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SI Text
Delay Time Distribution and Photon Count Rates. In this section, we
obtain explicit expressions for the delay time distribution, count
rates, and FRETefficiency. In Fixed energy transfer rate, we con-
sider the simplest case when the energy transfer rate is fixed, de-
rive Eq. 2 in the main text, and discuss the γ-factor. In the next
section (Influence of dynamics on lifetimes and count rates), we
present various general relations for the case of fluctuating en-
ergy transfer rate. When these fluctuations are slow compared
to the lifetime of the excited state, the general relations simplify
and we derive Eq. 3 in the main text (Average fluorescence lifetime,
count rates and FRETefficiency when dynamics are slower than the
lifetime).).

Fixed energy transfer rate. Let us assume that the donor and ac-
ceptor photophysics are described by the three-state kinetic
scheme shown in Fig. 1A of the main text. The excited donor de-
cays to the donor ground state with rate constant kD (which in-
cludes both radiative and nonradiative processes), emitting a
photon with radiative rate constant krad

D . The lifetime of the do-
nor in the absence of acceptor is τD ¼ k−1

D . Because the donor
excited state can also decay by transferring its energy to the ac-
ceptor with rate constant kET, the lifetime of the donor excited
state in the presence of acceptor is τ� ¼ ðkD þ kETÞ−1.

First consider the distribution PðδtÞ of delay times (i.e., the
time between the laser pulse and the photon arrival). The delay
times correspond to the decay of the excited state through the
radiative channel. In general, the distribution of the delay times
differs from the distribution of the excited-state lifetimes, which
reflect the decay of the excited state through any channel. How-
ever, for the simple three-state kinetic scheme, the distributions
are the same (single-exponential) independent of the decay
route:

PðδtÞ ¼ ðkD þ kETÞe−ðkDþkETÞδt ¼ e−δt∕τ
�∕τ�: [S1]

The mean of this distribution is

hδti ≡
Z

∞

0

tPðtÞdt ¼ ðkD þ kETÞ−1 ¼ τ�: [S2]

The efficiency of energy transfer, ε, can be defined as the prob-
ability that the excited donor state transfers its energy to the ac-
ceptor rather than decaying to its ground state. For the kinetic
scheme in Fig. 1A, this is

ε ¼ kET
kD þ kET

: [S3]

Because kD∕ðkD þ kETÞ ¼ 1 − kET∕ðkD þ kETÞ, it follows that
the ratio of the lifetimes of the donor excited state in the presence
and absence of the acceptor is related to the FRETefficiency by

τ�∕τD ¼ 1 − ε: [S4]

Now consider the donor and acceptor count rates nA and nD
that determine the Poisson distribution of photons in a bin. They
can be expressed in microscopic terms as follows (see again
Fig. 1A in the main text). The number of donor photons detected
per unit time is the product of the probabilities that (i) the donor
is excited by the laser pulse (pex), (ii) the donor decays to its
ground state [kD∕ðkD þ kETÞ], (iii) it does so by emitting a photon

(ϕD ¼ krad
D ∕kD, the fluorescence quantum yield of donor in the

absence of acceptor), and (iv) the photon is detected (ζD, called
the detection efficiency), divided by the time between pulses, Δ.
This argument and a similar one for nA results in

nD ¼ pexϕDζDΔ−1 kD
kD þ kET

nA ¼ pexϕAζAΔ−1 kET
kD þ kET

;

[S5]

where ϕA and ζA are the acceptor quantum yield and detection
efficiency, respectively.

The ratio of the donor and acceptor photon count rates is

nD∕nA ¼ ϕDζDkD∕ϕAζAkET: [S6]

Interestingly, it turns out that this ratio does not depend on
the donor quantum yield (ϕD) or the donor lifetime (kD).
Although the energy transfer rate constant is usually written as
kET ¼ kDðR0∕rÞ6, in fact R6

0 is proportional to the donor quan-
tum yield (1). Thus the factor ϕDkD in Eq. S6 is canceled by the
same factor in kET. An important consequence is that donor
quenching (which increases the nonradiative decay rate and low-
ers the quantum yield) does not influence the ratio of the accep-
tor and donor count rates.

It follows from Eqs. S3 and S6 that the efficiency ε is related to
the count rates by

ε ¼ nA
nA þ γnD

[S7]

where we have defined the γ-factor as the ratio of the products of
the detection efficiencies and quantum yields:

γ ¼ ζAϕA

ζDϕD
: [S8]

Let us now consider how the above parameters can be ob-
tained from the binned experimental photon trajectory (i.e., from
the random NA, ND, τ in bins of length T). The fluorescence
lifetime in a bin averaged over all bins is

hτi ≡ h∑
ND

i¼1

δti∕NDi ¼ hδti ¼ τ�: [S9]

Because the distributions of bothNA andND are Poissonian with
count rates nA and nD, it follows that

hNA;Di ¼ nA;DT: [S10]

Thus the relation in Eq. S4 can be rewritten (using Eqs. S7 and
S10) in terms of the averages over bins as

hτi∕τD ¼ 1 −
hNAi

hNAi þ γhNDi
: [S11]

If one wants to convert photon counts NA and ND into FRET
efficiency before further analysis, one needs to define the random
energy transfer efficiency E in terms of NA and ND. In the past
(2) we advocated the definitionE ¼ NA∕ðNA þNDÞ because the
average of E over all bins is exactly given by
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hEi ¼
�

