10 in CDCl ₃ (400 MHz)	S12
Figure S12: ¹ H NMR spectrum of 12 in $CDCl_3$ (400 MHz)	S12
Figure S13: 13 C NMR spectrum of 12 in CDCl ₃ (400 MHz)	S12
Figure S14: ¹ H NMR spectrum of 13 in CDCl ₃ (400 MHz)	S13

Figure S15: ¹³ C NMR spectrum of 13 in CDCl ₃ (400 MHz)	S13
Figure S16: ¹ H NMR spectrum of 14 in CDCl ₃ (400 MHz)	S13
Figure S17: ¹³ C NMR spectrum of 14 in CDCl ₃ (400 MHz)	S14
Figure S18: ¹ H NMR spectrum of 15 in CDCl ₃ (400 MHz)	S14
Figure S19: ¹³ C NMR spectrum of 15 in CDCl ₃ (400 MHz)	S14
Figure S20: gCOSY of 15 in CDCl ₃ (600 MHz)	S15
Figure S21: ¹ H NMR spectrum of 16 in CDCl ₃ (400 MHz)	S16
Figure S22: ¹³ C NMR spectrum of 16 in CDCl ₃ (400 MHz)	S16
Electrochemical Results Figure S23: Cyclic voltammograms of (a) 6, (b) 7, (c) 12, (d) 13, (e) 14, (f) 15, (g) 16, (h) 9, (i) 10, (j) 11. See general experimental section for technical details.	S17
Characterization data for compound 11 Figure S24: Comparison of absorbance (black) and excitation (red)	S18

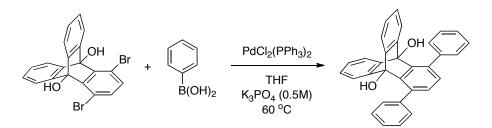
spectrum of 11.Figure S25: MALDI-TOF data for 11Figure S26: MALDI-TOF data for 11S19Figure S27: MALDI-TOF data for 11S19

<u>Materials:</u>

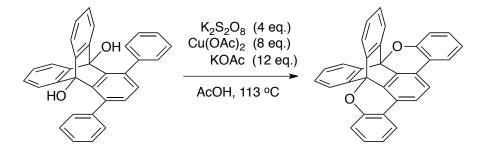
Silica gel (40 μ m) was purchased from SiliCycle. All solvents used for photophysical experiments were spectral grade. All reagent grade materials were purchased from Aldrich, TCI America, Strem Chemical Inc. and Alfa Aesar, and used without further purification.

Experimental:

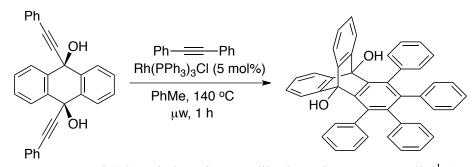
 \overline{NMR} Spectroscopy: ¹H and ¹³C NMR spectra for all compounds were acquired in CDCl₃ on a Bruker Avance Spectrometer operating at 400 and 125 MHz. The chemical shift data are reported in units of δ (ppm) relative to residual solvent.


Electrochemical Measurements: All electrochemical measurements were carried out with Autolab PGSTAT30 potentiostat (Eco Chemie B.V.) in a conventional three-electrode configuration system: a platinum working electrode (1.6 mm diameter), a platinum wire counter electrode and a silver wire as pseudo-reference electrode with ferrocene added after every run as the internal standard. Dichloromethane was employed as the solvent with nBu_4NPF_6 as electrolyte and the experiments were performed under ambient condition with scan rate of 0.1 V/s.

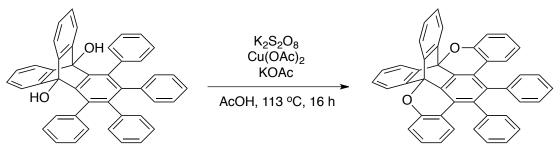
Absorption and Emission Spectroscopy: Fluorescence spectra were measured on a SPEX Fluorolog- τ 3 fluorometer (model FL-321, 450 W Xenon lamp) using right-angle detection. Ultraviolet-visible absorption spectra were measured with an Agilent 8453 diode array spectrophotometer and corrected for background signal with a solvent filled cuvette. Fluorescence quantum yields in CHCl₃ were determined relative to quinine sulfate in 1N H₂SO₄ and are corrected for solvent refractive index and absorption differences at the excitation wavelength. Fluorescence quantum yields in thin film were determined relative to perylene in PMMA.


