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Supplementary Information 

1. Identification of LCRs and comparison with predictions from previous 
studies 

1.1 LCRs 
The outcome of any evaluation of the association between structural variation 
and LCRs depends on an unbiased assessment of LCRs in the human genome. 
The segmental duplication track in the UCSC browser has been widely used as a 
reference LCR database. However, the Whole Genome Assembly Comparison 
(WGAC) method [1] used to predict this track started with a repeat-masking step, 
thus excluding high-copy-number repetitive elements (HCRs) such as SINEs and 
LINEs and causing under-detection of HCR-rich LCRs. The masking was 
computationally convenient but not strictly necessary: after retroposition, HCRs 
acquire uniqueness over evolutionary time by accumulating independent 
mutations. If the duplication of HCR-rich segments occurs after a certain amount 
of uniqueness is accumulated, the duplication can still be detected.  
 
To avoid the potential under-ascertainment of LCRs due to HCR masking, we 
performed an independent assessment of LCRs. We particularly focused on a 
subset of them, directly-oriented paralogous LCRs, which we refer to in 
abbreviated form as DP-LCRs. DP-LCRs were hypothesized to be most likely to 
mediate deletions or duplications via NAHR, which can be detected by aCGH. 
The method we proposed for detecting LCRs and DP-LCRs consists of the 
following four steps: (1) represent sequences as lists of k-mers; (2) detect 
homology between LCRs; (3) cluster families of LCRs; and (4) detect and 
validate DP-LCRs (see Materials and Methods section 1 for details). The method 
uses k-mer frequency information to ignore k-mers that are overrepresented 
because of their presence in the highly repetitive elements while retaining the 
sensitivity required to detect HCR-rich LCRs.  
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Previous studies operationally defined LCRs as intra- and inter- chromosomal 
paralogous segments longer than 1Kbp sharing ≥90% sequence identity [1]. 
Other proposed operational definitions involve sequences of length 100-200bp, 
the size of an average exon [2]. By applying the same criteria as used in the 
WGAC method (>1Kbp length, 90% identity) to the human genome assembly 
build hg18, our method identified LCRs covering 6.15% (177.44Mbp) of the 
genome length (excluding the assembly gaps). Compared with the 5.5% as 
presented by the UCSC segDup track derived using the WGAC method with 
repeat masking, an 87.16% concordance is achieved. Investigation of the 
differences revealed that 22.79Mbp were new predictions that were not detected 
by WGAC and 6.32Mbp sequences were not covered by our method but by 
WGAC. 13.61Mbp of the 22.79Mbp newly detected LCRs are with high 
composition of HCRs (> 90%). Another 7.34Mbp of the 22.79Mbp newly detected 
LCRs may be explained by the sensitivity of our k-mer similarity search to detect 
homology. The remaining 1.84Mbp of newly detected LCRs may be due to the 
ambiguity of delineating the ends of LCR segments. A total of 6.32Mbp 
sequences not detected by our method but detected by the previous method may 
be either due to differences in similarity calculation or due to differences in 
delineation of LCR segment boundaries. 
 

1.2 DP-LCRs (directly oriented paralogous LCRs) 
The study of Sharp et al. [3] surveyed genomic loci flanked by paralogous LCRs 
with a goal of identifying loci susceptible to LCR-mediated deletions or 
duplications by the NAHR mechanism.  It has been suggested that the 
paralogous LCRs with high similarity, large size, and in close proximity would be 
more likely to promote NAHR [3,4,5,6]. The study therefore considered only 
regions between paralogous LCRs with length ≥ 10Kbp, identity ≥ 95%, and 
inter-LCR distance <10Mbp. We applied the same criteria to independently 
derive a set of such LCRs (see Materials and Methods section 1 for details) and 
compared with the regions between such LCRs reported in the previous study. 
 