NA

NA þND

�
¼ nA

nA þ nD
: [S12]

This is true for a Poisson distribution relation of photon counts
even in the presence of a cutoff imposed on the number of
photons. The quantity nA∕ðnA þ nDÞ is commonly called an ap-
parent FRETefficiency in contrast to the “true” FRETefficiency
ε. Using Eqs. S7 and S12, we can rewrite Eq. S4 in terms of the
measured hEi and hτi (3)

hτi∕τD ¼ 1 −
hEi

γþ ð1 − γÞhEi : [S13]

For γ ¼ 1, this reduces to Eq. 2 of the main text.
Now, one can make Eq. 2 of the main text valid (to an excellent

approximation) even when γ ≠ 1 by defining the random FRET
efficiency in a bin as E 0 ¼ NA∕ðNA þ γNDÞ. By using the ap-
proximation

�
A
B

�
≈
hAi
hBi

�
1 −

hδAδBi
hAihBi þ

hδB2i
hBi2

�
; [S14]

where δX ¼ X − hXi, one can show (using hδNAδNDi ¼ 0 and
hδN 2

A;Di ¼ hNA;Di for uncorrelated photons with Poisson statis-
tics) that

hE 0i ¼
�

NA

NA þ γND

�
≈

nA
nA þ γnD

�
1þ γðγ − 1ÞnD

ðnA þ γnDÞ2T
�
:

[S15]

The correction term is small when the average total number of
photons in a bin is large (say, greater than 10). With this defini-
tion of the random FRETefficiency in a bin, the relation between
the bin averaged fluorescence lifetimes and FRETefficiencies is

hτi∕τD ¼ 1 − hE 0i þ ðγ − 1ÞhE 0ið1 − hE 0iÞ
hNAi þ γhNDi

: [S16]

The last term in the above relation is usually very small. If this
term is neglected and the primes on E 0 are dropped, we again
recover Eq. 2 in the main text. Thus, when γ ≠ 1, even for the
simplest case, there are a few subtleties that fortunately can be
easily handled in practice.

Influence of dynamics on lifetimes and count rates.When the energy
transfer rate kET fluctuates, the relationship between the FRET
efficiency and fluorescence lifetime becomes more complicated.
We begin by expressing the quantities of interest (i.e., excited-
state lifetime, fluorescence lifetime, FRET efficiency, and count
rates) in terms of the population of the donor excited state.

Consider a donor that is prepared in its excited state D� at
t ¼ 0. In the simplest case considered above (see Fig. 1A in the
main text), its population decays as pðD�; tÞ ¼ expð−ðkD þ kETÞtÞ,
which is actually the probability to be in the excited state at time t
(i.e., the survival probability ofD�). When the energy transfer rate
kET fluctuates, the decay of the excited state is multiexponential
and is formally given by the path average

pðD�; tÞ ¼ hexpð−kDt −
Z

t

0

kETðt 0Þdt 0ÞixðtÞ; [S17]

where x denotes all coordinates (distance, orientation) that can
influence the energy transfer rate. For a model of the dynamics
described by an operator L, the evaluation of the path average
can be reduced to the solution of

∂pðD�; x; tÞ
∂t

¼ ½L − kD − kETðxÞ�p [S18]

subject to the equilibrium initial condition pðD�; x; 0Þ ¼ peqðxÞ.
The equilibrium population peqðxÞ satisfies LpeqðxÞ ¼ 0 and
∫ peqðxÞdx ¼ 1. The population of the donor excited state is

pðD�; tÞ ¼
Z

pðD�; x; tÞdx: [S19]

Now we present expressions for various quantities of interest in
terms of the donor excited-state population.

1. The light intensity in ensemble measurements, IðtÞ, is related
to pðD�; tÞ by

IðtÞ∕Ið0Þ ¼ pðD�; tÞ: [S20]

2. The distribution of the donor excited-state lifetime is the prob-
ability density that the excited state disappears (to any state,
radiatively or nonradiatively) between time t and tþ dt. Be-
cause ½pðD�; tÞ − pðD�; tþ dtÞ� is ½−dpðD�; tÞ∕dt�dt, the prob-
ability density is given by −dpðD�; tÞ∕dt. This distribution is
normalized:

Z
∞

0

ð−dpðD�; tÞ∕dtÞdt ¼ pðD�; 0Þ − pðD�;∞Þ ¼ 1.

The mean lifetime of the excited state, hτ�i, is

hτ�i ¼
Z

∞

0

tð−dpðD�; tÞ∕dtÞdt ¼
Z

∞

0

pðD�; tÞdt

¼
Z

∞

0

IðtÞ∕Ið0Þdt: [S21]

The second equality is obtained by integrating by parts and
using pðD�;∞Þ ¼ 0.

3. The FRETefficiency, ε, is the probability that the excited state
decays by transferring its energy to the acceptor and is given by

ε ¼
Z

∞

0

Z
kETðxÞpðD�; x; tÞdxdt: [S22]

4. The probability that the excited state decays to the ground
state is 1 − ε and is equal to

1 − ε ¼
Z

∞

0

Z
kDpðD�; x; tÞdxdt ¼ kD

Z
∞

0

pðD�; tÞdt

¼ hτ�i∕τD;
[S23]

where we have used Eqs. S19 and S21. This equation is the
general relation between the mean lifetime of the excited state
and the FRETefficiency. It is simply a statement that the ex-
cited state can decay either by transferring its energy to the
acceptor or by returning to its ground state.

