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A Brief Primer on Conditional Expectations
Conditional expectations are not commonly used outside of prob-
ability and statistics. We present here a short introduction and list
of their properties.

For two random variables X and Y , the conditional expecta-
tion E½X jY � is itself a random variable because it is a function of
the random variable Y . For continuous random variables,
E½X jY � is defined as

E½X jY ¼ y� ¼
Z

dx x pðxjyÞ; [S1]

where pðxjyÞ is the conditional probability density ofX given Y . It
satisfies pðxjyÞ ¼ pðx; yÞ∕pðyÞ, by Bayes’s rule. The conditional ex-
pectation has the following properties for any three random vari-
ables X; Y and Z:

i. If X and Y are independent, then

E½X jY � ¼ E½X �: [S2]

ii. If X and Y are conditionally independent given Z, then

E½X jY; Z� ¼ E½X jZ�: [S3]

iii. For real constants a and b

E½aX þ bY jZ� ¼ aE½X jZ� þ bE½Y jZ�: [S4]

iv. If knowing the random variable Z implies that X is known,
then

E½XY jZ� ¼ XE½Y jZ� [S5]

and so E½gðZÞjZ� ¼ gðZÞ for any (measurable) function gðZÞ.
v. If knowing Z implies that X is known, then

E½Y jX � ¼ E½E½Y jZ�jX �: [S6]

vi. For any Y,

E½E½X jY �� ¼ E½X �: [S7]

The conditional expectation E½X jY � is, in the sense of mini-
mizing the mean squared error, the best approximation to X .
For any real-valued function f ðYÞ, it can be shown that

E½ðX − f ðY ÞÞ2� ≥ E½ðX −E½X jY �Þ2�: [S8]

Useful Additional Properties of Conditionally Independent
Reporters
Suppose that Z 0

t is conditionally independent of Zt given
ðX;HtÞ, where X is a time invariant random variable (for exam-
ple, one controlled in an experiment or set by the environment)
and Ht is some history. Then

Cov½Zt; Z 0
t jX � ¼ EfE½ZtZ 0

t jX;Ht�jXg −EfE½ZtjX;Ht�jXg
· EfE½Z 0

t jX;Ht�jXg
¼ Cov½E½ZtjX;Ht�; E½Z 0

t jX;Ht�jX �;
[S9]

where we have used the conditional independence of Zt and
Z 0

t . If Z 0
t is also first-moment conjugate to Zt for ðX;HtÞ,

then we shall show that the covariance of the reporters condi-
tional on X identifies the second component of the decomposi-
tion of conditional variance, V ½ZtjX � ¼ E½V ½ZtjX;Ht�jX �þ
V ½E½ZtjX;Ht�jX �. When the two reporters are first-moment
conjugate, E½ZtjX;Ht� ¼ E½Z 0

t jX;Ht�, which implies that
E½ZtjX � ¼ E½Z 0

t jX �, and therefore

Cov½Zt; Z 0
t jX � ¼ Cov½E½ZtjX;Ht�; E½Z 0

t jX;Ht�jX �
¼ VfE½ZtjX;Ht�jXg: [S10]

Consequently, the average conditional covariance (averaging
with respect to the distribution of X) gives EfCov½Zt; Z 0

t jX �g ¼
EfV ½E½ZtjX;Ht�jX �g.

Transcriptional and Translational Variance: Reaction
Network and Parameter Values Used in Simulations for
Fig. 2B
We used the Facile compiler (1) and the EasyStoch simulator (2),
which encodes the Gibson–Bruck (3) version of the Gillespie al-
gorithm (4). We specify the model and the parameters used to
generate the data underlying Fig. 2B in the main paper in the
format employed by Facile (see Table S1). Comments are marked
with a hash and the initial numbers of molecules are denoted with
N. Any chemical species not specified initially has zero molecules.

For convenience, we simultaneously simulate three reporters
(the original system of interest, a copy, and a bicistronic repor-
ter). To model extrinsic fluctuations in v0 the rate of transcription,
we use ‘dummy’ chemical species, S1, S2, and S3, to control the
propensity of transcription. Only one of these species exists at any
given time and transitions between the three forms of S generate
transitions in the value of v0. We denote the protein reporter
equivalent to Z in Fig. 2A as B, the reporter equivalent to Z 0

as A, and the reporter equivalent to Z 0 0 as C.

Interpreting Scatter Plots of Measurements of Reporters
Plotting single-cell measurements of one reporter, Z, against
measurements for a reporter conjugate to Z given some history
YH (denoted Z 0) gives a scatter plot where the extents of the
scatter of points parallel and perpendicular to the Z ¼ Z 0 diag-
onal measure different components of the variance. A typical ex-
ample is shown in Fig. S1. Each point represents measurements
of a reporter and its conjugate in a single cell and has coordinates
ðZ; Z 0Þ. Note that each reporter has the same mean value from
the conditions of conjugacy. For each point, we can define d⊥,
which measures the distance from the point to the Z ¼ Z 0 diag-
onal, and d∥, which measures the distance along the diagonal that
the point lies from the point corresponding to the mean va-
lue (Fig. S1).
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We can show that the mean value of d2
⊥, the spread of the

points perpendicular to the Z ¼ Z 0 diagonal, satisfies

E½d2
⊥� ¼

1

2
E
�
ðZ −Z 0Þ2

�
[S11]

because the point of intersection (red dot in Fig. S1) is
ððZþZ 0Þ∕2; ðZþZ 0Þ∕2Þ. For any point ðZ; Z 0Þ, d2

⊥ is then

d2
⊥ ¼

�
Z 0 −

ZþZ 0

2

�
2

þ
�
Z −

ZþZ 0

2

�
2

; [S12]

giving Eq. S11 taking expectations. The right-hand side of Eq. S11
corresponds generally to a sum of terms in the decomposition of
variance, with the particular sum being determined by the choice
of the conditioning used to select the conjugate reporter.

Similarly, the mean value of d2
∥ , the spread of the points along

the diagonal, satisfies

E½d2
∥ � ¼ Cov½Z; Z 0� þ 1

2
E
�
ðZ − Z 0Þ2

�
þ Cov½Z; Z 0�: [S13]

If E½ðZ −Z 0Þ2�∕2 corresponds to a sum of terms in the decom-
position of variance, then Cov½Z; Z 0� corresponds to the sum of
the remaining terms. By definition,

d2
∥ ¼

�
ZþZ 0

2
−E½Z�

�
2

þ
�
ZþZ 0

2
− E½Z�

�
2

¼ 1

2

�
Z −E½Z� þZ 0 −E½Z�

�
2

; [S14]

implying that

E½d2
∥� ¼ V ½Z� þ Cov½Z; Z 0� [S15]

and giving Eq. S13 because V ½Z� ¼ E½ðZ −Z 0Þ2�∕2þ
Cov½Z; Z 0� (Eq. 17 in the main text).