Sharp et al. identified a total of 130 regions between LCRs with above criteria in 
human genome build hg16 [3]. To compare this prediction with the result of our 
method, we lifted over the 130 regions to the human build hg18, which resulted in 
a total of 93 valid regions. In contrast, our method identified 328 regions flanked 
by LCRs meeting the same criteria. The 328 regions included all the lifted over 
regions detected in the previous study and also the genomic disorder loci that are 
known to be associated with LCR-mediated NAHR (Prader Willi/Angelman 
syndromes, DiGeorge syndrome, etc., Figure S3A). 268 of these 328 regions are 
between DP-LCRs. Compared with the regions reported in the previous study, 
our predictions are more comprehensive not only in terms of the total number but 
also in terms of the total base-pair length (Figure S3B). By breaking down the 
predicted regions by their size we can show that our method detects higher 
proportion of small regions (Figure S3C). 
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There are multiple possible factors that contributed to the increased identification 
of the inter-paralogous-LCRs regions. To directly compare the difference 
between our predictions and Sharp et al.’s, we applied our method to human 
genome build hg16. The results showed that the increased sensitivity of 
prediction could largely be traced to sensitive detection of HCR-rich LCRs, and 
also to causes including the use of k-mer information to find paralogous clusters, 
sequence identity calculation and other factors such as the difference between 
genome builds (Figure S4). 

2. Association of gene expression levels with methylation levels in 
germline  
 
In the recent paper by Pacheco et al. [7], sperm mRNA from 18 men (with 
unknown fertility status and various semen characteristics) were hybridized onto 
the Affymetrix Human Gene 1.0 ST Array that offered whole-transcript coverage. 
Each of the 28,869 genes is represented on the array by approximately 26 
probes spread across the full length of the gene, providing a more complete and 
more accurate picture of gene expression than 3’ based expression array 
designs. 
 
We downloaded the raw expression data of this study from GEO (accession# 
GSE26881), and the 18 array data were background-adjusted, normalized, and 
summarized using the RMA algorithm as implemented in the aroma.affymetrix 
software package [8]. 
 
We then found the transcripts located in each 100Kb windows, and averaged 
their expression values by windows (across all samples). We first performed two-
sided Pearson correlation test on the methylation level and the average 
expression level of all 100Kb windows. However, no significant positive or 
negative correlation was found, suggesting no global correlation between the 
methylation and mRNA expression. 
 
We next collected genes located in methylation deserts, and compared their 
expression levels (across all samples) with those located elsewhere. Genes in 
methylation deserts showed significantly elevated expression levels in sperm  
(KS-test, D=0.05, p<2.2e-16). Out of the 18 samples, 6 can be evaluated as 
normal using the following criteria: sperm count > 20 million, motility > 60%, 
morphology > 4% [9]. Using the data from these 6 samples we still observe a 
significantly elevated expression levels for transcripts in methylation deserts (KS-
test, D=0.05, p=4.4e-08). Repeating the analysis for 15 out of the 18 samples 
individually, we could observe the similar patterns with significance value less 
than 0.05. The significance did not show specific correlation with the semen 
parameters. 
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3. Examination of possible ascertainment biases and confounding factors 
that may lead to the association between hypomethylation and the 
structural rearrangements/CNVs 
 
Due to the presence of LCRs and other non-unique genomic regions, the 
association between hypomethylation and the structural rearrangements/CNVs 
may conceivably be explained away by ascertainment biases. First, since high 
association was detected between the structural rearrangements/CNVs and the 
LCRs, double counting of LCRs with similar methylation levels may conceivably 
create an ascertainment bias. To examine the possible extent of such bias, 
regions containing paralogous LCRs were combined together and counted only 
once when generating the methylation level distributions. Even under these 
conditions, the regions containing rearrangements/CNVs are still significantly 
less methylated than other regions. To correct for other possible factors resulting 
in non-uniqueness in the rearrangement/CNV regions, the UMass uniqueness 
15bp track in UCSC database (http://genome.ucsc.edu/cgi-
bin/hgTables?db=hg18&hgta_group=map&hgta_track=wgEncodeMapability&hgt
a_table=wgEncodeUmassMapabilityUniq15&hgta_doSchema=describe+table+sc
hema) was used to quantify the level of sequence uniqueness. The average 
uniqueness value was calculated for each rearrangement/CNV region, and those 
with values less than one standard deviation from (smaller than) the genome-
wide mean of the uniqueness values were eliminated from the KS-test.  After this 
correction, the rearrangement/CNV regions still show significantly lower 
methylation level than other genomic regions.  
 