5. The normalized distribution of excited-state lifetimes on con-
dition that the excited state decays to its ground state through
the radiative channel is the same as the distribution of delay
times, PðδtÞ, and is given by

PðδtÞ ¼ pðD�; δtÞR
∞
0 pðD�; tÞdt ¼

IðδtÞR
∞
0 IðtÞdt [S24]

so that the mean delay time is
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hδti ¼
Z

∞

0

tPðtÞdt ¼
R
∞
0 tpðD�; tÞdtR ∞
0 pðD�; tÞdt ¼

R
∞
0 tIðtÞdtR ∞
0 IðtÞdt : [S25]

The mean delay time is equal to the average fluorescence life-
time in a bin, hτi ¼ h∑ND

i¼1 δti∕NDi ¼ hδti. However, only
when pðD�; tÞ is a single exponential are the lifetime of the
excited state, hτ�i, and the fluorescence lifetime, hτi, equal.

6. Photon count rates (fluorescence intensities) can be shown to
be (4)

nD ¼ pexϕDζDΔ−1ð1 − εÞ nA ¼ pexϕAζAΔ−1ε; [S26]

where ε is defined in Eq. S22. From these expressions, it fol-
lows that relationship [S7] between FRET efficiency and
photon count rates is valid even in the presence of submicro-
second fluctuations of the energy transfer rate.

Thus, in the presence of dynamics on a timescale comparable
to the lifetime of the excited state, the problem of calculating the
count rates and the delay time distribution is rather involved.
However, there is a simple relation between the excited state
(not fluorescence!) lifetime and FRET efficiency (photon count
rates):

hτ�i∕τD ¼ 1 − ε ¼ 1 −
nA

nA þ γnD
¼ 1 − hEi; [S27]

where nA and nD are the donor and acceptor count rates and γ is
the ratio of the products of the detector efficiencies and quantum
yields, Eq. S8. The last equality holds when the random FRET
efficiency in a bin is defined as E ¼ NA∕ðNA þ γNDÞ and the
number of photons in a bin is sufficiently large.

Average fluorescence lifetime, count rates and FRET efficiency when
dynamics are slower than the lifetime.When the fluctuations of the
energy transfer rate are slower than the donor lifetime, it follows
from Eqs. S18 and S19 that the population of the donor excited
state is

pðD�; tÞ ¼
Z

expð−½kD þ kETðxÞ�tÞpeqðxÞdx

≡ hexpð−ðkD þ kETÞtÞi; [S28]

where we have replaced the averaging over various paths by the
averaging over the distribution of interdye distance and/or dye
orientation, hð…Þi ¼ ∫ ð…ÞpeqðxÞdx.

The average lifetime of the excited state, from Eq. S21, is

hτ�i ¼
Z

peqðxÞ
kD þ kETðxÞ

dx ¼ hðkD þ kETÞ−1i: [S29]

The distribution of delay times, from Eq. S24, is (5)

PðδtÞ ¼ hexp½−ðkD þ kETÞδt�i
hðkD þ kETÞ−1i

[S30]

and so the average delay time, which is equal to the average fluor-
escence lifetime (see Eq. S25), is

hτi ¼ hδti ¼
Z R ½kD þ kETðxÞ�−2peqðxÞxR ½kD þ kETðxÞ�−1peqðxÞdx

¼ hðkD þ kETÞ−2i
hðkD þ kETÞ−1i

:

[S31]

Thus the average lifetime of the donor excited state is not the
same as the average fluorescence lifetime. Physically, the reason
is that states with smaller energy transfer rates are more likely to

emit donor photons. As a simple example, consider a molecule
with two equally populated states with large and small energy
transfer rates, which correspond to short and long lifetimes.
The average lifetime of the excited state (i.e., the lifetime when
every decay of the excited state is counted) is just a simple arith-
metic average of the short and long lifetimes. To find the average
fluorescence lifetime, only those events that result in a donor
photon should be taken into account. There are more donor
photons emitted from the state with the longer lifetime (small
energy transfer rate), therefore, this state has a larger weight.

Under the above conditions (slow fluctuations of the energy
transfer rate), the count rates are (see Eqs. S22 and S26)

nA ¼ pexϕAζAΔ−1
�

kET
kD þ kET

�

nD ¼ pexϕDζDΔ−1
�

kD
kD þ kET

�
:

[S32]

With these count rates, the mean FRET efficiency is

hEi ¼ nA

nA þ γnD
¼

Z
kETðxÞ

kD þ kETðxÞ
peqðxÞdx ¼

�
kET

kD þ kET

�
:

[S33]

To get Eq. 3 in the main text, we write ðkD þ kETÞ−1 ¼ τD½1 −
kET∕ðkD þ kETÞ� and so

hðkD þ kETÞ−1i ¼ τDð1 − hEiÞ
hðkD þ kETÞ−2i ¼ τDðð1 − hEiÞ2 þ σ2

c Þ

where σ2
c is the FRET efficiency variance:

σ2
c ≡ hk2

ET∕ðkD þ kETÞ2i − hkET∕ðkD þ kETÞi2

¼
Z

k2
ET

ðkD þ kETÞ2
peqðxÞdx −

�Z
kET

kD þ kET
peqðxÞdx

�
2

:

[S34]

Using these expressions in Eq. S31, we get Eq. 3 in the main text.
Finally, the second moment of the delay time distribution in

Eq. S30 is

hδt2i ¼
Z

∞

0

t2PðtÞdt ¼ 2
hðkD þ kETÞ−3i
hðkD þ kETÞ−1i

: [S35]

This expression can be used to simulate fluorescence lifetimes
in a bin (see Methods) when the fluctuations of the energy trans-
fer rate are on a timescale between the donor lifetime (nano-
seconds) and the interphoton time (microseconds). In the ab-
sence of the fluctuations, the above equation reduces to hδt2i ¼
2ðkD þ kETÞ−2 ¼ 2hδti2, as expected for exponentially distribu-
ted delay times.

Joint Distribution of Photon Counts and Fluorescence Lifetimes. In this
section, we derive Eq. 5 in the main text for the joint distribution
of the numbers of photons and lifetime in the presence of con-
formational dynamics on a timescale longer than the interphoton
time. For the sake of simplicity, consider photons of one color
emitted by a molecule with interconverting conformational states.
We are interested in finding the joint distribution PðN; τÞ of de-
tectingN photons during bin time T and lifetime in a bin defined
as τ ¼ ∑N

i¼1 δti∕N, where δti is the time interval between the laser
pulse and the detection of ith photon.

For a single conformational state, the photons are uncorre-
lated and the joint distribution is
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PðN; τÞ ¼ ðnTÞN
N!

e−nTPðτjNÞ; [S36]

where n is the mean number of photons per unit time (the count
rate) and PðτjNÞ is the distribution of the lifetimes in bins con-
taining N photons:

PðτjNÞ ¼
Z

δðτ −∑
N

i¼1

δti∕NÞ
YN
i¼1

PðδtiÞdδti: [S37]

Here PðδtÞ is the distribution of the delay times. The lifetime
distribution PðτjNÞ is known analytically (the gamma-distribu-
tion) only when the delay times are exponentially distributed.
When there are dynamics on nanosecond to microsecond time-
scale, the delay time distribution PðδtÞ is not exponential and
depends on the details of the submicrosecond dynamics.

When conformational states, sðtÞ, change on a timescale
comparable to or slower than the interphoton time, the photons
become correlated. Conformational changes modulate the count
rate, nðtÞ ≡ nðsðtÞÞ, and the delay time distribution, PðδtjtÞ ≡
PðδtjsðtÞÞ. Our first step is to find the joint distribution
PðN; τÞ ofN photons and lifetime τ for a specific conformational
trajectory sðtÞ. To this end, consider a sequence of photons de-
tected at t1;…; tN with the delay times δt1;…; δtN in the interval
½0; T�. The probability distribution to detect such sequence of
photons is

e
−
R

T

tN
nðtÞdt

PðδtN jtNÞnðtNÞ…Pðδt2jt2Þnðt2Þ

× e
−
R

t2
t1

nðtÞdt
Pðδt1jt1Þnðt1Þe−

R
t1
0

nðtÞdt:

Here, reading right to left, expð−∫ t1
0 nðtÞdtÞ is the probability that

no photons are detected between initial time and t1, nðt1Þ is the
probability density to detect a photon at t1, Pðδt1jt1Þ is the prob-
ability density that this photon has the delay time δt1, etc. This
distribution is then multiplied by δðτ −∑N

i¼1 δti∕NÞ and inte-
grated with respect to all δti as in Eq. S37. In addition, because
the photons can be detected at any time during bin time, one must
also integrate with respect to all ti. Thus the joint distribution for
a specific conformational trajectory is

PðN; τÞ ¼ e−
R

T

0
nðtÞdt

Z
δðτ −∑

N

i¼1

δti∕NÞ
YN
i¼1

nðtiÞPðδtijtiÞdδtidti:

[S38]

Here the integrals with respect to δti are from zero to infinity,
the integrals with respect to ti are time-ordered so that
0 ≤ t1 ≤ t2… ≤ tN ≤ T.

We now use the Fourier representation of the δ-function

δðτ − ΣN
i¼1δti∕NÞ ¼

Z
∞

−∞
e
iwτ−iw

∑
N

i¼1

δti∕N
dw∕2π [S39]

in Eq. S38 and integrate first with respect to δti and then ti using
the identity

Z
T

0

dt1

Z
T

t1

dt2…
Z

T

tN−1

dtN
YN
i¼1

f ðti; wÞ ¼
�Z

T

0

f ðt; wÞdt
�

N
∕N!

where we have defined

f ðt; wÞ ≡ nðtÞ
Z

∞

0

PðδtijtÞ expð−iwδti∕NÞdδti: [S40]

In this way we get

PðN; τÞ ¼ e−
R

T

0
nðtÞdt

Z
dw
2π

eiwτ
�Z

T

0

f ðt; wÞdt
�

N
∕N! [S41]

This equation can be rewritten as

PðN; τÞ ¼ ½n̄T�N
N!

e−n̄TPðτjNÞ [S42]

where n̄T ¼ ∫ T
0 nðtÞdt and

PðτjNÞ ¼
Z

dw
2π

eiwτ
�R T

0 f ðt; wÞdt
nT

�
N

Using Eq. S40 for f ðt; wÞ and applying the Fourier representation
of the δ-function in Eq. S39 backward, P̄ðτjNÞ can be written as