Translational Variation: Analyzing the Data of Kollmann
et al.
Using similar arguments to those given in the Appendix section of
the main text, we can also show that

E½ðZ −ZcÞ2� ¼ EfV ½ZjYH�g þEfV ½ZcjYH�g
þEfðE½ZjYH� −E½ZcjYH�Þ2g [S16]

if Z and Zc are conditionally independent given some history
YH. Consequently,

E½ðZ −ZcÞ2� ≥ EfV ½ZjYH�g þEfV ½ZcjYH�g; [S17]

where both terms on the right-hand side can be measured using
conjugate reporters with equal second conditional moments:
EfV ½ZjYH�g is equal to E½ðZ − Z 0Þ2�∕2 if Z 0 is a reporter
conjugate to Z given YH, and EfV ½ZcjYH�g is equal to
E½ðZc −Z 0

cÞ2�∕2 if Z 0
c is a reporter conjugate to Zc given YH.

Kollmann et al. (5) measured gene expression of the chemo-
taxis proteins CheY, tagged with YFP, and CheZ, tagged with
CFP, with both proteins expressed from the same mRNA.
CheY-YFP and CheZ-CFP should be conditionally independent
given the joint history of the levels of the bicistronic mRNA,
M, and the stochastic variables extrinsic to gene expression,
Ye. We can therefore use Eq. S17 with CheY-YFP denoted by

Z, CheZ-CFP denoted by Zc, and YH being the joint history
of M and Ye. Kollmann et al. found that

E½ðZ −ZcÞ2� ≃ 2 × 0.22E½Z�E½Zc�; [S18]

where Z and Zc are measured in fluorescence units (5). Conse-
quently,

1

2
½EfV ½ZjðM; YeÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{translational for CheY

þEfV ½ZcjðM; YeÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{translational for CheZ

�
≤ 0.22E½Z�E½Zc�; [S19]

and therefore the average translational variance for the two pro-
teins, normalized by the product of their mean fluorescences, is
less than 0.22.

Finding Bounds on Components of the Variance
Decomposition
Suppose that the reporter Z 0 0

t is conditionally independent of the
reporter Zt given ðX;HtÞ, where X is again a time invariant ran-
dom variable. To find a lower bound onVfE½ZjX;Ht�g, we begin
with a conditional form of the Cauchy–Schwarz inequality:

Cov½W;W 0 0jX �2 ≤ V ½W jX � · V ½W 0 0jX �; [S20]

for arbitrary random variables W and W 0 0. From Eq. S9,

Cov½Zt; Z 0 0
t jX � ¼ Cov½E½ZtjX;Ht�; E½Z 0 0

t jX;Ht�jX �;

and therefore the Cauchy–Schwarz inequality directly implies
that

VfE½ZtjX;Ht�jXg ≥
Cov½Zt; Z 0 0

t jX �2

V
�
E½Z 0 0

t jX;Ht�
����X

� ; [S21]

where the denominator VfE½Z 0 0
t jX;Ht�jXg can itself be mea-

sured by the covariance (conditional on X) between Z 0 0
t and a

reporter conjugate to Z 0 0
t for the conditioning ðX;HtÞ. The low-

er bound in Eq. S21 becomes an equality when E½ZtjX;Ht� is a
linear function of E½Z 0 0

t jX;Ht�.

Distinguishing Variation due to Gene Expression from
Variation due to Signal Transduction: Analyzing the Data of
Colman-Lerner et al.
Colman-Lerner et al. used the promoter for PRM1 driving YFP
to quantify the response of budding yeast to pheromone (6).
From Eqs. 7 and 8, we can write an inequality for the variation
generated by signal transduction:

EfV ½E½ZjðYe\T; TÞH; X �jYH
e\T; X �jXg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from signal transduction given X

≤ Cov½Z; Z 0jX � − Cov½Z; ZcjX �2
Cov½Zc; Z 0

c jX � ; [S22]

whereZ is a reporter for the output of the system;Z 0 is a reporter
conjugate to Z given the history of all extrinsic variables; Zc is a
reporter for a constitutively expressed gene; and Z 0

c is a reporter
conjugate to Zc given the history of extrinsic variables (Fig. 2C).
Alejandro Colman-Lerner kindly provided: average fluorescence
measurements (the total fluorescence in individual cells divided
by the area of the cells) of a strain expressing both YFP and CFP
from two copies of the promoter for PRM1 across a population of
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172 cells (corresponding to Z and Z 0 in Eq. S22); average fluor-
escence measurements of a strain expressing both YFP and CFP
from two copies of the promoter for ACT1 (actin) across a po-
pulation of 292 cells (corresponding to Zc and Z 0

c in Eq. S22);
and average fluorescence measurements of a strain expressing
CFP from the promoter of ACT1 and YFP from the promoter
of PRM1 across a population of 233 cells.

To adjust for the different brightness of CFP and YFP, we cor-
rected the measurements of CFP in the strain expressing CFP and
YFP from the promoter of PRM1 to have the same median as the
measurements of YFP.We corrected the measurements of CFP in
the strain expressing CFP and YFP from the promoter of ACT1
and the measurements of CFP in the strain expressing CFP from
ACT1 and YFP from the promoter of PRM1 to have the same
median as measurements of YFP in the strain expressing CFP and
YFP from the promoter for ACT1.

Both the CFP and YFP measurements should also be cor-
rected for cellular autofluorescence, although autofluorescence
is less of a problem for YFP because it is brighter. We were
unable to correct the data for autofluorescence, and numerical
values should be interpreted with this caveat.

