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SI Methods
MRI Acquisition.Anatomical images were acquired on a GE Signa
3 Tesla whole-body scanner with a body transmitter coil and an
eight-channel head receiver coil. High-resolution, T1-weighted
brain images were acquired using a fast spoiled gradient-recall
sequence: inversion time= 500ms, repetition time= 4.7ms, echo
time = 1.3 ms, field of view = 24 cm, image matrix = 256 × 256,
acceleration factor = 2, number of slices = 160, slice thickness =
1 mm encoded for sagittal slice reconstruction, providing voxel
dimensions of 0.9375 × 0.9375 × 1.0 mm.

Image Segmentation. All processing was performed on Sun Ultra
10 workstations using ANALYZE 8.0 Biomedical Imaging Re-
source (Mayo Foundation) and software developed in-house,
while blind to subject characteristics and hemisphere (images
were randomly flipped in the transverse plane before pre-
processing). Morphometric analyses were performed with the
MRI dataset resliced to correct for any residual head rotation, tilt,
or flexion/extension.
Preprocessing. Large-scale variations in image intensity were cor-
rected by an algorithm developed at the Montreal Neurological
Institute (1). Extracerebral tissues were removed by an auto-
mated tool (2) that uses an anisotropic filter to smooth image
intensity and a Marr–Hildreth edge detector (3) to identify 3D
edges, before selecting as the brain the largest connected com-
ponent with a closed boundary. Connecting dura was removed
manually on each sagittal slice and checked in orthogonal views.
The brainstem was transected at the pontomedullary junction.
Cortical gray matter segmentation. As briefly described in the text,
gray-scale values of “pure” representations of cortical gray and
white matter were sampled bilaterally at four standard locations
throughout the brain (frontal, temporal, occipital, and parietal)
using an 8 × 8 = 64 pixel array, sufficiently large to provide
statistical stability but small enough to avoid partial volume ef-
fects that include other tissue types. These four values were then
averaged for each tissue type, and a threshold value halfway
between the mean gray and white matter values was computed
for a slice in the imaging volume. We invoked these threshold
values on a slice-by-slice basis to provide an initial rough clas-
sification of cortical gray and white matter throughout the ce-
rebrum. This classification was hand edited in the coronal and
transverse views to provide the most accurate segmentation
possible of the cortical mantle. The intraclass correlation co-
efficient using a two-way random effects model (4) to measure
reliability of cortical gray matter volumes was 0.98.

Overview of the Analysis of Surface Morphologies. The analysis of
cerebral surfaces previously has been rigorously validated using
synthetic and real-world datasets (5). Comparing surfaces either
within one group or across two or more groups of brains requires
determining which points on the surface of each brain corre-
spond anatomically with the points on the surfaces of all of the
other brains in the comparison. After establishing point corre-
spondences, a signed distance (the Euclidean distance, with
positive distances for outward deformations and negative dis-
tances for inward deformations) between the corresponding
points within and between groups can be evaluated statistically.
Our method for determining these point correspondences across
individual brain surfaces uses a two-step procedure. In the first
step, each brain is coregistered using a similarity (rigid body
transformation with a global scaling) transformation to the
template brain such that the cerebral surfaces are moved to

a close approximation to the template surface. In the second
step, each participant brain is treated as a fluid that is flowing
into the template brain, and therefore constitutes a high-di-
mensional, nonlinear warping of the entire 3D volume of each
participant brain to the entire 3D volume of the template brain.
Each participant brain therefore appears exactly as the template
brain appears, including every point of their outer surfaces,
thereby establishing precise point-to-point correspondences
across the surface of each participant brain with the template
brain. The nonlinear warping of each participant brain is then
reversed to bring each brain into the initial correspondence es-
tablished by the similarity coregistration, bringing each label for
correspondence matching of cerebral surfaces that had been
established previously through the nonlinear warping. The
physical distances are measured from each point on the surface
of each participant’s brain to the corresponding point on the
surface of the template brain. Those distances at each point of
the template brain, one for each participant, constitute a con-
tinuous variable that can be either compared across groups of
participants, related to another variable within a group of par-
ticipants, or simply quantified using traditional descriptive sta-
tistics. The parameters of those statistical analyses are then
color-coded and displayed at each voxel on the surface of the
template brain. Finally, measures of cortical thickness at each
point on the surface of each participant’s brain can replace
distance from the template brain as the continuous variable of
interest in those statistical analyses. The following sections pro-
vide details of the steps in coregistration, the procedures used in
the selection of the template brain, and the statistical modeling
procedures used in our population of participants.