PðτjNÞ ¼
Z

δðτ −∑
N

i¼1

δti∕NÞ
YN
i¼1

PðδtiÞdδti; [S43]

where we have defined PðδtÞ as

PðδtÞ ¼
R
T
0 PðδtjtÞnðtÞdtR

T
0 nðtÞdt [S44]

Thus PðτjNÞ is the distribution of τ ¼ ∑N
i¼1 δti∕N, where delay

times δt are distributed according to PðδtÞ.
Comparing Eqs. S42 and S43 and Eqs. S36 and S37, we see

that, for a specific conformational state trajectory, the joint dis-
tribution has the same form as that for uncorrelated photons, but
with the parameters n̄ and P̄ðδtÞ that depend on the state trajec-
tory sðtÞ. This distribution is then averaged over all possible state
trajectories:

PðN; τÞ ¼
�½n̄T�N

N!
e−n̄TPðτjNÞ

�
sðtÞ

: [S45]

The above reasoning can be readily extended to photons of two
colors, resulting in the joint distribution PðNA; ND; τÞ of the
number of the acceptor and donor photons and donor lifetime
given in Eq. 5 in the main text.

Joint Distribution for a Two-State Molecule. Consider a molecule
with two states that interconvert with the transition rate constants
k1 (1 → 2) and k2 (2 → 1). The photon count rates in state s
(s ¼ 1; 2) are nAs and nDs. The distribution of the donor delay
times isPsðδtÞ. The first two moments of the delay time distribu-
tion are hδtis and hδt2is. For the exponential delay time distribu-
tion, PsðδtÞ ¼ expð−δt∕τsÞ∕τs, the moments are hδtis ¼ τs and
hδt2is ¼ 2τ2s . The joint distribution of the numbers of acceptor
and donor photons and donor fluorescence lifetimes is (see
Eq. 7 in the main text)

PðNA;ND;τÞ¼
Z

1

0

½n̄AT�NA

NA!

½n̄DT�ND

ND!
e−ðn̄Aþn̄DÞTPðτjNDÞPðθjTÞdθ;

[S46]

where n̄A ¼ nA1θ þ nA2ð1 − θÞ, n̄D ¼ nD1θ þ nD2ð1 − θÞ, and θ is
the fraction of time spent in the first state during bin time T.
PðθjTÞ is the distribution of θ, which is known analytically (6):
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PðθjTÞ ¼ p1e
−k1TδðθÞ þ p2e

−k2Tδð1 − θÞ
þ 2k0Tp1p2ðI0ðyÞ þ k0Tð1 − zÞI1ðyÞ∕yÞe−zk0T;

[S47]

where k0 ¼ k1þk2, p1 ¼ k2∕k0 ¼ 1− p2, y¼ 2k0T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2θð1− θÞp

,
z ¼ p2θ þ p1ð1 − θÞ, and InðyÞ is the modified Bessel function of
the first kind of order n. PðτjNDÞ is the distribution of
τ ¼ ∑ND

i¼1 δti∕ND, where δti have distribution PðδtÞ:

PðδtÞ ¼ P1ðδtÞnD1θ þP2ðδtÞnD2ð1 − θÞ
nD1θ þ nD2ð1 − θÞ : [S48]

Note that this distribution varies from bin to bin.
The mean (τ) and variance (σ2) of PðτjNDÞ can be expressed

in terms of the moments of the delay time distribution PðδtÞ as

τ ¼
Z

∞

0

tPðtÞdt σ2 ¼
�Z

∞

0

t2PðtÞdt − τ2
�
∕ND: [S49]

Using Eq. S48 for PðδtÞ, we have

τ ¼ f ðθÞhδti1 þ ½1 − f ðθÞ�hδti2
σ2 ¼ ðf ðθÞhδt2i1 þ ½1 − f ðθÞ�hδt2i2 − τ2Þ∕ND;

[S50]

where f ðθÞ ¼ nD1θ∕½nD1θ þ nD2ð1 − θÞ�. For large photon
counts, ND ≫ 1, P̄ðτjNDÞ can be approximated by a gamma-dis-
tribution with parameters that ensure that mean and variance are
correct:

PðτjNDÞ ≈ βατα−1e−βτ∕ΓðαÞ α ¼ τ2∕σ2; β ¼ τ∕σ2;

[S51]

where ΓðαÞ is the gamma-function. The resulting lifetimes are al-
ways positive. Moreover, the distribution in Eq. S51 becomes ex-
act when the delay times are exponentially distributed and θ ¼ 0
or θ ¼ 1.