The Informational Fraction of Variance
Some Intuition. For an output Z and input X , let E½ZjX � ¼ μðXÞ
and V ½ZjX � ¼ σ2ðXÞ. Then,

V ½Z� ¼ VfE½ZjX �g þEfV ½ZjX �g ¼ V ½μðXÞ� þE½σ2ðXÞ�;
[S23]

and the informational fraction of the output variance is

ιZjX ¼ VfE½ZjX �g
V ½Z� ¼ V ½μðXÞ�

V ½μðXÞ� þE½σ2ðXÞ�

¼
�
1þE½σ2ðXÞ�

V ½μðXÞ�
�

−1
: [S24]

In the main text, we denote ιZjX by ιZ.
Imagine drawing two independent realizations of the input X

from its distribution, denoted byX1; X2. Write the corresponding
expected outputs conditional on the realized inputs as μ1 and μ2,
where μi ¼ μðXiÞ. Then, the typical distance between the two
conditional means obtained is

1

2
E½ðμ1 − μ2Þ2� ¼ V ½μi�; [S25]

because E½μ1μ2� ¼ E½μ1�2. The expected conditional variance for
each draw is simply E½σ2

i �. Therefore, as the informational frac-
tion tends to one,

1

2
E½ðμ1 − μ2Þ2� ≫ E½σ2ðXÞ�; [S26]

and the typical distance between the means of a pair of condi-
tional distributions for the output Z becomes much larger than
the expected variability or “width” of those distributions: The
conditional output distributions typically overlap less. Heuristi-
cally, each output distribution is less likely to overlap with an-
other and the system should become more efficient at transmit-
ting information. We make these ideas more precise by providing
formal connections between the informational fraction and infor-
mation theory below.

Input and Output with a Jointly Gaussian Distribution and a General
Upper Bound on the Conditional Entropy of the Output.Consider the

input and output ðX; ZÞ to be a continuous random vector, with
the support of Z equal to ð−∞;∞Þ. Let z be the rescaled output
with variance equal to 1, z ¼ Z∕V ½Z�1∕2. The rescaling affects
neither the informational fraction, nor the mutual information
of input and output (7). Note that 1 − ιzjX ¼ EfV ½zjX �g and that
the entropy of a Gaussian distribution with variance v is equal to
1
2
lnð2πevÞ. Now V ½zjX ¼ x� ≥ 1

2πe expf2hðzjX ¼ xÞg because the
Gaussian distribution has the maximum entropy for a given var-
iance. It follows after taking the expectation of both sides of the
inequality and applying Jensen’s inequality that

1 − ιZjX ¼ EfV ½zjX �g ≥
1

2πe
expf2hðzjXÞg;

where hðzjXÞ ¼ Ex½hðzjX ¼ xÞ�. Therefore, an upper bound for
the conditional entropy of the rescaled output is given by

hðzjXÞ ≤ 1

2
lnf2πe½1 − ιZjX �g: [S27]

The upper bound decreases as ιZjX increases, placing an upper
limit on how uncertain the output can be given the state of
the input.

When the signaling mechanism obeys “Gaussian statistics,” or
more precisely the conditional distribution of output given input,
pðzjXÞ, is Gaussian with variance not depending on X , it is seen
that V ½zjX �g ¼ 1

2πe expf2hðzjXÞg and therefore Eq. S27 holds
with equality in this case. If the input X is also normally distrib-
uted then ðX; ZÞ has a bivariate normal distribution and z is
therefore normally distributed with variance equal to 1. The mu-
tual information IðX ;ZÞ ¼ IðX ; zÞ. It follows directly that

IðX ;ZÞ ¼ hðzÞ − hðzjXÞ ¼ 1

2
lnf2πeg − 1

2
lnf2πe½1 − ιZjX �g

¼ −
1

2
lnf1 − ιZjXg; [S28]

which is familiar on recognizing that ιZjX ¼ Corr½Z; X �2, because
E½ZjX � is a linear function of X (see Eq. S31) for a bivariate
normal distribution. Throughout, we define the correlation of
any two random variables T; U to be Corr½T; U� ¼ Cov½T; U�∕
V ½T�12V ½U�12.

A Lower Bound on Information Capacity Is Set by ιZjX. We will now
prove that when the conditional means μðXÞ are different for all
values of X , the information capacity C of the biochemical me-
chanism satisfies the lower bound given by

C ¼ sup
pðXÞ

IðX ;ZÞ ≥ 1

2
ln½1 − ιZj ~X �−1; [S29]

where the supremum (“maximum”) is taken over a set of possible
input distributions, S. The informational fraction is evaluated for
an input distribution corresponding to a Gaussian distribution for
μðXÞ. The higher the informational fraction, the larger the lower
bound on the capacity.

Consider the mechanism

W→
f
X →

pðZjXÞ
Z; [S30]

where pðZjXÞ represents the biochemical transduction,
Z ∈ ð−∞;∞Þ,W ∈ ð−∞;∞Þ, and the function f is a continuously
differentiable, one-to-one mapping. Where necessary, we trans-
form the biophysical output (which is often positive), for example
by taking its logarithm, so that Z is real-valued. For any distribu-
tion pðW Þ, we have that IðW ;ZÞ ¼ IðX ;ZÞ (7).

We will need the following result. For any two random vari-
ables T; U , the informational fraction satisfies the equality
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ιUjT ¼ CorrðU; E½UjT�Þ2; [S31]

from the definition of correlation and because

CovðU; E½UjT�Þ ¼ EfE½ðU −E½U�ÞðE½UjT� −E½U�ÞjT�g
¼ EfE½UjT�2 − 2E½U�E½UjT� þ E½U�2g
¼ VfE½UjT�g:

Therefore, ιZjW ¼ CorrðZ; E½ZjW �Þ2: Furthermore, if E½ZjW � is
a linear (affine) function of W , then CorrðZ; E½ZjW �Þ ¼
CorrðZ; W Þ and ιZjW ¼ CorrðZ; W Þ2 for any distribution pðW Þ.

Notice that for the mechanism in Eq. S30, the random vari-
ables E½ZjX � and E½ZjW � are equal because f is an invertible
function and conditioning on X is therefore equivalent to condi-
tioning on W (mathematically, the conditioning sigma field
σðXÞ ¼ σðW Þ). It follows immediately that the corresponding in-
formational fractions are equal:

ιZjW ¼ ιZjX; [S32]

where we have used V ½ZjX � ¼ V ½ZjW �.
The essential insights in the proof of the lower bound in

Eq. S29 are to approach the problem via the “augmented” me-
chanism in Eq. S30 and to then notice that a certain choice of
the function f will result in E½ZjW � being a linear function of
W . This choice is useful because it is known how to bound the
mutual information from below when the input is Gaussian, using
the squared correlation of input and output. As we have seen,
when the conditional expectation is a linear function of W ,
ιZjW ¼ CorrðZ;W Þ2. The choice of f is to set

X ¼ μ−1ðW Þ where μðxÞ ¼ E½ZjX ¼ x�:

The inverse biochemical “response” function, μ−1, is expected
to be smooth (continuously differentiable) for biophysically rea-
sonable response functions μðxÞ. When f is set equal to μ−1 in
Eq. S30,

E½ZjW ¼ w� ¼ E½ZjX ¼ μ−1ðwÞ� ¼ μðμ−1ðwÞÞ ¼ w;

or more concisely E½ZjW � ¼ E½ZjX � ¼ W , which is the linearity
in W we set out to achieve.