We then examined possible confounding factors. Cytobands are known to 
correlate with the GC richness, repetitive element (Alu, L1) content, and 
chromatin state, which in turn may correlate with methylation state. We therefore 
assigned positive scores to the R bands (higher score for darker bands), 
negative scores to the G bands, and compared the distribution of the scores for 
windows containing the rearrangements/CNVs to the distribution of scores for 
random windows. The two distributions showed no significant difference (KS-
test). If the cytobands were classified into only two types: positive and negative, 
then intersected with the rearrangements/CNVs, there were still no distributional 
difference detected (Chi-square test).  

Since CpG island-associated regions tend to be unmethylated in human 
germline, we also examined whether the enrichment for CpG islands around the 
rearranged regions may explain the observed low methylation scores. Compared 
with the randomly selected regions, the rearranged regions did show slight 
enrichment (1.4 fold, permutation test, p<10-3) for CpG islands (as defined in the 
UCSC database). However, when the permutation test (comparing methylation 
level of rearrangements/CNVs vs. random segments) was repeated by correcting 
for the CpG islands (removing anything intersecting CpG islands), significantly 
lower methylation scores can still be observed to be associated with the 
rearrangements/CNVs (KS-test). This indicates that the presence of CpG islands 
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cannot explain the low methylation score for the rearrangements/CNVs; on the 
other hand, the loci containing rearrangements/CNVs may indeed have escaped 
CpG depletion because of their unmethylated state in the germ line. 

Next, we examined whether proximity to telomeres or centromeres may explain 
observed hypomethylation patterns. By permutation test, we do observe 
methylation deserts are highly enriched around the centromeric regions (22 fold 
enrichment of regions within 100Kbp of centromeres), and also around the 
telomeric regions (6 fold). To test whether such enrichment explains away the 
correlation between hypomethylation and structural instability, we further asked if 
correlation between hypomethylation and structural instability would be detected 
if the control segments had the same distribution of distances from 
centromeric/telomeric regions as the methylation deserts. To answer this 
question, we first collected the methylation deserts of each chromosome and 
found their distances to the closest centromere/telomere; we then calculated the 
mean and variance of these distances; finally, we generated windows with 
random distances sampled from a normal distribution with the mean and std 
relative to the same centromere/telomere. (If the original window was closest to 
the centromere, the random one would be forced to be on the opposite side of 
the centromere). We repeated the simulation 100 times. Using chi-square test we 
calculated the enrichments of all the types of structural mutabilities in the 
methylation deserts vs. the randomly selected control windows. As shown in 
Table S8, we can still observe the methylation deserts are significantly enriched 
with all types of structural instabilities, with the exception of the 450 HapMap 
CNVs, which showed less enrichment.  

We also asked whether the association between hypomethylation and structural 
instabilities showed sex chromosomes bias. Out of all the categories of structural 
mutability data we examined (human specific rearrangement, structural 
polymorphisms, and disease associated CNVs), only two datasets (HapMap 270 
samples and 400 MGL samples) have data for chromosome Y, which are also 
very sparse. Therefore, we focused on comparing association statistics between 
chromosome X and autosomes. We recalculated the enrichment of various 
structural mutabilities in the methylation deserts, comparing autosomes vs. chrX. 
As summarized in Table S9, methylation deserts in the autosomal chromosomes 
showed significant enrichment of structural mutabilities. Although those in 
chromosome X also show relative enrichment, the p-values are not as significant, 
which indicates the overall association could not be explained by sex 
chromosome bias. 

