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In an earlier paper,' we discussed the possible effects of an electric field on the
separation of the two strands of DNA and on the elasticity of a protein or polypep-
tide chain consisting of a number of units, each of which can exist in two states
(short or long). In connection with the latter case, it was pointed out that a small
change in electric field could cause a large change in length of an elastic system (at
constant force), if a cooperative or phase transition were involved. It was sug-
gested that this kind of effect could conceivably be responsible for muscle con-
traction, as an alternative to a prior proposal2 that contraction might involve a
phase transition triggered by a small change in the concentration of a bound ion or
molecule.

It was also stated in the electric-field paper1 that "perhaps a more likely applica-
tion of the principles outlined here would be to changes in state and properties of
biological membranes resulting from changes in membrane potential."

In a recent paper, Changeux, Thi6ry, Tung, and Kittel3 discuss cooperative ef-
fects in a membrane triggered by a change in the concentration of a bound ligand.
Mathematically, this problem is the same as the elasticity-bound ion system referred
to above,2 in the special case f (force) = constant = 0.
The object of the present note is to combine, in as simple a way as possible, our

treatment of electric fields1 with the work of Changeux et al.3 We should like to
suggest the rather obvious possibility that if indeed there are cooperative effects
in membranes, the trigger might be, in some cases at least, a change in membrane
potential or electric field (with ligand concentration constant), or a simultaneous
change in electric field and in ligand concentration.

Formally, the treatment here corresponds to generalizing the elasticity-bound ion
problem from f = 0 to an arbitrary force.2 That is, the electric field plays the role
of the force.
The general thermodynamic principle involved here and earlier1 is that, in an

equilibrium between two forms or states of a system or subsystem, imposition of
an electric field will cause a greater decrease in free energy in the more polarizable
of the two states, and hence will shift the equilibrium in a direction favoring that
state. When the equilibrium is a cooperative one, a "landslide" or phase transition
may occur.

The Model.-We use the Bragg-Williams (or "molecular field"3) approximation,
and the methods and notation we have adopted elsewhere.4 The membrane con-
sists of a two-dimensional lattice of M units, each with c nearest-neighbor units,
and each of which can exist in state A or state B. The partition function of a unit in
state A isjA(T), and in state B is jB(T). Each unit has one site for the binding of a
ligand. The absolute activity of the ligand is X = e,/kT; X is proportional to
the concentration of ligand, in a dilute solution. The partition function of a bound
ligand on an A site is qA(T), and on a B site is qB(T). The polarizability of a unit
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in state A is aA; it is aB in state B. These polarizabilities may include contribu-
tions from the individual atoms, molecular configuration changes, rotation, proton
migration," 5 etc. In general, aA and aB will be functions of T and of the proton
absolute activity, XH+. For simplicity here, we assume that the ligand is not a
proton, and that XH+ is constant throughout. Several examples of the opposite,
more complicated case are treated explicitly elsewhere.'

Also, for simplicity we neglect induced dipole-dipole interactions in the main
argument, but provide a correction for this effect later.
We have not yet introduced interactions (van der Waals, hydrogen bonds, etc.)

between nearest-neighbor units (which lead to cooperative effects), but it may be
instructive at this point to write down the basic statistical mechanical and thermo-
dynamic equations for the system as outlined so far. The grand partition function
for a single unit4 is

t(TEX) = jAeaAE2/2kT(l + qAX) + jeaBE2/2kT(l + qBX) (1)

where E = electric field strength. The first term on the right is proportional to
the probability of observing a unit in state A at equilibrium; the second term has
a similar significance for state B. The effects of X and E on these "weights" are
included explicitly. In an analogous way, qAX is the weight of an occupied A site
while 1 is the weight of an empty A site, and so on.
The grand partition function for the whole system of M units is

- (TE,XM) = (2)

The pertinent thermodynamic equations are

dU = TdS - PdE + M'dM + AIN, (3)

U = TS +M'M +MN, (4)
-d('M) = d(kT In :) = SdT + PdE - M'dM + NdM, (5)

where U = energy, P = total polarization, IA' = chemical potential of a unit, and
N = number of bound ligand molecules. Given (, as in equation (1), equation (5)
tells us how to calculate, for example, the mean values P and N.