Initial Similarity Coregistration. The random flips were first re-
versed to provide their original correct orientation. The brains
were then brought into a common coordinate or template space.
Following isolation of the brain from nonbrain tissue (above), we
used mutual information of gray scale values to register the brain
of each participant to the template brain (6). The template brain
and each of the other brains in our sample were treated as rigid
bodies as the optimal translation, rotation, and scaling parame-
ters maximized the mutual information IðF;RÞ between each
brain and the template. Let F ¼ fF1;F2; . . . ;Fng denote the
random field from which one of the volumes, called the partic-
ipant volume, was sampled. Similarly, let R ¼ fR1;R2; . . . ;Rmg
be the random field from which the other volume, called the
template volume, was sampled. Assuming that the random var-
iables fF1;F2; . . . ;Fng were independently and identically dis-
tributed, let F be the random variable which represented
the voxel intensities in the participant volume. Similarly, as-
suming that fR1;R2; . . . ;Rmg were independently and identically
distributed, let R be the random variable representing the voxel
intensities in the template volume. Then the mutual infor-
mation IðF;RÞ between the two random variables F and R
with marginal probability density functions PFð f Þ and PRðrÞ and
joint probability density function PF;Rð f ; rÞ is defined to be

IðF;RÞ ¼ P
f ; r PF;Rð f ; rÞ log2

�
PF;Rð f ;rÞ

PFð f Þ×PRðrÞ

�
Let α denote the set

of transformation parameters—three translations, three rota-
tions, and scale—by which the participant volume was trans-
formed. Then the probability density function of the transformed
participant volume, as a function of α, is denoted as PF;αð f Þ.
Similarly, the joint density function is denoted byPF;R;αð f ; rÞ. The
probability density function,PR;αðrÞ, is a function of α because we
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were evaluating the mutual information of overlapping regions
in the two volumes for various values of α. The joint and the
marginal probability density functions were estimated using the
Parzen window method (7). Using these notations, the mutual
information, IαðF;RÞ, was evaluated as a function of α as:

IαðF;RÞ ¼
X
f ;r

PF;R;αð f ; rÞ log2
�

PF;R;αð f ; rÞ
PF;αð f Þ × PR;αðrÞ

�
: [S1]

The optimal set of transformation parameters α that maximized
IαðF;RÞ were then found using the method of stochastic gradient
descent (6).

Nonlinear Warping Using Fluid Flow Dynamics. Following the simi-
larity transformation of each brain to the template brain de-
scribed above, we used the method of fluid flow (FF) to refine this
coregistration. The FF method uses a nonlinear deformation of
one brain surface to another by treating the gray scale image of
one brain as a fluid that flows into the gray scale image of another
brain so as to match its gray scale characteristics precisely (8). The
FF method therefore uses a high-dimensional, nonlinear warping
of images to identify corresponding points on the participant and
reference surfaces. This algorithm modeled the warping of gray
scale in the images as the flow of fluid using the partial differ-
ential equations (PDEs) of the Navier–Stokes equations. In FF
dynamics, nonlinear deformations of large magnitude are per-
mitted because the stress (force per unit area) that restrains local
deformations relaxes over time. The PDE governing the de-
formation is as follows (8):

μ∇2 v!ðλþ μÞ∇!ð∇!· v!Þ þ b
!ð u!Þ ¼ 0

!
; [S2]

where ∇2 ¼ ∇T∇ is the Laplacian operator, ð∇!· v!Þ is the di-
vergence operator, μ and λ are the viscosity coefficients, and
v!ð x!; tÞ is the velocity of the particle at time t and position x! in
the Eulerian reference frame. In the Eulerian reference frame,
a voxel located at x! at time t, with a displacement vector
u!ð x!; tÞ, originated from a point x!− u!ð x!; tÞ. In Eq. S2, the

term b
!ðuð x!; tÞ����!Þ denotes the body force acting on a particle

located at x! at time t, which is the driving force for the local
nonlinear deformations of an image.
The PDE in Eq. S2, defined on a domain Ω ¼ ½0; 1�3, is

a boundary value problem that was solved numerically using the
successive overrelaxation method with checker board updates
(9). Zero boundary conditions were assumed for v!ð x!; tÞ along
the boundary ∂Ω of the domain Ω at all t, and therefore the
displacements of the voxels at ∂Ω is zero. Because the dis-
placement field u!ð x!; tÞ was given in the Eulerian reference
frame, the velocity field v!ð x!; tÞ and the displacement fields
u!ð x!; tÞ were related as

v!¼ d u!
dt

¼ ∂ u!
∂t

þ
X
i

vi
∂ u!
∂xi

: [S3]

We used the forward time centered space (9) method for the
numerical estimation of the various partial derivatives in Eq. S2.
The modeling of fluid dynamics has been used extensively in

various settings for the registration of 3D images (8). We used this
algorithm, however, for identifying the corresponding points on
the surface of the participant and template brains, rather than for
simple registration. Using this high-dimensional warping algo-
rithm, each participant brain was warped to the template brain,
and points on the surface of the template brain were used to label
points on the surface of each participant’s brain. Each participant
brain was then unwarped and brought back along with the la-

beled points to its original conformation in the common co-
ordinate space established in the initial similarity transformation.

