Supporting Information

Fischer et al. 10.1073/pnas.1116843109

SI Text

Cloning of Plasmids. Sequences of all cloning primers are given in Table S2. The *singlet oxygen resistant 1 (SOR1)* cDNA was created by reverse transcribing the corresponding RNA from *sor1* or 4A+ using the specific primer *SOR1_2534r*. Then, cDNAs were amplified with the same reverse primer and the forward primer *SOR1_1f* using Phusion High-Fidelity DNA polymerase (New England Biolabs) and subcloned into the pPCR-ScriptAmpSK(+) (Stratagene) cloning vector. Accuracy of the cDNA sequences was confirmed by sequencing. Then, the *SOR1* coding regions of *sor1* and 4A+ were amplified with primers *SOR1_186Nde1* and *SOR1_1248EcoR1* to add NdeI and *EcoR1* restriction sites, and again, they were subcloned into the pSL18 overexpression vector containing the *PSAD* promoter by NdeI and *EcoRI* restriction and ligation (1).

Cloning of *GPXH–arylsulfatase* (*ARS*) reporter constructs was described (2). For σ -class glutathione-*S*-transferase 1 (*GSTS1*) reporter constructs, the *GSTS1* promoter was amplified with either of the forward primers *GSTS1_f1* or *GSTS1_f2KpnI* and the reverse primer *GSTS1_r1EcoRV* to introduce a KpnI or *EcoRV* restriction site at the end of the fragments. PCR fragments were

- Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894.
- Fischer BB, et al. (2009) Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. Plant Mol Biol 71: 569–583.
- subcloned into pPCR-ScriptAmpSK(+) (Stratagene) and sequenced. Putative regulatory elements were deleted in a PCRbased approach where the whole plasmids containing the promoter fragments were amplified with the Phusion High-Fidelity DNA polymerase (New England Biolabs) using primers GSTS1_APal1f, GSTS1_APal2f, GSTS1_APal3f, or GSTS1_ACREf containing a modified sequence of individual element together with the corresponding reverse primer $GSTS1\Delta Pal1r$, $GSTS1\Delta Pal2r$, GSTS1ΔPal3r, or GSTS1ΔCREr, respectively. PCR products were religated, transformed into Escherichia coli, and tested for accuracy of promoter fragments containing the desired mutation by sequencing. The triple palindrome mutation was achieved by subsequent repetition of the PCR with all three primer pairs. Then, 700-bp fragments of these GSTS1 promoters were cut out with SacI/SpeI and used to exchange the SacI/NheI fragment of the HSP70A-luciferase construct (3) to get the various GSTS1-Gaussia luciferase (GLUC) constructs where the expression of the GLUC gene is driven by an individual GSTS1 promoter. Similarly, replacement of a 1-kb KpnI-EcoRV promoter fragment of plasmid pASPro1 containing the ARS gene (4) with the KpnI/ EcoRV fragments of the cloned GSTS1 promoters led to the different GSTS1-ARS constructs.
- Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53:381–388.
- Leisinger U, et al. (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46:395–408.

Fig. S1. Segregation of the reactive oxygen species resistance phenotype. *sor1* was backcrossed to the WT strain four times. Progeny from the fourth backcross was tested for resistance to rose bengal (RB) and *tert*-butylhydroperoxide (tBOOH). Shown are progeny from 12 complete tetrads arrayed in two columns. Individual members of a tetrad are labeled a–d. WT (4A+) and *sor1* controls were spotted at the bottom of each plate.