Two-State Dynamic Lines. In this section, we consider the joint dis-
tribution of FRET efficiencies and fluorescence lifetimes,
PðE; τÞ, for a two-state molecule in the limit of large photon
counts (no shot noise) and derive equations for the two-state
dynamic lines (Eqs. 8–10 in the main text). Random FRET
efficiency is defined as E ¼ NA∕ðNA þ γNDÞ, where γ is the cor-
rection factor which was discussed earlier in Fixed energy transfer
rate. The distribution PðE; τÞ is related to the distribution of
photon counts and lifetimes, PðNA; ND; τÞ as

PðE; τÞ ¼ ∑
NA;ND

δ

�
E −

NA

NA þ γND

�
PðNA; ND; τÞ: [S52]

In the limit of no shot noise, the Poisson distributions and
P̄ðτjNDÞ in Eq. 5 in the main text for PðNA; ND; τÞ become
δ-functions and the summation over photon counts can be re-
placed by integration, so that we have

PðE; τÞ ¼
Z �

δ

�
E −

NA

NA þ γND

�
δðNA − n̄ATÞ

× δðND − n̄DTÞδðτ − τÞ
�

sðtÞ
dNAdND

¼
�
δ

�
E −

n̄A

n̄A þ γn̄D

�
δðτ − τÞ

�
sðtÞ

; [S53]

where we have evaluated the integrals over NA and ND. For a
two-state system, this becomes

PðE; τÞ ¼
Z

δ

�
E −

n̄A

n̄A þ γn̄D

�
δðτ − τÞPðθjTÞdθ; [S54]

where PðθjTÞ is given by Eq. S47 and

n̄A ¼ nA1θ þ nA2ð1 − θÞ n̄D ¼ nD1θ þ nD2ð1 − θÞ

τ ¼ τ1nD1θ þ τ2nD2ð1 − θÞ
nD1θ þ nD2ð1 − θÞ :

[S55]

Here nAs and nDs are the photon count rates of states s ¼ 1; 2,
and τs is the first moment of the delay time distribution of state s
[τs ¼ ∫ ∞

0 tPsðtÞdt]. Integration with respect to θ now allows us to
express θ in terms of E, nAs, and nDs, and then to express τ in
terms of E, εs ¼ nAs∕ðnAs þ γnDsÞ, and τs, s ¼ 1; 2. In this
way, we find

PðE; τÞ ¼ δðτ − f ðEÞÞ
Z

δ

�
E −

n̄A

n̄A þ γn̄D

�
PðθjTÞdθ; [S56]

where

f ðEÞ ¼ τ1 − τ2
ε1 − ε2

�
τ1ε2 − τ2ε1
τ1 − τ2

−Eþ ðε2 −EÞðE − ε1Þ
1 −E

�
: [S57]

The first term in the above equation for PðE; τÞ (the δ-function)
leads to the equation for the two-state dynamic line (Eq. 8 in
the main text). The second term (the integral) is the FRETeffi-
ciency distribution in the absence of shot noise which we consid-
ered previously in the special case that γ ¼ 1 and nA1 þ nD1 ¼
nA2 þ nD2 (7).

Note that the above derivation does not use specific expres-
sions for the count rates and lifetimes of the states and, therefore,
is valid for any value of the γ-factor. In the special case that the
energy transfer rate only fluctuates on timescale faster than the
fluorescence lifetime, the FRETefficiencies and lifetimes of the
states are related as τs∕τD ¼ 1 − εs and the equation for the two-
state line simplifies (see Eqs. 9 and 10 in the main text). The γ-
factor in this case is the ratio of the acceptor and donor quantum
yields and detection efficiencies.

The above derivation for the two-state dynamic lines can be
extended to a multistate molecule, in which case the two-state
dynamic lines correspond to only those bins during which the mo-
lecule visits two states.

Two-State Dynamic Lines for Diffusing Molecules. In this section, we
prove that Eqs. 8–10 in the main text for the two-state dynamic
lines are also valid for diffusing molecules. The count rates de-
pend on the location of the molecule in the laser spot through the
dependence of the excitation probability (pex) and the detection
efficiencies (ζA;D) in Eqs. S5 or S26. Thus, when a molecule dif-
fuses through the confocal volume, the donor and acceptor count
rates, nA;DðR; sÞ (which depend on state s and location in the spot
R) fluctuate due to transitions between states and due to diffu-
sion. The distribution of the delay times, PðδtjsÞ, is modulated
only by the interconversion between the states.

Our starting point is the generalization of Eq. S53 for the
FRETefficiency and lifetime distribution in the absence of shot
noise

PðE; τÞ ¼
�
δ

�
E −

n̄A

n̄A þ γn̄D

�
δðτ − τÞ

�
sðtÞ;RðtÞ

: [S58]
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The time average count rates and lifetime are now given by n̄A;D ¼
∫ T
0 nA;DðRðtÞ; sðtÞÞdt∕T and τ ¼ ∫ T

0 nDðRðtÞ; sðtÞÞτðsðtÞÞdt∕n̄D.
Note that, in contrast to the count rates, the fluctuating delay time
distribution and its first moment τðsðtÞÞ ¼ ∫ ∞

0 t 0Pðt 0jsðtÞÞdt 0 do
not depend on the location of the molecule in the laser spot.

In the special case of a molecule with two conformational
states, labeled 1 and 2, the random state variable sðtÞ can either
be 1 or 2. For the sake of convenience, we introduce the Kroneck-
er δ-function δ1;sðtÞ, which indicates when the molecule is in state
1 [i.e., it is 1 when sðtÞ ¼ 1 and 0 otherwise]; δ2;sðtÞ indicates when
the molecule is in state 2. Because the molecule must be in one of
the two states, δ1;sðtÞ þ δ2;sðtÞ ¼ 1. Consequently, we can split the
time-averaged count rates into two contributions as

n̄A ¼ n̄A1 þ n̄A2 n̄D ¼ n̄D1 þ n̄D2; [S59]

where we have defined n̄Ai ¼ ∫ T
0 nAðRðtÞ; iÞδi;sðtÞdt∕T and

n̄Di ¼ ∫ T
0 nDðRðtÞ; iÞδi;sðtÞdt∕T with i ¼ 1; 2. Here, for example,

nAðRðtÞ; 1Þ is the fluctuating acceptor count rate as the molecule
in state 1 diffuses through the laser spot.