Measurement of Surface Distances from the Template Brain. Signed
Euclidean distances between the corresponding labeled points of
the template and participant brain were calculated. These dis-
tances were positive for outward deformation and negative for
inward deformation of the surface of individual participants
relative to the template surface. The distances computed at each
point at the cortical surface were statistically analyzed using
multiple linear regressions (below).

Measurement of Cortical Thickness. From the coregistered brain of
each participant we subtracted its cortical mantle. We then used
a 3D morphological operator to distance-transform this brain
without the cortex from the coregistered brain of the same
participant that contained the cortex (10, 11). This operation
calculated cortical thickness as the smallest distance of each
point on the external cortical surface from the outermost surface
of the white matter in the coregistered brain. Because these
thicknesses were measured in template space with the brain and
its cortical thickness scaled during the similarity transformation,
their values inherently accounted for generalized scaling effects
within the cerebrum.

Selection of the Template Brain. The detection, localization, and
interpretation of the statistically significant differences between
groups of participants conceivably could depend on the choice of
the template brain, because the estimated registration parameters
and the established correspondences of points on the surfaces of
the brain could depend upon the degree to which the selected
template brain is representative of the population of participants
being studied. Use of a synthetic, average brain can also be
considered for the template. Creating a synthetic average, how-
ever, may not always be possible. For example, the pattern of gyri
and sulci on the cortical surface vary significantly across individuals
even within the healthy population (12). Thus, when not all par-
ticipants have a particular gyrus or sulcus, how to generate a
synthetic, average cortical surface is not clear. Moreover, aver-
aging brain images across participants blurs boundaries between
white and gray matter surfaces or between gray matter and CSF,
especially at complex, convoluted surfaces such as those created
by gyri at the surface of the brain, thereby increasing registration
errors, increasing variance, and decreasing statistical power to
detect real effects of interest at the surface of the brain. There-
fore, we used a single representative brain as a template, rather
than one derived by averaging brains across multiple people,
because a single brain has well-defined tissue interfaces, including
those at CSF/gray matter or gray/white matter interfaces.
We used a two-step procedure to select a brain as the template

brain that was as representative as possible of the healthy par-
ticipant sample being studied. First, one participant whose de-
mographic characteristics was nearest the group average was
selected preliminarily as the template brain. Second, the brains
for all remaining healthy participants in the sample were regis-
tered to that preliminary template. The point correspondences
across their surfaces were determined as described above and
then the distances of those points from the corresponding points
on the template surface were calculated. The brain for which all
points across its surface were closest in the least-squares sense to
the average of the distances across those points for the entire
sample was selected to be the final template. The registration
process, determination of point correspondences, and calculation
of distances across surfaces were then repeated for all participants
in the sample against this final template brain. The distances
between the surfaces of the final template and the participant
brains were then compared across individuals or groups.

Rauh et al. www.pnas.org/cgi/content/short/1203396109 2 of 6

www.pnas.org/cgi/content/short/1203396109


Voxel-Wise Statistical Modeling Across the Cerebral Surface. To
control for the effects of covariates (age, sex) on surface mor-
phology, we performed a multiple-variable linear regression
analysis (13) at each point on the reference surface:

di ¼ β0 þ β1 *Ageþ β2 * Sexþ β3 *ADHD; ∀i ¼ 1; . . . ; n;

where di was either (i) the set of signed Euclidean distances for
the i th participant or (ii) the measure of cortical thickness for the
i th participant at that voxel, and n is the number of participants
in the entire sample. We computed the correlation β3 between
the distances and group membership (low or high exposure) and
then computed the P value of this correlation using the Student t
test. We did not covary for overall brain volume because each
participant’s brain was coregistered to the template brain.

Correction for Multiple Comparisons.We applied a method for false
discovery rate (FDR) (14, 15) to limit type 1 errors when per-
forming statistical analysis at each voxel across the surface of the
brain. The multiple-variable linear regression was performed at
each voxel on the surface of the brain, and if at a voxel the P
value of the correlation was smaller than a specified significance
level, then the null hypothesis is rejected. Because the null hy-
pothesis was evaluated at thousands of voxels across the surface,
a large number of null hypotheses would be rejected by chance.
Although we can apply Gaussian random field-based methods to
control for family-wise error rate (FWER), these methods are
conservative and have low power to detect real effects because
they control for any significant findings across the entire surface.
A method for FDR, however, is a more powerful statistical
method by allowing a prespecified number of false discoveries
among all null hypotheses that are rejected. In our experiments,
we set the FDR = 0.05. The P values of the voxels that survived
the FDR correction were then color-encoded and plotted across
the surface of the brain.