Let us now introduce nearest-neighbor interactions between units. The nearest-
neighbor interaction free energies are WAA(T), WB(T), and WAB(T). In the Bragg-
Williams approximation, a random distribution of neighbors is assumed in calcu-
lating the average interaction free energy between a unit and its nearest neighbors.
For an A unit, this free energy is

UA = OCWAA + (1 - 6)CWAB, (6)
and for a B unit,

UB = 8CWAB + (1 - 3)CWBB, (7)

where 5 = MAIM = equilibrium fraction of A units. Equation (1) becomes then

= j -UAlkTeaAE2/2kT(1 + qAX) + j e-UB/kTeaBE2/2kT(l + qBX). (8)

Note that in this simple treatment we are multiplying four factors together in each
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term: the four contributions are assumed to be noninteracting. From the two
terms on the right of equation (8), the respective weights of A and B, we obtain

6 MA jAeUA/k TeaAE2/2kT(1 + ) (9)
l- 6 M -JBe-uB/kTe aBE2/2kT (l +qB)

Equations (2) to (5) still apply.6 We find, for example, as we should expect,

P/M = [6aA + (1 - 6)aB]E (10)
0 = N/AI = 6GA + (1 - 6)GB, (11)

where

GA = fraction of occupied A sites = qAX/(l + qAX) (12)

GB = qBX/(1 + qBX). (13)

For computational purposes, equation (9) can be rewritten as follows:'

6 c(2 - 1)w/2kT = Y7
(14)

where

j eAW2kT 1 + qAX)e(aA - aB)/2kT (15)

and
W = WAA + WBB- 2WAB. (16)

We see that if qA > qB, an increase in X increases y and hence also increases 6
(fraction of A units). Furthermore, if aA > aB, an increase in E increases y and 6.
Both of these results are as anticipated. If X = 0 and E = 0, the second and third
factors in y, equation (15), become unity, and we obtain the "resting" value of 6
from equation (14). Since X and E are both included in y, either or both can serve
to trigger the phase transition, which occurs at y = 1 (if T < T,).

Figure 1 shows 6 as a function of In y, as
calculated from equation (14). If w is nega-
tive (i.e., if AA, BB pairs are more stable (
than AB pairs), there is a phase transition cir/kT -81 /
at a low enough temperature. One phase 0
is rich in A, the other in B. The criti-
cal temperature (Fig. 1) is given by3', 0.5
cw/kT, = -4. 8
When T < Tc, there is a discontinuity in 6

at y = 1 (the vertical line rather than the
dashed loop in Fig. 1 is the stable equi- -,
librium path). Therefore, there is also, at _#
y = 1, a discontinuity in P and in G, -4 2 0 2 4 6

from equations (10) and (11). In j
An order of magnitude calculation based FIG. 1-Fraction of A units as a function

on reasonable polarizabilities1 5 and mem- of In y.
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brane potentials shows that aE2/kT for a unit can easily be of order unity.
Hence the X and E factors in equation (15) are typically similar in magnitude. But
this is not an essential point since only a very small change in y suffices for "trigger"
action.

In the problem of the elasticity of a single A,B chain with binding, we put c = 2
in equation (14) and eJ(lA - LB)/kT in place of eE2(aA - aB)/2kT in equation (15), where
f = force, IA = length of an A unit, etc. Actually, an exact treatment is easy and
possible for a one-dimensional system; this is given by equations(14-21) of refer-
ence 4. The two-dimensional elasticity problem (a sheet of A,B chains) is made
complicated by the effect of the differing lengths of the A and B units on nearest-
neighbor interchain interactions.2

If we replace the random lattice of M dipoles (all perpendicular to the lattice
plane) by a continuous distribution outside of a circle of area equal to the area per
dipole, we can easily obtain a correction to equation (14): E is replaced by

E
1 + 2(irM/l)1)[SaA + (1 6)BI'

where E is the external field and (i/M is the area per molecule (or dipole) in the
lattice.
Summary.-It is suggested that if membranes exhibit cooperative transitions,

the trigger may be a change in electric field (membrane potential), or in a ligand
concentration, or both.
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