Lifetime measurements: Time resolved fluorescence measurements were performed by exciting the samples with 160 femtosecond pulses at 390 nm from the double output of a Coherent RegA Ti:Sapphire amplifier. The resulting fluorescence was spectrally and temporally resolved with a Hamamatsu C4780 Streak Camera system.

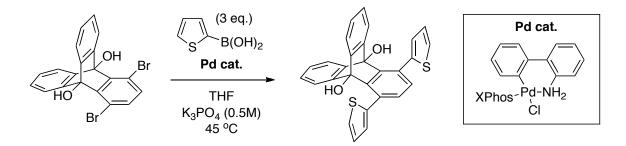
Microwave Reactor: Microwave heating was performed using a *CEM* Discover Microwave at 200W unless otherwise stated.


SYNTHETIC PROCEDURES:

Synthesis of 6: Compound 3 (0.15 g, 0.34 mmol), phenylboronic acid (0.84 g, 1.01 mmol), Pd(PPh₃)₂Cl₂ (14 mg, 0.02 mmol) were dissolved in 2 mL degassed THF and 2 mL K₃PO₄ (0.5 M, degassed) under argon. The reaction was sealed and heated at 60 °C for 6 h. The reaction was diluted with sat. NH₄Cl and washed with DCM twice. The combined organic layers were dried over Na₂SO₄ and volatiles were removed *in vacuo*. The residue was purified by silica gel chromatography (6:4, Hexanes:DCM) to give **6** (98%). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 10H), 7.38 (m, 4H), 7.13 (dd, *J*=5.4, 3 Hz, 4H), 6.81 (s, 2H), 3.04 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 142.7, 141.0, 135.2, 129.4, 128.8, 128.4, 128.3, 125.7, 119.6, 81.0. HRMS (ESI) calcd. for C₃₂H₂₂O₂ [M+H] 439.1693, found 439.1687.

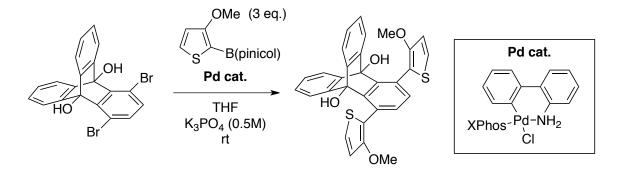


Synthesis of 7: Compound **6** (85 mg, 0.19 mmol), $K_2S_2O_8$ (0.21 g, 0.78 mmol), CuOAc₂ (0.31 g, 1.56 mmol) and KOAc (0.30 g, 3.1 mmol) was suspended in 2 mL of AcOH and heated at 113 °C for 6 h. Once cool the reaction was diluted with 10% NaOH. The mixture was extracted with DCM (3x) and the combined organic fractions were dried over Na₂SO₄ and volatiles were removed *in vacuo*. The residue was triturated with EtOAc (2 mL) and filtered to give **7** (84%). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (dd, *J*=5.6, 3.2 Hz, 4H), 7.64 (dd, *J*=8, 1.6 Hz, 2H), 7.40 (s, 2H), 7.39 (dd, *J*=8, 1.2 Hz, 2H), 7.35 (ddd, *J*=8, 7.2, 1.6 Hz, 2H), 7.12 (dd, *J*=5.6, 3.2 Hz, 4H), 7.03 (ddd, *J*=8, 7.2, 1.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 153.1, 143.9, 138.6, 134.3, 130.2, 125.8, 124.1, 122.7, 122.2, 120.3, 118.5, 117.8, 81.8. HRMS (ESI) calcd. for C₃₂H₁₈O₂ [M+H] 435.1380, found 435.1360.