Fig. 52. Stability of the *GSTS1*, *SOR1*, and *CBLP* transcripts was determined in either the WT strain (closed symbols) or the *sor1* mutant (open symbols) by following mRNA levels after addition of actinomycin (50 μg/mL; dashed lines), actinomycin and 2,5-dibromo-3-methyl-6-isopropyl-*p*-benzoquinone (DBMIB; 2 μM; dotted lines), or no chemicals (full lines). DBMIB still caused a slight induction of *GSTS1* and *SOR1* even in the presence of actinomycin after 2 h, probably because of incomplete transcriptional inhibition at the beginning of the treatment. Comparison of degradation rates of *CBLP*, *GSTS1*, and *SOR1* mRNAs in *sor1*, the WT strain, and the WT exposed to DBMIB showed no significant difference in individual transcript stability between strains and treatments (degradation rates of DBMIB-treated samples were determined between 2 and 5 h of exposure).

Fig. S3. Correlation of the positions of the 8-bp palindrome (electrophile response element) within the 2-kb promoter regions and the responses of the corresponding genes to the tested treatments. Circles show the median, and bars depict the minimal and maximal \log_2 fold increased response in the following conditions compared with the untreated WT strain: *sor1* grown in synchronized or nonsynchronized cultures or WT treated with DBMIB, *2E*-hexenal, neutral red (NR), or tBOOH. The 14 genes overexpressed more than twofold in *sor1* are indicated by \bigcirc , and the 12 genes strongly induced by chemical treatments are indicated by \bigcirc . Gray areas help to visualize sections of less than twofold induction and the first 400 bp of the proximal promoter regions.

Fig. S4. Expression of the GSTS1, GSTS2, and SOR1 genes in cultures pretreated with (+) or without (–) 35 μM cycloheximide for 20 min and exposed to DBMIB (2 μM), 2*E*-hexenal (0.3 mM), or tBOOH (100 μM) for 1 (gray bars) or 2 (black bars) h.

N A N d

Fig. S5. Dose–response relationship of growth (\diamond), *GSTS1-GLUC* induction (\blacktriangle), and the accumulation of the lipid peroxidation product malondialdehyde with thiobarbituric acid (gray bars) are shown for the four chemicals methyl viologen (MV), RB, NR, and hydrogen peroxide (H₂O₂).

DNAS

		Up-regulatio fold)	n (>2.0-	Down-regulation (<0.5- fold)		
Cellular function	No. of annotated genes	No. of genes	P value	No. of genes	P value	
Cell: organization	127	6	0.56	5	0.17	
Cell: division	50	5	0.03	0		
Cell: cycle	64	3	0.24	11	0.86	
Cell: vesicle transport	48	2	0.22	4	0.04	
Development	124	16	0.34	6	0.76	
DNA: synthesis/chromosome structure	275	8	0.56	1	0.35	
DNA: repair	59	2	0.35	1	0.26	
Signaling	285	29	0.86	9	0.16	
RNA: regulation of transcription	402	53	0.70	8	0.46	
RNA: transcription	39	10	0.37	1	0.54	
RNA: processing	185	18	0.40	6	0.18	
Protein: amino acid activation	65	15	0.25	3	0.21	
Protein: synthesis	226	33	0.39	11	0.22	
Protein: posttranslation modification	662	71	0.81	9	0.32	
Protein: targeting	131	11	0.85	10	0.62	
Protein: degradation	468	64	0.47	5	0.55	
Redox regulation	90	15	0.40	11	0.92	
Stress response: abiotic	80	8	0.54	7	0.26	
Stress response: biotic stress	22	0		4	0.10	
Transport	437	36	0.04	33	0.20	
Metal handling	12	2	0.46	0		
Hormone metabolism	67	9	0.62	1	0.09	
Miscellaneous enzyme families	282	17	1.00	12	0.48	
Not assigned/unknown	10,828	791	0.01	320	0.10	

Table S1.	Distribution	of the	annotated	genes	differently	overexpressed	more	than	twofold	in	synchronized
cultures of	sor1 compare	ed with	n WT into di	fferent	functional g	groups					