Sulcal Overlay. To aid the visual identification of the locations of
significant findings on the surface of the brain, we overlaid onto
the statistical maps of our template brain the sulcal boundaries
previously identified on the International Consortium for Brain
Mapping (ICBM) high-resolution, single-participant template
(http://www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlasid=5) (16).
The sulcal boundaries and 3D labels of cortical gyri from the
ICBM template were mapped onto the cortical surface of our
template brain using our high-dimensional, nonrigid warping
algorithm (above).

Controlling for Morphological Scaling Effects. Larger body size
predicts larger overall brain size, and larger overall brain size
predicts larger sizes of individual brain regions, a phenomenon
termed “morphological scaling.” The similarity transformation
that we used for coregistration included a term for overall scale
of the brain being registered to the template brain, which brings
all brains in the sample to the same volume as the template brain
and therefore controls for morphological scaling. To ensure that
this control did not introduce unwanted changes in the structure
of the data (i.e., in the average surface distances across exposure
groups or in the variance of those measures at each voxel), we
reversed the scaling transformation in the coregistered brains
and plotted these same measures at each voxel, demonstrating
similar structure in the scaled and unscaled data (Fig. S5). We
also covaried for overall height of each participant in our re-
gression models using the unscaled coregistered brains, but
found that height overcorrected some of the surface distances in
frontal and parietal regions, and it increased the variance in
distance measures across most of the cerebral surface (Fig. S5,
Bottom), indicating that covarying for height to control for
scaling effects is undesirable in this dataset.
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Fig. S1. Main effects of exposure group on surface measures with brains unscaled for overall volume. These analyses correspond to those shown in Fig. 1 of
the main text, but without scaling for overall brain volume (i.e., without including scale in the similarity transformation used during procedures for image
coregistration). Findings in the lateral temporal cortices bilaterally are essentially unchanged from findings in analyses that did include control for scaling
effects (Fig. 1). MTG, middle temporal gyrus; PoCG, postcentral gyrus; STG, superior temporal gyrus.
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Fig. S2. Voxel-wise assessment of differing scaling effects on surface distances and variances. The influence of differing scaling effects on (Left) measures of
surface distance (the distance from corresponding points on each participant’s brain surface from the surface of the template brain) and (Right) the variance of
that measure are plotted at each voxel for scaling that adjusts for overall brain size by (i) including scale as a parameter in the similarity transformation used to
coregister each participant’s brain with the template brain (Top), (ii) without including any adjustment for scaling effects in the brain (Middle), and (iii) when
covarying measures of surface distance for each participant’s height but without including brain size in the similarity transformation used to coregister each
participant’s brain to the template brain (Bottom). Surface distances and variances are highly similar with and without scaling for overall brain size. Scaling for
height introduces some statistical artifacts into measures of surface distance along the dorsal frontal and parietal regions of the brain (purple) by overadjusting
surface distances for scaling effects, and it increases the variance of surface distances across the entire cerebral surface, especially over the frontal, parietal, and
temporal lobes, making height undesirable as a scaling covariate.
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Fig. S3. Average surface measures of white matter in high- and low-chlorpyrifos (CPF) exposure groups. Shown here are color-coded maps comparing, across
the high- and low-exposure groups, surface distances of white matter at each corresponding voxel of each participant’s brain from the corresponding voxel of
the white matter surface in the template brain. The pattern of differences across exposure groups is similar to the pattern of statistical significance of those
differences depicted in the maps of P values comparing surface measures of the cerebral surface across groups (Fig. 1), particularly in the left hemisphere and in
the vicinity of the Sylvian fissure of the left hemisphere. These analyses suggest that observed regional enlargement of the cerebral surface in the high-ex-
posure group derived primarily from enlargement of underlying white matter.

right lateral le� lateral

right mesial le� mesialventraldorsal

anterior posterior

P-Value

Main Effects of Exposure Group on Cor�cal Thickness

Fig. S4. Group differences in cortical thickness. Color-coded maps are shown for the statistical comparison of average differences in cortical thickness (in mm)
between the high- and low-CPF exposure groups. Statistically significant group differences are small in spatial extent and scattered across the surface of the
cortical mantle, but suggest the presence of reduced cortical thickness in the high-exposure group.
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Correla�on of Cor�cal Thickness with CPF Exposure Levels
in Children with High CPF Exposure (N=20)
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Fig. S5. Correlations of cortical thickness with CPF exposure levels. Within the high-CPF exposure group, cortical thickness correlated inversely with CPF exposure
levels, such that higher exposure was associated with thinner cortices bilaterally in the dorsal parietal cortex, frontal pole, and orbitofrontal cortex. Scatterplots
for the higher-exposure group show that cortical thickness declines with increasing level of CPF exposure in all regions within the high-exposure group.
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