Hong-Yu Lin and Barry B. Snider*

Department of Chemistry MS 015, Brandeis University, Waltham, Massachusetts 02454-9110,

United States

snider@brandeis.edu

Explanation of Results from NCI 60 Cell Line Screen	.S2
60 Cell Line Screen Results for Phidianidine A (1a)	.\$3
60 Cell Line Screen Results for Phidianidine B (1b)	.S4
60 Cell Line Screen Results for Amine 12a	.S5
60 Cell Line Screen Results for Amine 12b	.S6
Table S1. Comparison of the Spectral Data of Natural and Synthetic Phidianidine A (1a).	.S7
Table S2. Comparison of the Spectral Data of Natural and Synthetic Phidianidine B (1b).	.S8
Copies of ¹ H and ¹³ C NMR Spectra	.\$9-\$30

Interpretation of Data from NCI 60 Cell Screen of Phidianidine A (1a), Phidianidine

B (1b), Amine 12a, and Amine 12b. Compounds submitted to the NCI 60 Cell screen are tested initially at a single high dose (10^{-5} M) in the full NCI 60 cell panel. The one-dose data are reported as a mean graph of the percent growth of treated cells. The number reported for the one-dose assay is growth relative to the no-drug control, and relative to the time zero number of cells. This allows detection of both growth inhibition (values between 0 and 100) and lethality (values less than 0). For example, a value of 100 means no growth inhibition. A value of 40 means 60% growth inhibition. A value of 0 means no net growth over the course of the experiment. A value of -40 would mean 40% lethality. A value of -100 means all cells are dead

Developmental Ther	apeutics Program	NSC: 764069 / 1	Conc: 1.00E-5 Molar	Test Date: Mar 12, 2012
One Dose Me	an Graph	Experiment ID: 1203	OS35	Report Date: Apr 18, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H227 NCI-H226 NCI-H226 NCI-H226 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H328 KCI-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN CAKL1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer MCF7 MDA-MB-231/ATCC HS 5781 BT-549 T-470 MDA-MB-468 Mean Delta Rance	97.81 44.86 86.42 60.23 39.64 98.27 65.26 69.56 58.32 16.18 63.19 64.02 77.30 67.97 47.79 64.75 76.05 77.19 101.80 73.73 45.13 92.23 33.32 80.25 71.81 37.55 37.59 21.57 70.45 47.79 73.62 87.73 86.88 68.13 65.65 56.12 56.34 33.39 67.52 85.35 64.62 100.53 83.70 91.71 93.99 92.84 77.16 69.43 56.92 66.50 59.19	Mean Growth	Percent - Growth Perc	
ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468 Mean Delta Range	92.64 82.35 78.27 44.69 75.36 80.23 31.76 92.84 77.16 69.43 56.92 66.50 59.19 1.76 66.67 64.91 100.04 150	100 50	0 -50	-100 -150

Results for phidianidine A (1a) in 60 cell line screen at 10^{-5} M:

Developmental Thera	apeutics Program	NSC: 764070 / 1	Conc: 1.00E-5 Molar	Test Date: Mar 12, 2012
One Dose Mea	an Graph	Experiment ID: 1203	OS35	Report Date: Apr 18, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H23 NCI-H230 NCI-H23 NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-ME	Growth Percent 100.07 87.05 106.81 85.17 89.79 88.99 97.40 95.73 90.59 62.79 102.70 96.58 96.84 102.40 92.94 95.82 114.91 102.34 104.04 98.73 96.97 94.64 95.26 109.44 101.80 96.57 74.02 87.66 93.05 73.32 104.80 104.73 105.12 101.49 87.92 103.91 94.51 89.00 104.73 105.12 101.49 87.92 103.91 94.51 89.00 104.07 89.02 97.69 102.35 100.80 101.22 103.28 81.71 116.74 92.73 113.18 91.77 100.61 94.99 72.46	Mean Growth	Percent - Growth Perc	cent
Mean Delta Range	95.80 33.01 53.95			
	150	100 50	0 -50	-100 -150

Results for phidianidine B (1b) in 60 cell line screen at 10^{-5} M:

Developmental Ther	apeutics Program	NSC: 764072/1	Conc: 1.00E-5 Molar	Test Date: Mar 12, 2012
One Dose Mea	an Graph	Experiment ID: 1203	OS35	Report Date: Apr 18, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H23 NCI-H23 NCI-H23 NCI-H23 NCI-H226 NCI-H226 NCI-H227 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-470 MDA-MB-468 Mean	Growth Percent 2.39 -48.83 14.29 29.25 4.37 10.55 24.56 32.98 21.58 19.68 60.99 30.93 33.43 12.78 -38.26 -0.72 64.01 23.05 35.71 3.86 23.92 18.62 54.09 7.26 -23.00 46.17 0.27 11.73 34.87 13.50 -26.33 -36.97 4.12 40.15 9.74 54.83 22.60 34.50 -50.18 46.81 58.07 28.38 -1.93 43.25 16.11 52.18 35.26 1.1.49	Mean Growth	Percent - Growth Perc	
Mean Delta Range	18.88 69.06 114.19	-		=
	150	100 50	0 -50	-100 -150

Results for phidianidine A amine precursor 12a in 60 cell line screen at 10^{-5} M:

Developmental Ther	apeutics Program	NSC: 764071/1	Conc: 1.00E-5 Molar	Test Date: Mar 12, 2012
One Dose Mea	an Graph	Experiment ID: 1203	OS35	Report Date: Apr 18, 2012
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H23 NCI-H232M NCI-H460 NCI-H522 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-3 OVCAR-3 OVCAR-3 OVCAR-3 OVCAR-4 OVCAR-5 OVC	Growth Percent 95.38 60.46 93.09 90.60 86.16 89.12 100.67 94.29 92.19 71.14 103.95 99.53 100.42 115.10 96.41 95.69 97.75 96.73 100.76 98.89 103.10 81.21 91.76 87.45 73.38 101.19 66.92 115.43 101.79 92.69 98.66 92.33 98.32 103.48 93.26 98.66 92.33 98.32 103.48 93.26 98.46 98.68 99.08 97.44 110.10 104.39 99.16 95.69 103.48 93.26 98.46 98.68 99.08 97.44 110.10 104.39 99.16 95.69 95.69 90.49 92.33 98.32 103.48 93.26 98.46 98.66 99.08 97.44 110.10 104.39 99.16 95.69 90.04 99.08 97.44 110.10 104.39 99.16 95.69 90.04 91.52	Mean Growth	Percent - Growth Per	
Mean Delta Range	94.94 34.48 54.97			
	150	100 50	0 -50	-100 -150

Results for phidianidine B amine precursor **12b** in 60 cell line screen at 10^{-5} M:

material. ^(c)	^(a) Data take
This peak do	en from refere
es not appea	nce $1.^{(b)}$ The
in the ¹³ C N	reported data
MR spectrum	a in reference
and was dete	1 are not con
rmined less a	sistent with t
accurately fro	he spectrum
om the HMB	provided in t
C spectrum.	he supporting