It now follows, recalling Eq. S32, that Corr½Z; W �2 ¼ ιZjX
for any distribution pðW Þ and the implied input distribution
pðXÞ. Let ~W denote the artificial input when that random
variable has a Gaussian distribution. Then, Ið ~W ;ZÞ ≥ 1

2
ln½1−

Corr½Z; ~W �2�−1 (8). We have now shown that

C ≥ Ið ~X ;ZÞ ¼ Ið ~W ;ZÞ ≥ 1

2
ln½1 − Corr½Z; ~W �2�−1

¼ 1

2
ln½1 − ιZj ~X �−1;

where ~X ¼ μ−1ð ~W Þ has the distribution implied by the Gaussian
distribution of ~W .

In biology, because natural input distributions have not been
widely measured, the set S of possible input distributions pðXÞ
must be specified by the investigator, and a range of choices for S
may be entertained. To implement the capacity bound in Eq. S29,
one can range over choices for the mean and variance of the

Gaussian ~W , excluding those choices that imply a distribution
pðXÞ that one wants to omit from S. Armed with the function
σ2ðXÞ ¼ V ½ZjX �, both pð ~XÞ and the informational fraction
ιZj ~X can be computed by Monte Carlo sampling from pð ~W Þ, using
the relation ~X ¼ μ−1ð ~W Þ. To implement the capacity bound, the
other input distributions in S need not be specified. Finally, the
informational fraction ιZj ~X should be maximized over the set of
distributions pð ~XÞ given by the allowed means and variances
for ~W .

As a simple illustration, consider the Gaussian noise channel
of information theory given by Z ¼ gX þ ηZjX , where g is a
constant and ηZjX is normally distributed with zero mean and
a constant variance σ2

ZjX that is not dependent on X . Let S con-
sist of input distributions satisfyingE½X � ¼ 0 and V ½X � ≤ σ2. Be-
cause W ¼ gX here, we set E½ ~W � ¼ 0 and V ½ ~W � ≤ g2σ2. The
informational fraction ιZj ~X ¼ g2V ½ ~X �∕ðg2V ½ ~X � þ σ2

ZjX Þ, which

is maximized by setting V ½ ~X � ¼ σ2, which implies V ½ ~W � ¼ g2σ2.
The corresponding, maximized lower bound for the capacity
given by Eq. S29 is then equal to 1

2
ln½1 − ιZj ~X �−1 ¼

1
2
ln½1þ ðg2σ2∕σ2

ZjX Þ�, which is exactly equal to the capacity of the
Gaussian noise channel with input “power” constraint σ2. Our
lower bound on the information capacity is a tight one for the
Gaussian channel.

Information Transfer When ιZjX Is Large. Consider now a setting in
which the biochemical mechanism and the input distribution can
vary as n → ∞, where n labels the sequence of mechanisms and
input distributions. Suppose that ιZnjXn

, the informational fraction
for Zn, converges to its maximum value of 1 and that the uncondi-
tional distribution pðznÞ of the rescaled output of the signaling me-
chanism does not become ever less uncertain as n → ∞. By
uncertainty in the continuous case (or differential entropy), we
mean the logarithm of the effective volume of the smallest set that
contains most of the probability (9). We will give a concrete bio-
chemical example of such asymptotic behavior below.

More precisely, suppose ιZnjXn
→ 1 and that hðznÞ↛ −∞ (or,

equivalently, hðznÞ is bounded below by a constant for all n),
where zn ¼ Zn∕V ½Zn�12 as before. Then, Eq. S27 implies that
−hðznjXnÞ → þ∞ and hence

IðXn;ZnÞ ¼ IðXn; znÞ → ∞ as ιZn jXn
→ 1. [S33]

Biophysically reasonable transduction mechanisms are expected
to give rise to unconditional distributions for the rescaled output,
pðznÞ, that reflect the uncertainty of the input rather than having
differential entropy that is unbounded below. If the input distri-
bution varies as the limit is taken, we assume its uncertainty (dif-
ferential entropy) does not become ever less as n → ∞.

As an example of such asymptotics, suppose we hold the input
distribution constant for simplicity and consider the linear noise
approximation (LNA) of output at time t, for which (10)

Zt;n ¼ Ωnϕðt; XÞ þ Ω1∕2
n ξðt; XÞ; [S34]

where Ωn is the system size, ϕðt; XÞ is the deterministic solution
for output concentration at time t, and the random variable
ξðt; XÞ can be shown in the case of the LNA not to depend
on Ωn (11). Notice that Eq. S34 makes no assumption of Gaus-
sianity. Let ~Zt;n ≔ Zt;n∕Ωn denote the output concentration. We
can see that, as the system size Ωn → ∞, then ιZt;njX → 1 because

EfV ½ ~Zt;njX �g
VfE½ ~Zt;njX �g ¼ EfV ½ξðt; XÞjX �g

ΩnV ½ϕðt; XÞ� þ Ω1∕2
n Covfϕðt; XÞ; E½ξðt; XÞjX �g þ VfE½ξðt; XÞjX �g

¼ OðΩ−1
n Þ:
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Furthermore, it follows from Eq. S34 that ~Zt;n → ϕðt; XÞ: The
output concentration converges (almost surely) to the determinis-
tic solution, which is a function ofX . Let ~zt;n ¼ ~Zt;nV ½ ~Zt;n�−1∕2 be
the rescaled output with a variance of 1. The differential entropy
of the rescaled output hð~zt;nÞ → hðϕðt; XÞÞ − 1

2
lnVfϕðt; XÞg, un-

der suitable regularity conditions. We make the mild assumption
that the distribution of the continuous input is such that
jhðϕðt; XÞÞj < ∞ and Vfϕðt; XÞg < ∞. It then follows from
Eq. S27 and the above argument that IðX ;Zt;nÞ ¼ IðX ; ~zt;nÞ →
∞ as Ωn → ∞. Information transfer becomes perfect in the limit
of large system size. Because the LNA tells us about moments
but not distributions, it is not clear how to prove this property
without making use of the informational fraction and the implied
properties when the informational fraction tends to its maximal
value of 1.

