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In the previous paper1 (Part I), we examined a simple model which leads to a
first-order phase transition in a one-dimensional system. The present work is an
extension of that paper. We use the same notation and fundamental equations;
these will not be repeated here.

In Part I, the intermolecular pair potential for adsorbed molecules, w2(r), was a
step function. Here we take w2(r) to be a smooth function of r. We find, in the
examples considered, a phase transition whether w2(r) is attractive or repulsive.
The critical behavior, unlike that found in Part I, is "normal."
As in Part I, uniform lattice spacing is required to produce a phase transition.

Nonuniform spacing cannot give a transition.
Uniform Lattice Spacing (Attraction).-As our first, example, let us use the

Lennard-Jones functions

Wl(X) _ 2e (1 \6 / 1\ (1)

kT kT kx) kT

W2(x) _ 2E (1.156 1.15\12 (2)

ikT kT x l kTk xl

x = r/r1*, r2* = 1.15r1*. (3)

This is, of course, a quite arbitrary choice. The two potential functions have the
same depth; the adsorbed molecules are 15 per cent too large for the lattice. Con-
sequently the lattice will start with r = rl*, x = 1, when X = q2X2 = 0 and will
expand as X increases (T constant). Below the critical temperature there will be a
sudden jump in the value of x and in the value of 0 = N2/N1 at a certain X, X = XA.
Because of the step function used for w2(r) in Part I, the exact form of wl(r) did

not have to be specified. But here it is necessary. Incidentally, in a polymer sys-
tem, w1(r) could originate as a configurational entropy term, rather than as poten-
tial energy. In general, wi(r) would be a free energy.
The variable x is a parameter of the system. For a given value of x [see equa-

tion (1-2)],

Ym(x)N1 =e-Nx~(x)/kT - E eN2#2/ Q(N1,N2,Tx). (4)
N2

Strictly speaking, to relate this equation to thermodynamics, we should integrate
over x. But since the system is macroscopic, we can just as well (and more simply)
use that value of x, x*, which minimizes ul(x) or maximizes -ym(x), and omit the in-
tegration.

Similarly, if we work with

e-A(x)/kT Q(N1,N2,Tx), (5)

we can again omit an integration over x and instead minimize A with respect to x
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(or maximize Q). Because of the insensitivity of thermodynamic properties of
macroscopic systems to the choice of partition function, the same x* will of course
be involved in equations (4) and (5).
For a particular value of x, we have simply an ordinary one-dimensional Ising

problem2 (with no phase transition). We use the matrix method, and equation (4).
A site (a "unit") can be empty [matrix entry qlz(x)] or occupied [matrix entry
qiz(x)X], where z(x) = e-,W(X)/kT. If a site and the site to its right are both occupied,
there is a further factor u(x) = e - ,(,)/kT to be entered in the matrix. Hence the
secular equation is

qiz(x) - y qlz(x) = . (6)
qlz(x)X qiz(x)u(x) - =°

This gives

yM(X) = qlz(x) (1 + Xu(x) + { [1 - Xu(x)]2 + 4} 1/2). (7)2

This is essentially equation (I-5).
Figure 1 illustrates equations (1) to (3), and (7). We plot 'y(x)/ql as a function

X: [JO

6.0 ~~~E/KT=1.25

5.0-

01 0.2 0.3 0.4 0.5 O

e -#1/k T/qj against q2X2 at a temperature above the critical
temperature.
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of X for e/kT = 1.25, and for a number of different values of x. The envelope is
the thermodynamic value of e-,/kT/ql. That is, for each X, we select that value
of x, x*, which maximizes ym(x)/ql. The value of x* changes smoothly as X in-
creases. There is no phase transition (this temperature is above the critical temper-
ature). When X is small, x* = 1, as already mentioned above. When X is very
large, all sites will be occupied and the system will choose that value of x which
minimizes the total potential energy per site, wi(x) + w2(x). From equations (1)
and (2), we find x* = 1.115 for X -* ,irrespective of the value of e/kT. We note
also that when X -a o, am(x) qlz(x)u(x)X, which of course leads to the same re-
sult.

Figure 2 gives a similar plot for the case e/kT = 3.00. There is a phase transition
at X, = 0.118, where a sudden jump in x * occurs, from a value near 1.00 to one near
1.11.

Figure 3, for e/kT = 1.50, is very close to the critical temperature (note the num-
ber of lines intersecting practically at the transition point). The critical value of
E/kT appears to be slightly less than 1.50.
There is a similar clustering of intersecting lines "submerged" in those figures

with T < T, (see, for example, Figs. 2 and 7). In such a case, if we imagine con-

0.05 0.10 0.15

FIG. 2.-The envelope is a plot of e -;l/k T/q against q2X2 at a temperature below the critical
temperature. The phase transition is at X = Xt.
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FIG. 3.-The envelope is a plot of e;il/kT/q against q2X2 very near the critical temperature.

straining the system to values of x larger than an appropriately chosen value (so
that the cluster of lines is brought to the "surface"), then T becomes a new "criti-
cal temperature."
The adsorption isotherm, 0 as a function of X, can be obtained from the slope of

the envelope in Figures 1 to 3. This follows because [see equation (I4)]

I= [In67(x7)] (8)

For example, the isotherm ABCD in Figure 4 has been calculated from Figure 2
(e/kT = 3.00). The discontinuity in the slope of the envelope in Figure 2 leads to a
discontinuity in 0 in Figure 4.