	-			158.8	158.6	156.7	156.6	8"
1	1	7.49	7.41	1	1	!	1	7"
3.15	3.18	3.06	3.02	43.9	43.5 ^b	42.3	41.9 ^b	6"
1.66-1.54	1.62	1.42-1.56	1.36-1.56	29.9	29.7	28.1	28.1	S.
1.46-1.36	1.44	1.22 - 1.34	1.28	25.1	24.5	23.3	23.4	4"
1.66-1.54	1.62	1.42-1.56	1.36-1.56	29.7	29.5	28.1	28.1	3
3.15	3.16	3.00	2.99	42.5	43.0 ^b	40.7	40.5	2"
!	1	6.73	6.72	-		!	1	1"
1				179.1	179.9 ^b	176.7	176.7	v
1			1	170.3	169.0°	168.5	168.5	હ
4.20	4.23	4.20	4.20 (s)	24.1	23.8	22.5	22.5	8
1				139.1	138.6	137.0	137.0	7a
7.52 (d, 1)	7.55 (d, 1)	7.56 (d, 1)	7.56 (d, 1)	116.3	115.8	114.2	114.1	T
1	-			115.5	115.1	114.0	113.5 ^c	6
1) 7.13 (dd, 8, 1)	1) 7.16 (dd, 8,) 7.14 (dd, 8,	7.13 (dd, 8, 1	123.4	122.4^{b}	121.6	121.3	S
7.45 (d, 8)	7.48 (d, 8)	7.47 (d, 8)	7.46 (d, 8)	121.0	121.1	120.2	120.0	4
				127.3	126.6	125.8	125.2	3a
1				108.8	108.4	107.4	106.8^{b}	ω
7.23	7.27	7.35	7.35	125.9	124.4^{b}	125.3	125.0	2
	1	11.18	11.15	:		1	1	1
¹ H NMR	¹ H NMR	¹ H NMR	¹ H NMR	¹³ C NMR	¹³ C NMR	¹³ C NMR	¹³ C NMR	
CD ₃ OD	CD ₃ OD	$DMSO-d_6$	$DMSO-d_6$	CD ₃ OD	CD30D	$DMSO-d_6$	$DMSO-d_6$	
Synthetic	Natural ^a	Synthetic	Natural ^a	Synthetic	Natural ^a	Synthetic	Natural ^a	Atom
			dianidine A (1a)	phic				
		NH2	Ż , + o	r 7 7aN 2 0-	σ			
		- NH2		6 3a 3 5 N				
		0", "	H1" 3" 5" H	л 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

Table S1. Comparison of the Spectral Data of Natural and Synthetic Phidianidine A (1a). The Numbering Scheme is Shown Below. 7

Atom	Natural ^a	Synthetic	Natural ^a	Synthetic	Natural ^a	Synthetic	Natural ^a	Synthetic
	¹³ C NMR	¹³ C NMR	¹³ C NMR	¹³ C NMR	¹ H NMR	¹ H NMR	¹ H NMR	¹ H NMR
	1				11.00	11.04		
2	125.3 ^b	124.2	124.4	124.8	7.31	7.31	7.28 ^b	7.21
ω	106.9	106.9	107.9	108.3	1	-	1	1
3a	126.7	126.7	127.9	128.3	1	-	1	1
4	118.3	118.4	118.9	119.4	7.50 (d, 8)	7.51 (d, 8)	7.38 (d, 8)	7.35 (d, 8)
S	118.6	118.7	119.6	120.2	6.99 (dd, 8, 8	3) 6.99 (dd, 8, 8) 7.04 (dd, 8, 8) 7.01 (dd, 8, 8)
6	120.2^{b}	121.2	122.4	122.9	7.09 (dd, 8, 8	3) 7.09 (dd, 8, 8) 7.14 (dd, 8, 8) 7.11 (dd, 8, 8)
Τ	111.5	111.5	112.1	112.5	7.36 (d, 8)	7.37 (d, 8)	7.57 (d, 8)	7.52 (d, 8)
7a	136.1	136.2	137.6	138.2			-	
8	22.7	22.7	23.8	24.2	4.20 (s)	4.20	4.23	4.22
<u>s</u>	168.5	168.5	169.9	170.2	1	-	-	1
יי	176.9	176.9	179.0	179.5				
1"			-	-	6.71 (t, 5)	6.72(t, 5)		
2"	40.7	40.7	43.0 ^b	42.5	3.00	3.01	3.16	3.14
3"	28.1	28.1	29.1^{b}	29.7	1.36-1.56	1.40156	1.62	1.68-1.54
4"	23.4	23.4	24.8	25.0	1.28	1.25-1.35	1.44	1.46-1.36
5"	28.1	28.1	29.1^{b}	29.9	1.36-1.56	1.42-1.56	1.62	1.68-1.54
6"	42.3	42.3	43.5 ^b	43.9	3.05	3.06	3.18	3.15
7"	1	1	1	1	7.43	7.55	1	
8	156.6	156.7	158.6	158.8	1	-	-	1

Table S2. Comparison of the Spectral Data of Natural and Synthetic Phidianidine B (1b). The Numbering Scheme is Shown Below.

⁵ ⁴ ⁸ ⁵ ^N ^N ^N 5" 7" N 8" NH2

Synthesis of Phidianidines A and B

..

Lin and Snider

Page S26