Table S2. List of primers used for quantitative PCR and cloning

Primer name	Sequence			
GPXH	ACGTGTTTGACACGGTTATGAGA			
	GCAATTGGCATGATGGATAGTG			
GSTS1	CAGAGGTGAAAGGCGGATAC			
	GTGTTGCAATGGACTTCAGC			
GSTS2	ACCCCATCGGCAAAACAAG			
	CCGGTATAGTATTGTAGCAGAATAACCA			
SOR1	AAACCTTTTGCCGTTTGATGAA			
	CATTGGGAGCCAGATCCATCT			
CBLP	GCCACACCGAGTGGGTGTCGTGCG			
	CCTTGCCGCCCGAGGCGCACAGCG			
GSTS1_f2KpnI	acggtacCTCAGAACTGTGACGCTTGGACAC			
GSTS1_r1EcoRV	acgatatcGAGACAGTGAGCGTTATATCGAGCGAAGGGCC			
GSTS1∆Pal1f	CGTTTGGCGTGTGGCGACCCCGACCGGGCGATCCCGGCATCCCG			
GSTS1∆Pal1r	CTGGCGTTCGAAGCGACACAG			
GSTS1∆Pal2f	ATACGGGATGACGCAGGGGGCCCGACCGGACGAGTTGCTCGAGAAGGC			
GSTS1∆Pal2r	CAACCGGGATTCCAACCTTGATG			
GSTS1∆Pal3f	TGCTCGAGAAGGCGCGAAGCCCCGACCGCCTGTGCGTCTCCAGACTAT			
GSTS1∆Pal3r	ACTCGTCCAACGTTGCCCCC			
GSTS1∆CREf	TGGAATCCCGGTTGATACGGGACCGAGCAGGGGGCAACG			
GSTS1∆CREr	ACCTTGATGTCGGTGCCAGGTTAC			

PNAS PNAS

				Size (bp)	
Name	Primer sequences	Annealing temperature (°C)	Marker type	137c	\$1-C5
CHLH	TTGGCGGGTTGTGGTTGGACTAGG	62	In/Del	127	375
	TCCTCGCGGAGCGCTCTCG				
	CACAGCTCACACACACGCACAA				
SFA	ACAGCATGCCCTGCAAGCTCGC	62.4	In/Del	330	211
	TTGCATGGGCAGCACTGGTCGA				
	GCCGTATAAATTCAGGGCAGGCGC				
CPN60B2	AGCTGCTTGGCAGCGGCTGTTG	61	In/Del	260	621
	TGCAGCACAACTCCCGGCTGC				
	TGGAATTGGCGGTGCGAGCG				
C57_258	GCTGTTAGGCCTGTCCTGTACTT	54	In/Del	161	171
	TGACAAATTGAGTTGACCGACA				
C57_321	GCGTCTCTGCTCACTCCTATCC	54	+/-	800	_
	CGTGTGTATTGCGGTGTACAAG				
C57_389	CCCTCCACCAAGTGCAATTGTTTAA	63	dCAPS	189	169
	GAGCTTTCGTGTGACGTCGATTC		(Dral)		20
C57_407	GCTCAACTTCTGCTCTGACGA	54	CAPS	390	370
	ATATGGTTTACACGCGCATTC		(Aval)		20
C57_415	GGCGTTAGTTCCTGGTGATG	55	In/Del	598	480
	CACTCAGCCCCTATCCTGAA				
C57_506	AACAGGGTCTGGTGCTGGTTG	64.5	CAPS	700	800
	GGTGAATAGGGCTCCGCTTTG		(Ddel)	100	
C57_554	GAGATTGTTGAGGCTCCCTTC	55	CAPS	500	700
	GTACACTGCATCACGTCTTCGT		(Sacll)	200	
SOR1	GCGGGGTGGGAGGGGTATG	58	CAPS	4A+	1,000
	GAGCACTGCAGTGTCAACCTGACAG		(TAQ1)	sor1	380
					620

Table S3. List of molecular markers used for mapping of the sor1 mutation

CAPS, cleaved amplified polymorphic sequence.

Other Supporting Information Files

Dataset S1 (XLSX)

PNAS PNAS