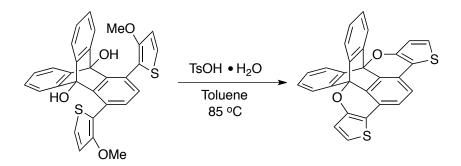


Synthesis of 9: 9,10-Bis(phenylethynyl)-9,10-dihydroanthracene-9,10-diol¹ (207 mg, 0.5 mmol), diphenylacetylene (223 mg, 1.25 mmol) and Rh(PPh₃)₃Cl (23 mg, 0.025 mmol) were weighed in air and placed in a microwave tube with a magnetic stir bar. The tube was capped and then purged with argon. Dry and degassed toluene (4 mL) was added and the mixture is then heated in a CEM Discover microwave reactor at 140 °C for 1 hour. The crude reaction mixture is concentrated under reduced pressure and the residue purified using silica gel column chromatography (30-40% CH₂Cl₂/hexanes) to give **9** (51%). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, *J*=5.4, 3.2, 4H), 7.27-7.20 (m, 6H), 7.16 (dd, *J*=5.5, 3.2, 4H), 7.14-7.09 (m, 4H), 6.75-6.67 (m, 6H), 6.58-6.52 (m, 4H), 3.01 (s, 2H) ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 141.6, 139.3, 139.1, 138.8, 134.1, 130.9, 130.4, 128.0, 127.6, 126.5, 125.6, 125.4, 119.6, 80.6, HRMS (ESI) calcd.for C₄₄H₃₀O₂ [M+H], 591.2319 found 591.2239.

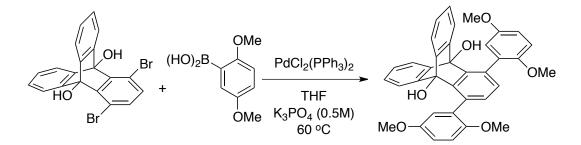
(1) Taylor, M. S.; Swager, T. M. Org. Lett. 2007, 9, 3695.



Synthesis of 10: 9 (415 mg, 0.7 mmol), $K_2S_2O_8$ (757 mg, 2.8 mmol), $Cu(OAc)_2$ (1.118 g, 5.6 mmol), KOAc (827 mg, 8.4 mmol) was suspended in 14 mL of AcOH and heated at 113 °C for 15 h. The reaction was then cooled to room temperature and diluted with and aqueous solution of Na₂CO₃ and extracted with CH₂Cl₂ (3x). The organics were combined, dried over MgSO₄ and concentrated under reduced pressure. The residue was then purified using silica gel column chromatography (15% CH₂Cl₂/hexanes) to give **10** (78%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (dd, *J*=5.5, 3.2, 4H), 7.39 (dd, *J*=8.1, 1.2, 2H), 7.21-7.11 (m, 12H), 6.96-6.70 (m, 4H), 6.48 (ddd, *J*=7.7, 7.3, 1.4, 2H), 6.28 (dd, *J*=8.2, 1.4, 2H) ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 143.7, 140.3, 136.7, 135.7, 130.6, 129.3, 128.1, 127.1, 126.7, 125.7, 122.8, 121.3, 120.1, 118.8, 117.7, 81.6. HRMS (ESI) calcd.for C₄₄H₂₆O₂ [M+H] 587.2006, found 587.2019.

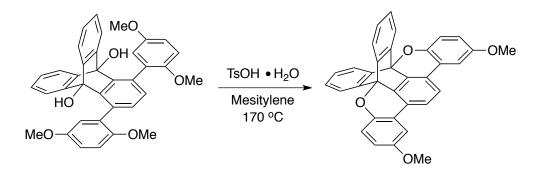

Synthesis of 12: Compound 3 (0.05 g, 0.113 mmol), Pd cat.² (4.5 mg, 5.7 mmol) and 2thiophene boronic acid (0.043 g, 0.338 mmol) were dissolved in 1 mL degassed THF under argon. Following, 2 mL of degassed 0.5 M K₃PO₄ was added by syringe and the reaction was stirred at 40 °C for 12 h. The reaction was diluted with water and extracted with DCM (3x). The combined organic extracts were dried over Na₂SO₄ and the volatiles were removed *in vacuo*. The residue was purified by silica gel chromatography (6:4, Hexanes:DCM) to give 12 (98%). ¹H NMR (400 MHz, CDCl3): δ 7.58 (dd, *J*=5.6, 3.2, 4H), 7.53 (dd, *J*=5.2, 1.2, 2H), 7.19 (dd, *J*=5.2, 3.2, 2H), 7.15 (dd, *J*=5.6, 3.2, 4H), 7.09 (dd, *J*=3.2, 1.2, 2H), 3.74 (s, 2H). ¹³C NMR (125 MHz, CDCl3) δ 144.6, 141.1, 129.6, 128.3, 128.1, 127.6, 127.4, 125.9, 119.8, 80.9. HRMS (ESI) calcd. for C₂₈H₁₈O₂S₂ [M+H] 449.0675, found 449.0657.

(2) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073.