Determining the Informational Fraction for Osmosensing in
Budding Yeast
Pelet et al. (12) used YFP to report gene expression from the
STL1 promoter for six different concentrations of extracellular
salt. They recorded fluorescence levels from approximately
1,000 cells for each concentration of salt.

Letting Pi denoting the probability of the environment having
a salt concentration equal to Si, then the informational fraction
for a given probability distribution of extracellular salt is

informational fraction ¼ VfE½ZjS�g
V ½Z�

¼
∑
i

PiE½ZjSi�2 − ð∑
i

PiE½ZjSi�Þ2

∑
i

PiE½Z2jSi� − ð∑
i

PiE½ZjSi�Þ2
;

[S35]

where we have used V ½W � ¼ E½W 2� − E½W �2. Therefore, if yi;j
is the average fluorescence level of YFP in the jth cell (the
total fluorescence in that cell divided by the area of the cell)
when the salt concentration is Si and there are Ni such cells,
then our empirical measure of the informational fraction is
given by

∑
i

Pi

�
1
Ni ∑

Ni

j¼1
yi;j

�
2

−
�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

∑
i

Pi
1
Ni ∑

Ni

j¼1
y2i;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

: [S36]

We exhaustively searched the possible probability distributions
over the six different concentrations of extracellular salt and de-
termined the probability distributions that have high informa-
tional fractions. We discretized Pi (to have 21 equally spaced
values, between and including the values zero and one) and
looped through all possible values of Pi for each i, calculating
the informational fraction only when ∑iPi ¼ 1.

For two reporters that are conjugate given the history of the
stochastic variables extrinsic to gene expression, then the total
extrinsic fraction for a particular concentration of salt is defined
as the ratio of the covariance of the two reporters to the variance
of the output Z:

total extrinsic fraction

¼ Cov½Z; Z 0jSi�
V ½Z�

¼
∑
i

PiE½ZZ 0jSi� − ð∑
i

PiE½ZjSi�Þð∑
i

PiE½Z 0jSi�Þ

∑
i

PiE½Z2jSi� − ð∑
i

PiE½ZjSi�Þ2
[S37]

for the experiments of Pelet et al. If ci;j is the average fluorescence
measured from the CFP reporter in the jth cell when the concen-
tration of salt is Si, then our empirical measure of the total ex-
trinsic fraction is given by

∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;jci;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

��
∑
i

Pi
1
Ni ∑

Ni

j¼1
ci;j

�

∑
i

Pi
1
Ni ∑

Ni

j¼1
y2i;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

:

[S38]

The two fluorescent proteins, CFP and YFP, have different
brightness, and we multiply each ci;j by a correction factor so that
the median of the YFP measurements is equal to the median of
the CFP measurements for each concentration of salt.

Both the CFP and YFP measurements should also be cor-
rected for cellular autofluorescence, although autofluorescence
is less of a problem for YFP because it is brighter. We were
unable to correct the data for autofluorescence, and numerical
values should be interpreted with this caveat.

Calculation of the Variance Components from the Chemical
Master Equation
The conjugate reporter method allows us to find analytical ex-
pressions for the components of the variance. Consider gene ex-
pression with one extrinsic variable (Fig. S2A). In a mathematical
model, this extrinsic variable corresponds to a fluctuating propen-
sity for a particular reaction (2, 13), and we will begin with a fluc-
tuating propensity for transcription. If this propensity has three
states reflecting, for example, three states of the extracellular en-
vironment (Fig. S2B), then we can define κ01 to be the probability
per unit time of transitioning from the state 0 to state 1 (condi-
tional on being in state 0); κ10 to be the probability per unit time
of transitioning back; κ12 to be the probability per unit time of
transitioning from state 1 to state 2; and κ21 to be the probability
per unit time of transitioning back. With all the κij identical, we
used this model to generate the data for Fig. 2B.

Initially, we will consider the decomposition of the variance
into intrinsic and extrinsic components,

V ½ZðtÞ� ¼ EfV ½ZðtÞjvH0;t�g þ VfE½ZðtÞjvH0;t�g; [S39]

and therefore require reporters that are conditionally indepen-
dent given the history of v0, the propensity for the transcriptional
reaction, and that have the same means conditional on vH0;t.
An identical copy of the system exposed to the same fluctuations
in v0 satisfies both these conditions (Fig. S2A). We will denote the
number of mRNAs from each copy of the system as m1 and m2

and the number of proteins from each copy as n1 and n2.
The probability of having m1 mRNAs and n1 proteins from
the first copy and m2 mRNAs and n2 proteins from the second
is Pðm1; n1; m2; n2; v

ðiÞ
0 ; tÞ, with i denoting the state of the extrin-

sic variable. For brevity, we will write P ðiÞ for Pðm1; n1; m2;
n2; v

ðiÞ
0 ; tÞ and only explicitly write (with subscripts) the number

of molecules when these differ from either m1, n1, m2, or n2.
The corresponding master equations for the dual reporter sys-
tems are then (see Fig. S2A for definitions of the parameters)
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∂P ðiÞ

∂t
¼ vðiÞ0 ½P ðiÞ

m1−1 − P ðiÞ� þ d0½ðm1 þ 1ÞP ðiÞ
m1þ1 −m1P ðiÞ�

þ d1½ðn1 þ 1ÞP ðiÞ
n1þ1 − n1P ðiÞ� þ v1m1½P ðiÞ

n1−1 − P ðiÞ�
þ vðiÞ0 ½P ðiÞ

m2−1 − P ðiÞ� þ d0½ðm2 þ 1ÞP ðiÞ
m2þ1 −m2P ðiÞ�

þ d1½ðn2 þ 1ÞP ðiÞ
n2þ1 − n2P ðiÞ� þ v1m2½P ðiÞ

n2−1 − P ðiÞ�

þ
� κ10P ð1Þ − κ01P ð0Þ if i ¼ 0

κ01P ð0Þ − ðκ10 þ κ12ÞP ð1Þ þ κ21P ð2Þ if i ¼ 1

κ12P ð1Þ − κ21P ð2Þ if i ¼ 2

;

[S40]

where there is one equation for each state of the extrinsic variable
(here, vðiÞ0 ).