Similarly, we can express τ as

τ ¼ n̄D1τ1 þ n̄D2τ2
n̄D1 þ n̄D2

[S60]

or, equivalently,

ðτ − τ1Þn̄D1 þ ðτ − τ2Þn̄D2 ¼ 0; [S61]

where τ1 (τ2) is the first moment of the delay time distribution of
state 1(2).

To obtain the desired result, we only need to exploit the fact
that if the donor and acceptor detection efficiencies have the
same dependence on R, then the γ-factor, Eq. S8, does not
change as the molecule diffuses through the spot. Then it follows
from Eq. S26 that

nAðRðtÞ; 1Þ ¼
γε1

1 − ε1
nDðRðtÞ; 1Þ

nAðRðtÞ; 2Þ ¼
γε2

1 − ε2
nDðRðtÞ; 2Þ;

[S62]

where εi is the FRETefficiency in state i ¼ 1; 2, which does not
depend on the location in the laser spot. Then multiplying both
sides of the first (second) equation by δ1;sðtÞ (δ2;sðtÞ) and integrat-
ing with respect to t from 0 to T, we find

n̄A1 ¼
γε1

1 − ε1
n̄D1 n̄A2 ¼

γε2
1 − ε2

n̄D2: [S63]

These identities allow us to write n̄A in Eq. S59 as

n̄A ¼ γε1
1 − ε1

n̄D1 þ
γε2

1 − ε2
n̄D2: [S64]

Therefore, we can rewrite the equality E ¼ n̄A∕ðn̄A þ γn̄DÞ,
which is the consequence of the first δ-function in Eq. S58, in
terms of n̄D1 and n̄D2 as

�
E

1 −E
−

ε1
1 − ε1

�
n̄D1 þ

�
E

1 −E
−

ε2
1 − ε2

�
n̄D2 ¼ 0. [S65]

Now this equality and Eq. S61 can both be valid for nonzero n̄Di
only if the determinant of the coefficients vanishes:

���� τ − τ1 τ − τ2
E

1−E − ε1
1−ε1

E
1−E − ε2

1−ε2

����¼ 0. [S66]

The solution of this secular equation is τ ¼ f ðEÞ, where f ðEÞ is
given in Eq. S57 and Eq. 8 of the main text. Thus in the limit of
large photon counts (no shot noise),

PðE; τÞ ¼ δðτ − f ðEÞÞ
�
δ

�
E −

n̄A

n̄A þ γn̄D

��
sðtÞ;RðtÞ

[S67]

so that Eqs. 8–10 for the dynamic two-state lines hold for diffus-
ing molecules. The only assumption required is that the acceptor
and donor detection efficiencies have the same dependence on
the position of the molecule in the laser spot.

Generating Function in the Presence of Diffusion and Conformational
Dynamics.Our previous derivation of a formula for the generating
function of the probability of finding NA acceptor and ND donor
photons in a bin (2, 8) can be readily generalized to include donor
fluorescence lifetimes. The result is

∑
NA;ND

Z
∞

0

λNA
A ðλDe−zτÞNDPðNA; ND; τÞdτ

¼ exp
�
c1⊤

Z
ðg − pÞdR

�
; [S68]

where c is the concentration of diffusing molecules, p is the col-
umn vector of equilibrium probabilities ofM discrete states, 1⊤ is
the row vector with all elements equal to 1, and the vector gðR; tÞ
satisfies

∂g
∂t

¼ ½Dtr∇2 þ K − ð1 − λAÞN A −N D þ λDP̂N D�g [S69]

subject to the initial condition gðt ¼ 0Þ ¼ p. HereDtr is a diagonal
matrix with the translational diffusion coefficients of the various
states on the diagonal, N AðN AÞ is the diagonal matrix with ele-
ments nAsðRÞ [nDsðRÞ], s ¼ 1;…; M, where R specifies the loca-
tion of the molecule in the laser spot and P̂ is a diagonal matrix
with elements ∫ ∞

0 expð−ztÞPsðtÞdt, wherePsðδtÞ is the delay time
distribution in state s.

Joint Distribution for Diffusing Molecules. In this section, we consid-
er the joint distribution for diffusing molecules with multiple in-
terconverting conformational states. As mentioned in Two-State
Dynamic Lines for Diffusing Molecules, the donor and acceptor
count rates, nA;DðR; sÞ, depend on the conformational state s
and the location in the spot R. The count rates fluctuate due
to transitions between states and due to diffusion. The distribu-
tion of the delay times, PðδtjsÞ, is modulated only by the inter-
conversion between the states.

The averaging in Eq. 5 (main text) should be performed over
both the state trajectories, sðtÞ, and the trajectories of the diffus-
ing molecule, RðtÞ. The joint distribution can be written as

PðNA; ND; τÞ ¼
�½n̄AT�NA

NA!