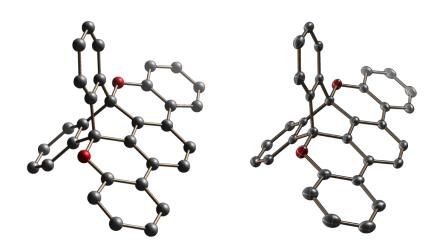


Synthesis of 13: Compound 3 (0.1 g, 0.225 mmol), Pd cat.² (8.8 mg, 11.2 µmol) and thiophene (0.162 g, 0.675 mmol) were dissolved in 2 mL degassed THF under argon. Following, 4 mL of degassed 0.5 M K₃PO₄ was added by syringe and the reaction was stirred at rt for 12 h. The reaction was diluted with water and extracted with DCM (3x). The combined organic extracts were dried over Na₂SO₄ and the volatiles were removed *in vacuo*. The residue was purified by silica gel chromatography (6:4 \rightarrow 2:8, Hexanes:DCM) to give 13 (87%). ¹H NMR (400 MHz, CDCl3): δ 7.58 (br m, 4H), 7.37 (d, *J*=5.6, 2H), 7.13 (br m, 4H), 6.98 (d, *J*= 5.6, 2H), 6.90 (s, 2H), 4.69 (br m, 2H), 3.82 (br s, 6H). ¹³C NMR (125 MHz, CDCl)(Partial) δ 145.6, 144.6, 130.8, 125.6 (broad), 125.0, 120.2-119.5 (broad), 116.6, 80.8, 59.1. HRMS (ESI) calcd. for C₃₀H₂₂O₄S₂ [M+H] 511.1032, found 511.1035.

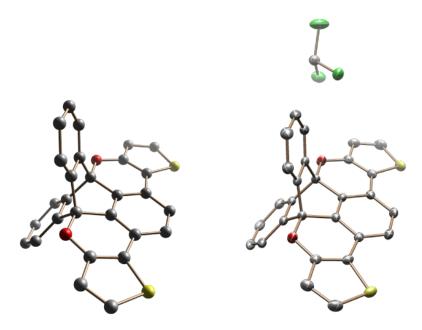
(2) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073.



Synthesis of 14: Compound 13 (38.5 mg, 75.4 µmol) and a catalytic amount of *p*-toluenesulfonic acid monohydrate were dissolved in 1 mL toluene and heated at 85 °C overnight. The reaction was diluted with DCM and washed with sat. NaHCO₃ twice. The organic fraction was dried over Na₂SO₄ and volatiles removed *in vacuo*. The residue was purified by silica gel chromatography (8:2, Hexanes:DCM) to give 14 (87%). ¹H NMR (400 MHz, CDCl3): δ 7.67 (dd, *J*=5.6, 3.2, 4H), 7.18 (d, *J*=5.2, 2H), 7.14 (dd, *J*=5.6, 3.2, 4H), 7.08 (d, *J*=5.2, 2H), 6.78 (s, 2H). ¹³C NMR (125 MHz, CDCl3) δ 151.6, 143.7, 132.7, 125.9, 122.9, 122.5, 120.4, 119.4, 117.7, 112.0, 84.3. HRMS (ESI) calcd. for C₃₀H₂₂O₄S₂ [M+H] 447.0508, found 447.0525.


Synthesis of 15: Compound 3 (0.2 g, 0.45 mmol), 2,5-dimethoxyphenylboronic acid (0.5 g, 2.6 mmol), Pd(PPh₃)₂Cl₂ (9 mg, 0.013 mmol) were dissolved in 2.5 mL degassed THF and 5 mL K₃PO₄ (0.5 M, degassed) under argon. The reaction was sealed and heated at 60 °C for 12 h. The reaction was diluted with sat. NH₄Cl and washed with DCM twice. The combined organic layers were dried over Na₂SO₄ and volatiles were removed *in vacuo*. The residue was purified by silica gel chromatography (8:2, Hexanes:EtOAc) to give **15** (74%).

