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Supplemental Material 
 
Detailed Methods 
	
  
Mice 

All animal protocols were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee. Mice were maintained on a mixed genetic 

background.  Isl1Cre/+ 1,2,  Pax3Cre 3, Mef2c-AHF-Cre 4 and R26LacZ/+ 5 mice were 

genotyped as previously described. Wnt1::Flpe mice 6,7 were genotyped using 

the following primers as described: 7 

 

Forward: 5’ GGTCCTGGTTCGTCAGTTTGTG 3’ 

Reverse: 5’ TCCCTTATCTGCTTCTTCCGATG 3’ 

 

The dual reporter allele RC::FrePe was genotyped with the following primers for 

the Rosa26 locus:  

 

Forward: 5’ CACTTGCTCTCCCAAAGTCG 3’ 

Wild-type Reverse: 5’ TAGTCTAACTCGCGACACTG 3’ 

Mutant Reverse: 5’ GTTATGTAACGCGGAACTCC 3’  
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Supplemental Figures and Figure Legends 
 

 

Online Figure I.  Validation of the dual reporter RC::FrePe mouse in neural 

crest.  RC::FrePe is knocked into the Rosa26 locus as per previously designed 

intersectional reporter alleles. 6, 8, 9  A-E, Postnatal (P) day 0 control RC::FrePe 

whole hearts (A-C) and cross sections through the outflow tract (D, E). mCherry 

and eGFP are not detected.  F-J, P0 hearts from Wnt1::Flpe; Pax3+/+; RC::FrePe 

embryos. mCherry expression is detected in the outflow tract (G, arrowhead) 

and is confirmed by immunofluorescence of cross sections (I).  eGFP is not 

detected (J).  K-O, P0 hearts from Wnt1::Flpe; Pax3Cre/+; RC::FrePe pups. Strong 

eGFP expression is now evident in the outflow tract (M, arrowhead, and O) 

while only trace amounts of mCherry expression are detected (L, N). Scale bars: 

100µm.  BF-Bright field. IF-Immunofluorescence	
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Online Figure II.  Mef2c-AHF-Cre and Isl1Cre/+ derivatives in newborn hearts 

include the area of RC::FrePe dual-reporter expression.  (A-C) Post-natal 

day 0 (P0) Wnt1::Flpe; Mef2c-AHF-Cre; RC::FrePe heart showing mCherry 

fluorescence in the outflow tract (B, arrow).  eGFP is not detected (C, arrow).  

D, P0 Wnt1::Flpe; Mef2c-AHF-Cre; R26LacZ/+ whole-mount X-Gal-stained hearts 

demonstrating LacZ expression in the outflow tract in comparable regions of the 

outflow tract highlighted in A-C (D, arrow).  (E-G) P0 Wnt1::Flpe; Isl1Cre/+; 

RC::FrePe hearts showing mCherry (F, arrow) and eGFP (G, arrow) 

fluorescence in the cardiac outflow tract.  H, P0 Wnt1::Flpe; Isl1Cre/+; R26LacZ/+ 

whole-mount X-gal stained heart demonstrating LacZ expression in the outflow 

tract in comparable regions of the outflow tract highlighted in E-G (H, arrow).        
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Online Figure III.  Dual fate mapping identifies Isl1Cre/+/Wnt1::Flpe-derived 

cells in the heart at E10.5.  A-E, E10.5 Wnt1::Flpe; Isl1+/+; RC::FrePe embryos 

(A-C) and immunofluorescence (IF) for mCherry (D) and eGFP (E) of cross 

sections through the region of the developing cardiac outflow tract (D,E). 

Wnt1::Flpe-derived craniofacial neural crest (B, arrowhead) and dorsal root 

ganglia (B, arrows) express mCherry, which is also detected by IF in the 

developing outflow tract (D).  F-J, Wnt1::Flpe; Isl1Cre/+; RC::FrePe embryos. 

mCherry is detected in craniofacial mesenchyme (G, arrowhead) and eGFP is 

now expressed by dorsal root ganglia (H, arrows). mCherry (I) and eGFP (J) are 

both detected by IF in the developing outflow tract. K-M, Higher magnification of 

the Wnt1::Flpe; Isl1Cre/+; RC::FrePe embryo shown in F-H.  mCherry is detected 

in the first (I) and second (II) pharyngeal arches (L) while eGFP is expressed by 

cells near the pharyngeal  arches (M, arrows). Scale bars: 100µm.  
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