Alternatively, thermodynamic properties may be calculated from equation (5)
(canonical ensemble). As already mentioned, equation (7) is essentially the stan-
dard Ising result (for a given x). The corresponding expression2 for A (x) is

A(x) #ln x) - 1 +20 3(x) + 1- 20
N~kT - -In qi - Olnq2 + l,()+ 12 + In

+()(X) + 1
w1(x) 0W2(X)- + (9)kT kT
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FIG. 4.-Adsorption isotherm (ABCD), 0 against X, for e/kT = 3.00 (as in Fig. 2). The phase
transition is at X = Xt. The loop follows from equation (11) and Fig. 6.
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FIG. 5.-The envelope is a plot of the free energy, A'/NlkT against 0 for c<kT = 1.25 (as in Fig. 1).
There is no phase transition.

0.6 1.0

FIG. 6.-The envelope is a plot of the free energy, A'/IkT against e for e/kT = 3.00 (as in Fig. 2).
The two crosses on the envelope mark the two phases in the phase transition.
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where

1(X)2 = 1 -40(1 - 0) [1 - u(x)].
As an illustration, we plot, in Figure 5, A'(x)/NikT against 0, for e/kT = 1.25

and various values of x, where

A'(x) AA(x)
N1kT -= kx + ln qi +0 In q2. (10)

This is the same case as in Figure 1. Here, the lower envelope, minimizing A (x)
for each 0, gives the thermodynamic free energy.

Figure 6 shows A '(x)/NlkT versus 0 for e/kT = 3.00. The envelope exhibits the
phase transition found in Figure 2: a straight line can be drawn between the two
arrows, tangent to the envelope at both points. To obtain the adsorption isotherm
here, we use

[bA (x*)NlkT =InX.(1

From this equation we find that the slope of the envelope in Figure 6 leads to the
loop in Figure 4. The vertical jump is not found because this is a closed system':
for a value of 0 between the arrows in Figure 6, the system is constrained to use a
single x* (not corresponding to either stable phase). In the open system of Figure
2, a value of 0 in the same range can be achieved by the system spending part of its
time in each of the two stable phases (at X,).
The location of the vertical jump in Figure 4 is consistent with the shape of the

loop, incidentally. This has been verified by use of the appropriate equal area
theorem (0 versus In X).

Uniform Lattice Spacing (Repulsion).-As a second example, let us use wi(x)/kT
in equation (1) again, but for w2(x) we take the repulsive interaction,

W2(X) e (1)12 (12)

Thus the lattice will have x* = 1 at X = 0 but will expand as X increases. In fact,
in the limit X co , we find, as above, that x * = 1.122.

Critical behavior is "normal." The critical value of e/kT appears to be a little
above 4.00. Figure 7 shows ym(x)/ql as a function of X for e/kT = 5.00. Figure 8
shows A'(x)/NikT versus 0 for e/kT = 12.00. For large e/kT, the densities of the
two phases approach 0 = 0.50 and 0 = 1.00, as expected.
Nonuniform Lattice Spacing.-Consider the model discussed so far in this paper,

but with the modification that each lattice spacing between two sites can have any
value of x, irrespective of other lattice spacings. When both sites are occupied, the
potential energy of the pair of sites is w1(x) + w2(x). When both sites are not
occupied, the potential energy is wl(x). This is still, basically, a simple Ising
problem. We use the matrix method. A "unit" is, say, a site and the spacing
to its right. An empty site has a matrix entry q1; an occupied site has q1X. The
nearest-neighbor interaction entry, when both sites are occupied, we write as

re Iw, +W2(X)IIkTdx. Otherwise it is feW,(X)kTdx.
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300

FIG. 7.-The envelope is a plot of e-;i/kT/ql against q2X2 for c/kT = 5.00 (repulsion). There is
a phase transition at about X = Xt = 145.
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FIG. 8.-The envelope is a plot of the free energy, A'/NSkT against 0 for el/kT = 12.00 (repulsion).
The two phases have 0 _ 0.50 and 0 _ 1.00.
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Define

-=C e-t"(2)T dx, tu = Jrf e-[W(z)+w2(x)]IkT dX.

Then the secular equation is

q2lX qlzuiX - y
0. (13)

This has exactly the form of equation (6), but integration over x has already been
carried out. Incidentally, fluctuations in x are large here because z and i refer to a
single unit (not a macroscopic system). Hence we cannot use a single value of x,
x*, as above.

Since equation (13) is of the conventional Ising form, there can be no phase
transition (T, = 0).
The last section of Part I is a special case. There are two possible lattice spacings,

with w, =W2 = Oor with wl = El, W2 = e2. Thus 2 = 1 + z, 2z = 1 + zu. With
these substitutions in equation (13), we recover equation (I-13).

It was pointed out in Part I that when u = l/z2, the function O(X,z) from equation
(1-14) is identical with O(X,Z2) from equation (1-8). This follows because ft in equa-
tion (I-14) plays the role of u = 1/z2 in equation (I-8), and

1+Zu 1+Z.Z-2 1
1 +z 1 +z z
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