Alternatively, **15** (50 mg, 11.3 mmol), 2,5-dimethoxyphenylboronic acid (0.1 g, 0.52 mmol), Pd(PPh₃)₂Cl₂ (3 mg, 0.045 mmol) and solid K₃PO₄ (0.2 g) were dissolved in 1 mL degassed DMF- d_7 and stirred under argon in a microwave reactor (150W, 150 °C) for 15 min. The yield (81%) was determined by ¹H NMR relative to residual solvent signal before and after reaction. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (m, 4H), 7.16-7.06 (m, 4H), 6.99 (br m, 4H), 6.87 (br m, 1H), 6.80 (br m, 3H), 4.12 (s, 1H), 3.92 (s, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.72 (s, 3H), 3.71 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 154.1, 154.0, 150.7, 150.4, 145.0, 144.9, 144.8, 144.7, 143.7, 143.5, 131.8, 131.5, 131.2, 131.1, 129.3, 129.1, 125.4, 125.2, 125.1, 119.7, 119.6, 119.4, 117.1, 116.9, 114.3, 114.0, 112.3, 112.2, 80.9, 80.8, 56.4, 56.3, 56.0, 55.9. HRMS (ESI) calcd. for C₃₆H₃₀O₆ [M+Na] 581.1935, found 581.1956.


Synthesis of 16: Compound 15 (60 mg, 0.11 mmol) and *p*-toluenesulfonic acid monohydrate (40 mg, 22 mmol) were dissolved in 0.7 mL mesitylene and heated at 170 °C for 12 h. The reaction was diluted with DCM and washed with 1M NaOH twice. The organic fraction was dried over Na₂SO₄ and the volatiles were removed *in vacuo*. The residue was trituration with EtOH to give 16 (56% isolated, spot to spot conversion by TLC). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (dd, *J*=5.6, 3.2 Hz, 4H), 7.33 (s, 2H), 7.32 (d, *J*=8.4 Hz, 2H), 7.14 (d, *J*=2.8 Hz, 2H), 7.11 (dd, *J*=5.2, 3.2 Hz, 4H), 6.91 (dd, *J*=8.8, 2.8 Hz, 2H), 3.85 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 154.8, 147.2, 143.9, 134.7, 125.8, 124.3, 120.3, 118.5, 118.3, 118.2, 115.7, 107.8, 81.0, 56.1. HRMS (ESI) calcd. for C₃₄H₂₂O₄ [M+Na] 517.1410, found 517.1427.

X-ray Crystal Structures:

Suitable crystals were grown by slow evaporation of CHCl₃. Anisotropic thermal ellipsoids set at 50% probability.

Suitable crystals were grown by vial-in-vial vapor diffusion using CHCl₃:Pentane as the solvent:antisolvent mixture. Anisotropic thermal ellipsoids set at 70% probability.

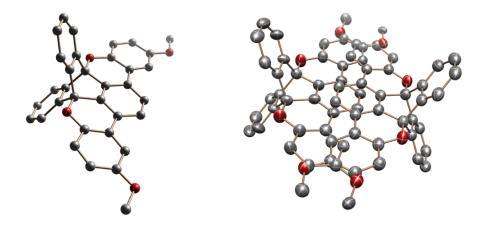
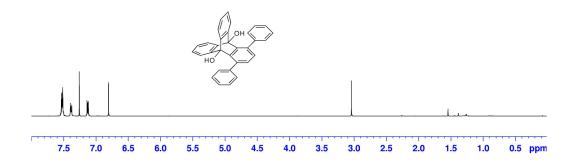



Figure S3: Crystal Structure of 16.

Suitable crystals were grown by vial-in-vial vapor diffusion using CHCl₃:Pentane as the solvent:antisolvent mixture. Anisotropic thermal ellipsoids set at 50% probability.

Figure S4: ¹H NMR spectrum of **6** in CDCl₃ (400 MHz)

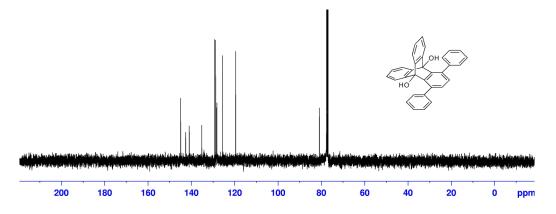
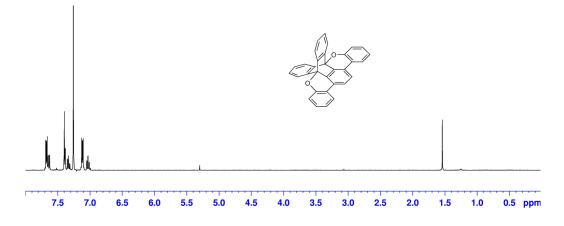



Figure S5: ¹³C NMR spectrum of 6 in CDCl₃ (125 MHz)