4. Examination of features in windows with MI=0 
 
We constructed a methylation index (MI) map for the human germline by dividing 
the whole human genome into non-overlapping 100Kbp windows, and by 
calculating MI scores for each window. We found approximately 1.5% of these 
windows have zero MI scores, indicating hypomethylation in human germline.  
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Investigation of CpG distribution, GC content, SINEs, LINEs and microsatellites 
showed that there are no particular enrichment of these features in the windows 
with MI=0 compared with randomly selected regions (Figure S19ABE). These 
windows do show average lower number of SNPs than other regions (Figure 
S19C). However the whole-genome bisulfite sequencing data of the human 
sperm DNA exclude SNP density bias as the cause of the difference in 
methylation levels (Materials and Methods section 3.2, Figure S6). Comparison 
of sequence conservation in these windows with other regions presents an 
interesting pattern. We first examined the average sequence conservation score 
using base-pair resolution mapping of 44 vertebrates from UCSC database 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/phastCons44way/). The 
windows with MI=0 show much higher average conservation score than other 
windows (Figure S19D, KS test D = 0.36, p-value < 2.2e-16), indicating 
sequence in these windows to be relatively highly conserved. In addition, those 
regions also hypomethylated in sperm (<5%) are showing higher sequence 
conservation than those regions not hypomethylated in sperm (>5%) (KS test D = 
0.25, p-value < 1.0e-02). However, when we focus on coding sequences, the 
windows with MI=0 are slightly deprived of conserved genes (0.9 fold), and 
genes are overall under-enriched (0.7 fold). Enrichment was observed for 
pseudogenes (2 fold), which indicates that the genes in these regions may be 
evolving faster than regions with higher methylation levels. Functional clustering 
analysis of genes in these regions showed that they are highly enriched for 
leucine-rich repeats (PRAME family) and defensin functional genes, and are 
deprived of genes functional for cytoplasmic vesicle and cell adhesion (Table 
S4). Genetic disorders or phenotype categorical analyses of these regions 
showed that they are enriched for loci linked to mental retardation (Table S5), 
however, statistical significance was lost after correcting for multiple testing. 

5. Comparison of CNVs detected in 400 MGL samples using custom Agilent 
array and CNVs detected in 270 HapMap samples using Affymetrix 6.0 chip 
 
We examined evidence that our analysis may be affected by biases in array 
design and by selection acting on structural mutations. Toward this goal we 
compared CNVs detected in the 270 HapMap samples using high-resolution 
Affymetrix SNP 6.0 chip [10] with the CNVs detected in the 400 MGL samples 
using custom-designed Agilent array. We examined the distribution of structural 
heterozygosity rates and enrichment for specific functional gene annotations.  
 
Despite the bias away from known polymorphisms in the design of the Agilent 
array, the distribution of the CNV heterozygosity rate obtained using Agilent array 
on 400 MGL samples is similar to that obtained on 270 HapMap samples using 
the Affymetrix array (Figure S12AB).  
 
The intersection of the CNV locations with RefSeq gene coordinates revealed 
under-representation of genes in the CNV regions for both arrays (270 HapMap 
samples-0.57 fold, 400 MGL samples-0.68 fold, permutation test, p<10-3). This 
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may indicate either purifying selection or a bias of hypermutable regions away 
from gene-rich loci.  
 
We next examined possible positive or balancing selection by examining 
enrichment for specific functional annotations of genes at various structural 
heterozygosity levels. The results indicate detectable enrichment for specific 
categories suspected to be under positive or balancing selection (Figure S12CD). 
The two arrays obviously differ in that highly polymorphic gene loci were mostly 
avoided in the design of the Agilent array.  

6. Individuals carrying more CNVs also have higher concentration of CNVs 
within methylation deserts 

We explored inter-individual differences in structural mutability.  Specifically, we 
tested whether the individuals who carry more CNVs also tend to have a higher 
concentration of CNVs within hypomethylated regions identified in the 2.5X 
methylome. Each of the 400 MGL samples was assigned a variability score equal 
to the total number of CNVs detected in the sample. Each CNV was then 
assigned the same variability score as the sample in which it was detected 
(Figure S17A). The distribution of variability scores for CNVs within methylation 
deserts was then compared to the distribution of the variability scores for CNVs 
outside of methylation deserts. The former had significantly higher variability 
scores (Figure S17B), indicating that excess variants within hypermutable 
samples tend to be concentrated within methylation deserts. A similar pattern 
was observed for the windows with MI=0 (Figure S17C). This result could not be 
confirmed using 15X methylomes. 
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