We can solve Eq. S40 exactly for the moments of the probabil-
ity distribution P ðiÞ. We will use s to represent the vector of num-
bers of species, s ¼ ½m1; n1; m2; n2�, and, for brevity, we will use
angled brackets to denote expectations:

hf ðsÞii ¼ ∑
s

Pðs; vðiÞ0 Þf ðsÞ ¼ ∑
s

P ðiÞf ðsÞ [S41]

for any function f ðsÞ and where the expectation is taken with
the particular value of v0 fixed. By multiplying Eq. S40 by either
m1 or m2 and summing over all states described by P ðiÞ (over all
values of m1, m2, n1, and n2), we find that the mean mRNA for
either copy then obeys

∂hmii
∂t

¼ vðiÞ0 ∑
s

P ðiÞ − d0hmii

þ
� κ10hmi1 − κ01hmi0 if i ¼ 0

κ01hmi0 − ðκ10 þ κ12Þhmi1 þ κ21hmi2 if i ¼ 1

κ12hmi1 − κ21hmi2 if i ¼ 2

;

[S42]

where the sum over P ðiÞ is over all states of the system for a given
v0. Performing this summation in Eq. S40 gives

∂
∂t∑

s

P ð0Þ ¼ κ10∑
s

P ð1Þ − κ01∑
s

P ð0Þ;

∂
∂t∑

s

P ð1Þ ¼ κ01∑
s

P ð0Þ − ðκ10 þ κ12Þ∑
s

P ð1Þ þ κ21∑
s

P ð2Þ;

∂
∂t∑

s

P ð2Þ ¼ κ12∑
s

P ð1Þ − κ21∑
s

P ð2Þ; [S43]

and so

∑
s

P ð0Þ ¼ κ10κ21
κ10κ21 þ κ01κ12 þ κ01κ21

;

∑
s

P ð1Þ ¼ κ01κ21
κ10κ21 þ κ01κ12 þ κ01κ21

;

∑
s

P ð2Þ ¼ κ01κ12
κ10κ21 þ κ01κ12 þ κ01κ21

[S44]

at steady state. The mean protein for either copy satisfies

∂hnii
∂t

¼ v1hmii − d1hnii

þ
� κ10hni1 − κ01hni0 if i ¼ 0

κ01hni0 − ðκ10 þ κ12Þhni1 þ κ21hni2 if i ¼ 1

κ12hni1 − κ21hni2 if i ¼ 2

:

[S45]

The simultaneous equations, Eq. S42 and Eq. S45 together with
Eq. S42, can be solved at steady state, straightforwardly with
computer algebra packages such as Mathematica (Wolfram
Research).

Similarly, by multiplying Eq. S40 by, for example,m2
1 and aver-

aging, we can find equations for the second moments:

∂hm2ii
∂t

¼ 2vðiÞ0 hmii þ vðiÞ0 ∑
s

P ðiÞ þ d0hmii − 2d0hm2ii

þ
� κ10hm2i1 − κ01hm2i0 if i ¼ 0

κ01hm2i0 − ðκ10 þ κ12Þhm2i1 þ κ21hm2i2 if i ¼ 1

κ12hm2i1 − κ21hm2i2 if i ¼ 2

[S46]

for the mean square number of molecules of mRNA;

∂hn2ii
∂t

¼ d1hnii þ 2v1hmnii þ v1hmii − 2d1hn2ii

þ
� κ10hn2i1 − κ01hn2i0 if i ¼ 0

κ01hn2i0 − ðκ10 þ κ12Þhn2i1 þ κ21hn2i2 if i ¼ 1

κ12hn2i1 − κ21hn2i2 if i ¼ 2

[S47]

for the mean square number of molecules of protein; and

∂hmnii
∂t

¼ vðiÞ0 hnii þ v1hm2ii − ðd0 þ d1Þhmnii

þ
� κ10hmni1 − κ01hmni0 if i ¼ 0

κ01hmni0 − ðκ10 þ κ12Þhmni1 þ κ21hmni2 if i ¼ 1

κ12hmni1 − κ21hmni2 if i ¼ 2

[S48]

for the mean product of mRNA and protein numbers. We solve
Eqs. S46, S47, and S48 at steady state simultaneously using the
solutions of Eqs. S42 and S45 and so compute the stationary sec-
ond moments.

Finally, we need the covariance between the two reporters,
hn1n2i, to determine the extrinsic variance. From Eq. S40, we find
three sets of coupled equations:

∂hn1n2ii
∂t

¼ 2v1hm1n2ii − 2d1hn1n2ii þ
� κ10hn1n2i1 − κ01hn1n2i0 if i ¼ 0

κ01hn1n2i0 − ðκ10 þ κ12Þhn1n2i1 þ κ21hn1n2i2 if i ¼ 1

κ12hn1n2i1 − κ21hn1n2i2 if i ¼ 2

[S49]
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to determine the covariance between the proteins;

∂hm1n2ii
∂t

¼ vðiÞ0 hnii þ v1hm1m2ii − ðd0 þ d1Þhm1n2ii þ
� κ10hm1n2i1 − κ01hm1n2i0 if i ¼ 0

κ01hm1n2i0 − ðκ10 þ κ12Þhm1n2i1 þ κ21hm1n2i2 if i ¼ 1

κ12hm1n2i1 − κ21hm1n2i2 if i ¼ 2

[S50]

to determine the covariance of the mRNA of one copy of the system with the protein of another (hm1n2i ¼ hm2n1i from symmetry);
and

∂hm1m2ii
∂t

¼ 2vðiÞ0 hmii − 2d0hm1m2ii þ
� κ10hm1m2i1 − κ01hm1m2i0 if i ¼ 0

κ01hm1m2i0 − ðκ10 þ κ12Þhm1m2i1 þ κ21hm1m2i2 if i ¼ 1

κ12hm1m2i1 − κ21hm1m2i2 if i ¼ 2

[S51]

to determine the covariance of the mRNAs from the two copies
of the systems. We solve Eqs. S49, S50, and S51 at steady state. To
find the final moments, we sum the moments calculated for each
state of the extrinsic variable because

hf ðsÞi ¼ ∑
s;i

Pðs; vðiÞ0 Þf ðsÞ ¼ ∑
s;i

P ðiÞf ðsÞ ¼ ∑
i

hf ðsÞii [S52]

for any function f ðsÞ.
All these equations can be straightforwardly modified to study

extrinsic fluctuations in a different kinetic rate. For example, if
the translation rate fluctuates then we replace vðiÞ0 by v0 and
the translation rate v1 by the appropriate v

ðiÞ
1 in all the equations.