Figure S6: ¹H NMR spectrum of **7** in CDCl₃ (400 MHz)

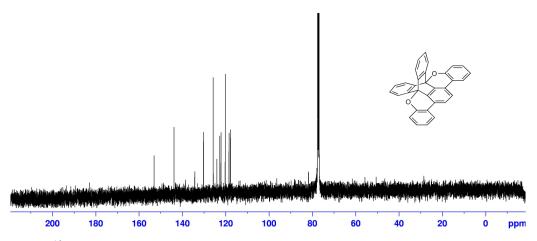
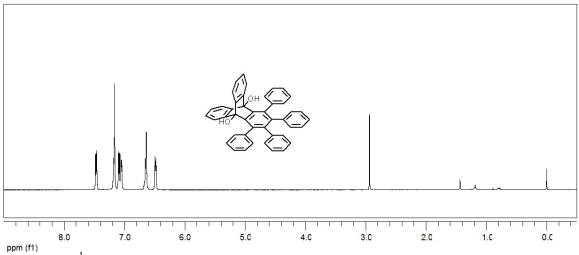
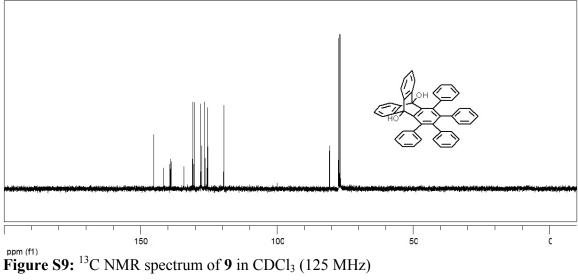




Figure S7: ¹³C NMR spectrum of 7 in CDCl₃ (125 MHz)

Figure S8: ¹H NMR spectrum of **9** in CDCl₃ (400 MHz)

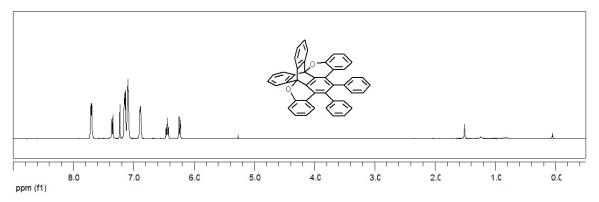
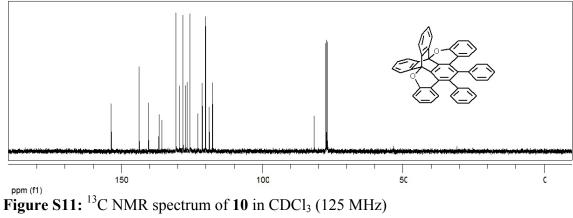
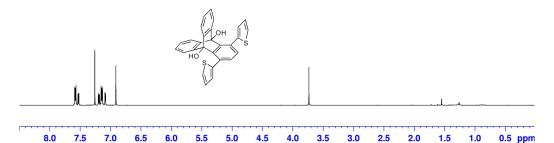




Figure S10: ¹H NMR spectrum of 10 in CDCl₃ (400 MHz)

Figure S12: ¹H NMR spectrum of **12** in CDCl₃ (400 MHz)

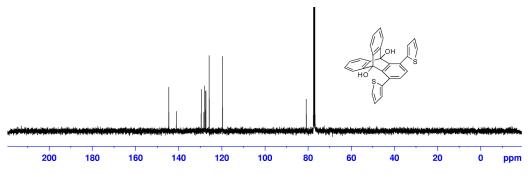


Figure S13: ¹³C NMR spectrum of 12 in CDCl₃ (125 MHz)

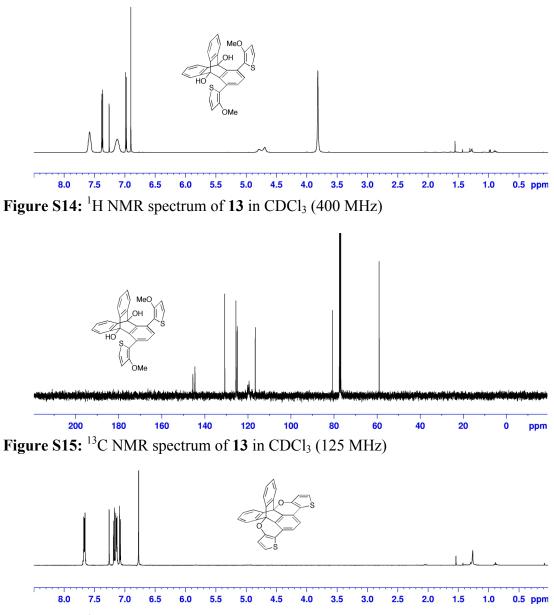


Figure S16: ¹H NMR spectrum of 14 in CDCl₃ (400 MHz)