½n̄DT�ND

ND!
e−ðn̄Aþn̄DÞTPðτjNDÞ

�
sðtÞ;RðtÞ
[S70a]

¼
� ½n̄T�NAþND

ðNAþNDÞ!
e−n̄T

ðNAþNDÞ!
NA!ND!

ϵ̄NAð1−ϵ̄ÞNDPðτjNDÞ
�

sðtÞ;RðtÞ

[S70b]

where we have defined n̄ ¼ n̄A þ n̄D, n̄A;D ¼ ∫ T
0 nA;DðtÞdt∕T,

nA;DðtÞ ≡ nA;DðRðtÞ; sðtÞÞ, and ϵ̄ ¼ n̄A∕ðn̄A þ n̄DÞ, PðτjNDÞ is
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the distribution of τ ¼ ∑ND
i¼1 δti∕ND, where δti are distributed

according to

PðδtÞ ¼
R
T
0 PðδtjsðtÞÞnDðtÞdtR

T
0 nDðtÞdt

: [S71]

We now assume that the total count rate does not depend on
the conformational state, nAðR; sÞ þ nDðR; sÞ ¼ nðRÞ, so that the
n̄ depends only on the diffusive trajectories. This assumption im-
plies that the γ-factor is equal to 1. If the donor and acceptor
detection efficiencies have the same dependence on R, it follows
from Eq. S26 that the apparent FRET efficiency, defined as
nAðR; sÞ∕ðnAðR; sÞ þ nDðR; sÞÞ ¼ εðsÞ, does not depend on the
location in the laser spot. Then ϵ̄ can be written as
ϵ̄ ¼ ∫ T

0 nðRðtÞÞεðsðtÞÞdt∕∫ T
0 nðRðtÞÞdt. Note that ϵ̄, because it in-

volves the fluorescence intensity, still depends on the diffusive
trajectory. Only if we assume that fluctuations of nðRðtÞÞ due
to diffusion are small (i.e., it is essentially constant during the
bin time), can we write ϵ̄ ≈ ∫ T

0 εðsðtÞÞdt∕T, which is why the dis-
tribution does not exactly factor. If we make the same quasi-static
approximation to the distribution of lifetimes—i.e.,

PðδtÞ ¼
R
T
0 nðRðtÞÞ½1 − εðsðtÞÞ�PðδtjsðtÞÞdtR

T
0 nðRðtÞÞ½1 − εðsðtÞÞ�dt

≈
R
T
0 ½1 − εðsðtÞÞ�PðδtjsðtÞÞdtR

T
0 ½1 − εðsðtÞÞ�dt [S72]

—then the averaging over diffusion and state trajectories in
Eq. S70b can be decoupled, so that

PðNA; ND; τÞ

≈ PðNA þNDÞ
ðNA þNDÞ!
NA!ND!

h ¯ϵNAð1 − ϵ̄ÞNDPðτjNDÞisðtÞ;
[S73]

where PðNA þNDÞ ¼ h½n̄T�NAþND expð−n̄TÞ∕ðNA þNDÞ!iRðtÞ
is the distribution of the sum of donor and acceptor photons,
which depends on diffusing trajectories and is taken from
the data.
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A

B

Fig. S1. FRET efficiency and lifetime density histograms for a molecule with four interconverting states with three different connectivities as a function of
increasing bin time (rows, top to bottom T ¼ 1, 6, and 30 ms). FRET efficiencies of the states are ε1 ¼ 0.2, ε2 ¼ 0.4, ε3 ¼ 0.6, and ε4 ¼ 0.8. The relative lifetimes
are 0.8, 0.6, 0.4, and 0.2. The histograms were simulated using the algorithm discussed in Methods with nAs þ nDs ¼ 100 ms−1, s ¼ 1; 2; 3; 4. (B) The super-
position of the histogram for T ¼ 6 ms with the two-state dynamic lines (black) calculated using Eq. 9 in the main text for all pairs of directly connected states.
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Fig. S2. FRETefficiency and lifetime histogram for a model of two-state protein. The interdye distance r in the unfolded state fluctuates on a timescale slower
than donor lifetime (nanoseconds) (1). The distance distribution is the same as that of a Gaussian chain, peqðrÞ ¼ 4πr 2ð2πhr 2i∕3Þ−3∕2 expð−3r 2∕2hr 2iÞ, withffiffiffiffiffiffiffiffiffi

hr 2i
p

equal to the Förster radius R0 (the energy transfer rate constant is kET ¼ kDðR0∕rÞ6). The FRET efficiency and the average fluorescence lifetime in
the unfolded state were calculated using Eqs. S33 and S31 (Eq. 3 in the main text), ε1 ¼ 0.603 and τ1∕τD ¼ 0.684. In the folded state, the interdye distance
is 0.8R0 and does not fluctuate. The FRETefficiency and the lifetime in the folded state were calculated using Eqs. S2 and S4 (Eq. 2 in the main text), ε2 ¼ 0.792
and τ2∕τD ¼ 0.208. The histograms were simulated using the algorithm discussed in Methods for folding and unfolding rates equal to 0.1 ms−1, bin time
T ¼ 3 ms, and total photon count rates in both states nAs þ nDs ¼ 100 ms−1, s ¼ 1; 2. The second moment of the delay time distribution required for the
simulations is calculated using Eq. S35. The two-state dynamic line (black) was calculated using Eq. 8 in the main text.

1 Nettels D, Gopich IV, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci USA 104:2655–2660.
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