To have two or more rates fluctuating (2), we can either extend
the number of states of P ðiÞ if the extrinsic fluctuations are un-
correlated or have more than one parameter changing with state i
if the extrinsic fluctuations are correlated. Our analytical results
verify the behavior found previously through simulation for par-
ticular values of parameters (2).

Extrinsic Fluctuations in Transcription Need Not Change the Form of
the Intrinsic Noise. Consider extrinsic fluctuations in v0, so that
v0 has three states: vðiÞ0 , where i runs from 0 to 2. From Eq. S44,

hv0i ¼
κ10κ21v

ð0Þ
0 þ κ01κ21v

ð1Þ
0 þ κ01κ12v

ð2Þ
0

κ01κ12 þ κ01κ21 þ κ10κ21
; [S53]

and we find that

hmi ¼ hv0i
d0

; hni ¼ υ1
d1

hmi: [S54]

To compare with previous work (14–19), we will give our results in
terms of the coefficient of variation, η (the standard deviation of a
variable divided by its mean). For the intrinsic noise, we have that

η2int ¼
1

hni þ
d1

d0 þ d1

1

hmi ; [S55]

which has the same form for the system when no extrinsic fluc-
tuations are present (16, 19) (Fig. S3). If we assume that
vð0Þ0 ¼ v0ð1 − ϵÞ, vð1Þ0 ¼ v0, and vð2Þ0 ¼ v0ð1þ ϵÞ for a constant
v0 and ϵ and that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, then the extrinsic
noise equals

η2ext ¼
d0d1ðd0 þ d1 þ κÞ

ðd0 þ d1Þðd0 þ κÞðd1 þ κÞ η
2
v0 [S56]

and is proportional to the square of the noise in v0, η2v0 , as ex-
pected (20). We note that η2v0 ¼ 2ϵ2

3
with this choice of vðiÞ0 .

Extrinsic Fluctuations in Translation Can Increase the Intrinsic Noise.
We can proceed similarly with extrinsic fluctuations in the

translation rate. If we let vð0Þ1 ¼ v1ð1 − ϵÞ, vð1Þ1 ¼ v1, and vð2Þ1 ¼
v1ð1þ ϵÞ and κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, then

hmi ¼ υ0
d0

; hni ¼ υ1
d1

hmi [S57]

and

η2int ¼
1

hni þ
d1

d0 þ d1

1

hmi
�
1þ d0 þ d1

d0 þ d1 þ κ
η2v1

�
[S58]

with

η2ext ¼
d1

d1 þ κ
η2v1 : [S59]

We see that the intrinsic noise is larger than the intrinsic noise of
an equivalent system with no extrinsic fluctuations (ηv1 ¼ 0 and
Eq. S55) because of the factor in square brackets in Eq. S58
(Fig. S3). This factor depends on both the magnitude and lifetime
of the fluctuations in v1, as well as the lifetime of both mRNA and
protein molecules.

Extrinsic Fluctuations in the Degradation of mRNA Can Increase the
Intrinsic Noise. Having extrinsic fluctuations in the degradation
rates of either mRNA or protein gives more complex behaviors
because such fluctuations directly affect the lifetime of fluctua-
tions in proteins (2). Assuming, as before, that dð0Þ

0 ¼ d0ð1 − ϵÞ,
dð1Þ
0 ¼ d0, and dð2Þ

0 ¼ d0ð1þ ϵÞ, that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ,
and that η2d0 < 1, then

hmi ¼ v0
d0

�
1þ d0

d0 þ κ
η2d0 þ⋯

�
; hni ¼ υ1

d1
hmi; [S60]

where we have omitted terms of order η4d0 and higher. The intrin-
sic noise is approximately

η2int ≃
1

hni

þ d1
d0 þ d1

1

hmi
�
1þ d2

0 ð2d0 þ d1 þ κÞ
ðd0 þ d1Þðd0 þ κÞðd0 þ d1 þ κÞ η

2
d0

�
;

[S61]

and the extrinsic noise is approximately

η2ext ≃
d0d1ðd0 þ d1 þ κÞ

ðd0 þ d1Þðd0 þ κÞðd1 þ κÞ η
2
d0
; [S62]

where higher order corrections in ηd0 have been omitted. The in-
trinsic noise is therefore larger than the intrinsic noise of an
equivalent system with no extrinsic fluctuations (ηd0 ¼ 0) provid-
ing ηd0 is sufficiently small (Fig. S3), and the mean number of
proteins has increased above the value predicted by purely deter-
ministic dynamics.
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Extrinsic Fluctuations in the Degradation of Protein Can Decrease the
Intrinsic Noise. Assuming again that dð0Þ

1 ¼ d1ð1 − ϵÞ, dð1Þ
1 ¼ d1,

and dð2Þ
1 ¼ d1ð1þ ϵÞ, that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, and that

η2d1 < 1, then

hmi ¼ υ0
d0

; hni ≃ v1
d1

hmi
�
1þ d1

d1 þ κ
η2d1

�
; [S63]

where we ignore terms of order η4d1 and higher. The intrinsic noise
is

η2int ≃
1

hni þ
d1

d0 þ d1

1

hmi

×
�
1 −

d2
1 ð2d0ðd0 þ d1Þ − ðd1 þ κÞð2d1 þ κÞÞ

ðd0 þ d1Þðd1 þ κÞðd0 þ d1 þ κÞð2d1 þ κÞ η
2
d1

�
; [S64]

and

η2ext ≃
d1

d1 þ κ
η2d1 ; [S65]

where we have omitted higher order terms in ηd1 . We expect d0 >
d1 (19) and κ ≥ d1 (21). The intrinsic noise is therefore typically
smaller than the intrinsic noise of an equivalent system with no
extrinsic fluctuations (Fig. S3), and the mean number of proteins
has increased above the value predicted by deterministic dy-
namics.