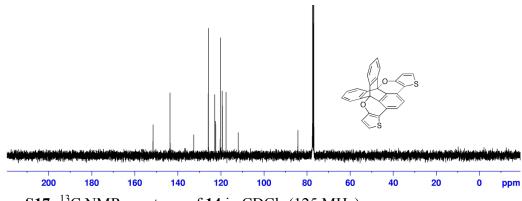
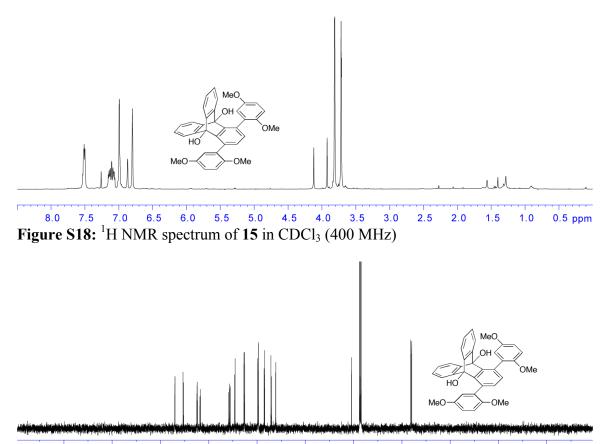



Figure S17: ¹³C NMR spectrum of 14 in CDCl₃ (125 MHz)

200 180 160 140 120 100 80 60 40 Figure S19: 13 C NMR spectrum of 15 in CDCl₃ (125 MHz)

ppm

0

20

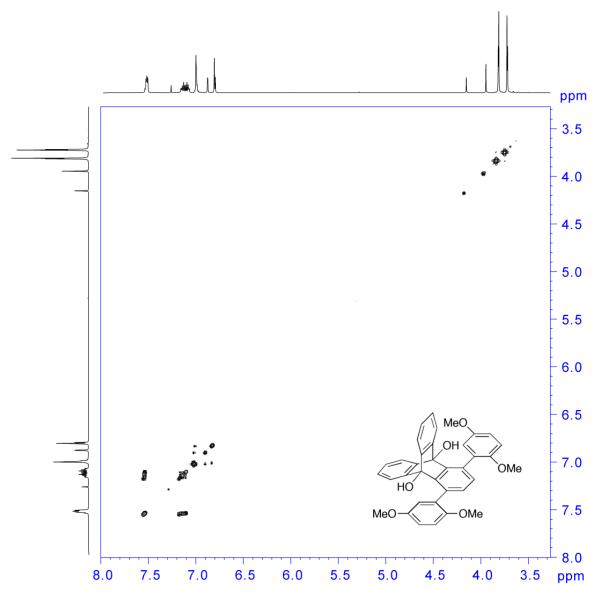
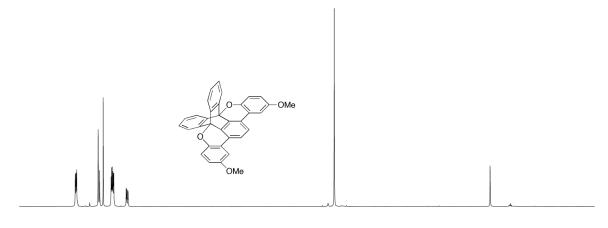
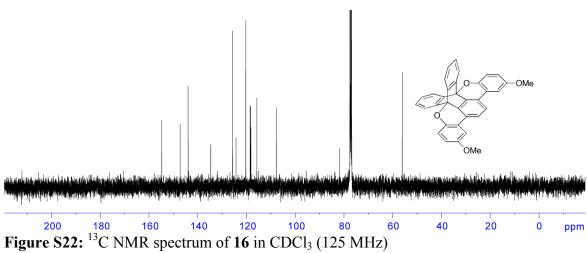
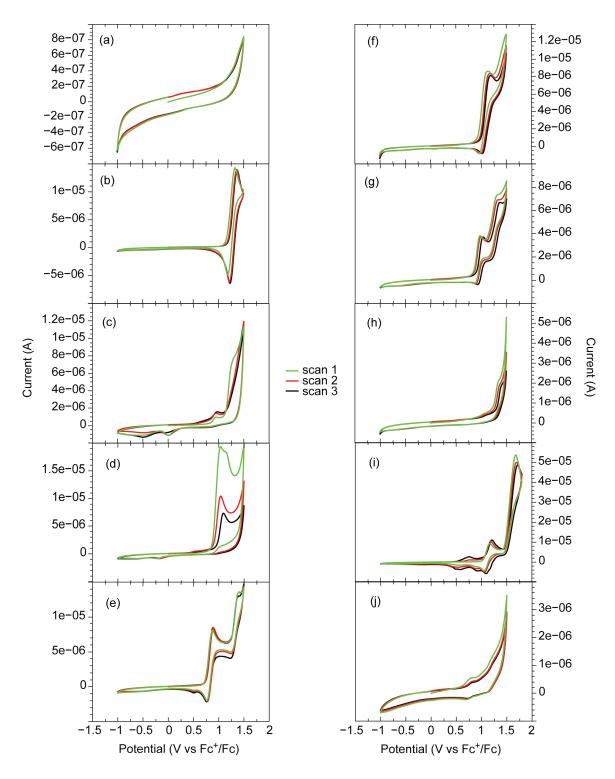