Decomposing the Intrinsic Noise. In Eq. 3 of the main paper, we
decompose the intrinsic noise into transcriptional and transla-
tional components. We further argue that a bicistronic reporter
correctly measures the translational component and when com-
bined with the original reporter for the system will allow all three
components of the variance to be measured. We apply these ideas
to calculate the transcriptional and translational components of
the intrinsic noise when there are extrinsic fluctuations in the pro-
pensity for transcription. The master equation for a bicistronic
reporter (Fig. S2C) is

∂P ðiÞ

∂t
¼ vðiÞ0 ½P ðiÞ

m−1 − P ðiÞ� þ d0½ðmþ 1ÞP ðiÞ
mþ1 −mP ðiÞ�

þ d1½ðn1 þ 1ÞP ðiÞ
n1þ1 − n1P ðiÞ� þ v1m½Pn1−1 − P ðiÞ�

þ d1½ðn2 þ 1ÞP ðiÞ
n2þ1 − n2P ðiÞ� þ v1m½Pn2−1 − P ðiÞ�

þ
� κ10P ð1Þ − κ01P ð0Þ if i ¼ 0

κ01P ð0Þ − ðκ10 þ κ12ÞP ð1Þ þ κ21P ð2Þ if i ¼ 1

κ12P ð1Þ − κ21P ð2Þ if i ¼ 2

;

[S66]

wherem is the number of molecules of the mRNA and we assume
three different states of the extrinsic variable (here v0). We can
solve Eq. S66 for its moments following the approach used for
Eq. S40. The equations undergo only minor changes with some
straightforward replacements (for example, hmðiÞ

1 mðiÞ
2 i becomes

h½mðiÞ�2i). We find that the transcriptional and translational com-
ponents of the intrinsic noise are

η2transc ¼
d1

d0 þ d1

1

hmi ; η2transl ¼
1

hni ; [S67]

showing that our theoretical definitions (Eq. 3) give a natural de-
composition.

Eq. S67 implies that transcriptional variation is often greater
than translational variation. Typical lifetimes of mRNA in Escher-
ichia coli are several minutes, but protein numbers are often
mostly reduced through dilution. Assuming a cell cycle of
50 min (22) and an average lifetime of an mRNA of 3 min (23),
then d1∕ðd0 þ d1Þ is approximately 0.06, and so η2transc∕η2transl ≃
0.06 hni

hmi. Consequently, transcriptional variation is greater than
translational variation if hni is approximately greater than
18 times hmi, which is not uncommon: The average number of
proteins per mRNA is around 540 (24).

Verifying Conditional Independences
To use conjugate reporters to determine the components of the
variance of a given model, we must check that the appropriate
conditional independences are satisfied. Suppose we wish to ver-
ify that two reporters Z and Z 0 are conditionally independent
given the history YH. Suppose further that the future dynamics
of these Y variables can depend on their own histories, but (given
those histories) are independent of the history of all other vari-
ables in the model. Then, informally, Z and Z 0 are conditionally
independent givenYH if we can first simulate the realization of Y
(to time t), and then simulate two subsystems independently (or
“separately”) given that history of Y to obtain Zt and Z 0

t .
One of us (C.G.B.) has developed the necessary mathematical

theory for verification of conditional independence properties in
stochastic kinetic models (chemical master equations) in general
(25, 26). An algorithm, MIDIA, that applies this theory to test
conditional independences has been implemented in R and is
freely available (27).
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Fig. S1. Typical plot of single-cell measurements of a reporter versus measurements of its conjugate reporter. These data are simulated and are given in
numbers of proteins per cell. A typical measurement is highlighted by a red circle, and d⊥ and d∥ are shown for this measurement. The diagonal Z ¼ Z 0

is shown by dashes. The mean ðE½Z�; E½Z�Þ lies on this diagonal and is shown as a black dot. The point of intersection with the diagonal of the line from
ðZ; Z 0Þ perpendicular to the diagonal is shown as a red dot. This line has a gradient of −1, and the point of intersection is ððZ þ Z 0Þ∕2; ðZ þ Z 0Þ∕2Þ.

Fig. S2. Reactions for models of gene expression. (A) Conjugate reporters given the history of all stochastic processes extrinsic to gene expression. Here, v0 is
the probability of transcription per unit time; v1 is the probability of translation per unit time per molecule; d0 is the degradation rate of mRNA per unit time
per molecule; and d1 is the degradation rate of protein per unit time per molecule. (B) The local environment is modeled as a Markov chain. It transitions
between three states generating extrinsic fluctuations in a parameter that correspondingly transitions between three values. (C) A bicistronic reporter for
measuring the translational component of variation in gene expression. The inset shows the correspondence between the notation here and that in the main
text. We simulated this model (with all κij identical and equal to κ) to generate the data for Fig. 2B.
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Fig. S3. The dependence of intrinsic noise on extrinsic fluctuations. Exact analytical calculations for intrinsic noise for the model of Fig. S2A as the strength of
the extrinsic fluctuations in one rate parameter varies. Here, ϵ parametrizes the difference between the extrinsic parameters in each environmental state, and
the noise in the extrinsic parameter is 2ϵ2

3 . Each curve is marked with the biochemical process that is affected by extrinsic fluctuations. With no extrinsic fluctua-
tions, the intrinsic noise is 0.17 (and equal to the intrinsic noise when only the transcription rate fluctuates). Parameters are the same as those used for the
simulations of Fig. 2B. For large ηd0

(a fluctuating rate of mRNA degradation), the approximation used in Eq. S61 breaks down, and the intrinsic noise decreases
below the value it takes when ηd0

¼ 0. This nonmonotonic behavior arises because the mean number of proteins increases dramatically as ϵ → 1.
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Table S1. Reaction network and parameter
values used in simulations for Fig. 2B

variable eta = 0.5
# Z′ reporter

DA + S2 →S2 + DA + MA; v02 = 0.01
DA + S1 → S1 + DA + MA ; v01= v02*(1−eta)
DA + S3 → S3 + DA + MA ; v03 = v02*(1+eta)

MA → MA + A ; v1 = 0.2
MA → null; d0 = 0.0167
A → null; d1 = 0.0017

# Z reporter
# transcription

DB + S2 → S2 + DB + MB; v02
DB + S1 → S1 + DB + MB; v01
DB + S3 → S3 + DB + MB; v03

# translation
MB → MB + B; v1
# degradation
MB → null; d0
B → null; d1

# Z” (bicistronic) reporter
MB → MB + C; v1
C → null; d1

# state for fluctuations in v0
S1 → S2; k12 = d1/30
S2 → S1; k21 = k12
S2 → S3; k23 = k12
S3 → S2; k32 = k12

INIT
DA = 1 N;
DB = 1 N;
S2 = 1 N;
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