Figure S20: gCOSY of 15 in CDCl₃ (600 MHz)

^{8.0} 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 **Figure S21:** ¹H NMR spectrum of **16** in CDCl₃ (400 MHz) 2.5 2.0 1.5 1.0 0.5 ppm

Figure S23: Cyclic voltammograms of (a) **6**, (b) **7**, (c) **12**, (d) **13**, (e) **14**, (f) **15**, (g) **16**, (h) **9**, (i) **10**, (j) **11**. See general experimental section for technical details.

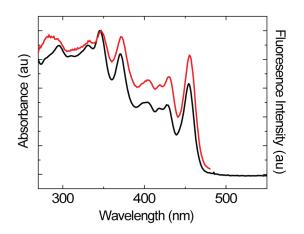


Figure S24: Comparison of absorbance (black) and excitation (red) spectrum of 11.

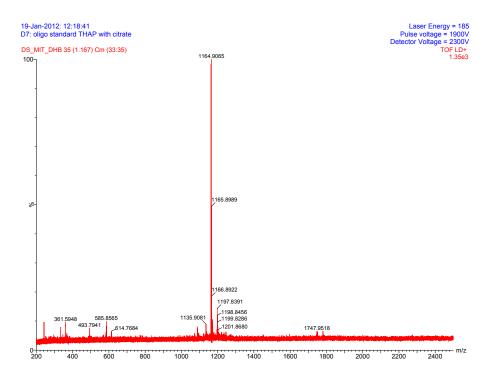


Figure S25: MALDI-TOF data for 11

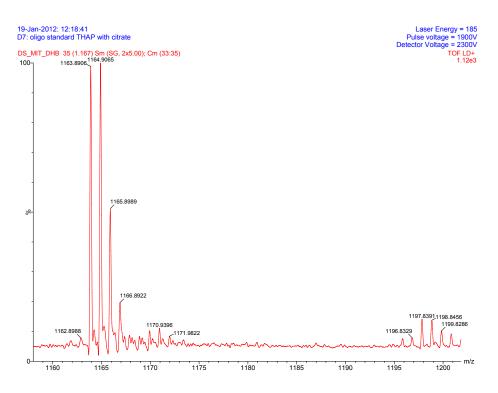


Figure S26: MALDI-TOF data for 11

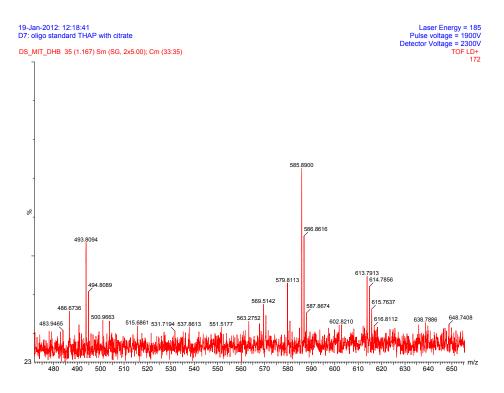


Figure S27: MALDI-TOF data for 11