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This appendix provides operational and implementation details as well as results omitted

from the main paper for “GLOGS: A fast and powerful method for GWAS of complex diseases

with risk covariates in related populations.” It is broken into six sections.

Appendix 1 describes operational details of the GLOGS approach. These include initial-

ization, null model estimation, and score statistical calculation. It can be used, in conjunction

with the examples included in the software drop, to understand how to operate the software.

Appendix 2 provides technical details pertaining to model estimation. These include

approximation of the likelihood function with a weighted sum over points in a cubature, and

steps in the sample-information-resampling algorithm.

Appendix 3 provides derivations for the first and second derivatives of the likelihood

function. These are used in both model estimation and score statistic calculations.

Appendix 4 provides explicit regression models corresponding to the various models used

in our simulation studies, and Appendix 5 provides formal definitions of the various risk

metrics we use to characterize our models.

Appendix 6 provides the results from our analysis of the sensitivity of GLOGS to choice

of cubature size.
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Appendix 1: Details of the GLOGS approach

We provide operational details of GLOGS in three steps: algorithm initialization; null model

estimation; and score statistic calculation. For each step, we provide additional relevant

commentary.

Step 1: Initialization

After covariate, phenotype and genotype data is collected and properly formatted, we per-

form a number of preliminary steps designed to support null model estimation.

1) We obtain initial parameter estimates β̂0 from a logistic regression that ignores poly-

genic effects. The purpose of β̂0 is to provide the numerical method for estimating mixed

model parameters with an initial value for β.

2) We calculate a kinship matrix for the N individuals in the population either from

a known pedigree (e.g. Abney 2009) or by estimating it from the observed genotypes as

described in Thornton and McPeek (2010). Let the kinship matrix be denoted as Φ. We use

Φ to calculate the cubature used for numerical integration, as described below.

3) We use the Sobol cubature generator provided by Joe and Kuo (2003, 2008) to obtain

a cubature of C points distributed in the N -dimensional hypercube [0, 1]N . Let a point in

the Sobol cubature be denoted as uc. We compute the multivariate normal cubature used for

numerical integration by transforming individual points in the Sobol cubature according to

ac = Σ1/2F−1
N [0,1](uc), where Σ = 2Φ and F−1

N [0,1] is a vectorized inverse probability transform

to the standard normal. (E.g. the ith element of F−1
N [0,1](uc) is equal to G−1(uic), where G−1

is the inverse cumulative distribution function of a N[0,1] random variable.) Each point is

assigned an initial weight equal to wc = C−1.
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4) We select K polygenic variance values, σ0
k, k = 1, ..., K, that are to be used in combi-

nation with β0 as initial points for our numerical method.

We note that in principle, C multivariate normal random samples could be used in place of

the Sobol sample generated in Step 3. We use the Sobol sample due to its theoretical advan-

tages in comparison to a random sample, as well as its demonstrated performance on high

dimensional integration problems similar to those we compute here. We further note that in

practice, numerical optimization algorithms can show dependence on the initial parameter

values. Our use of a logistic regression for obtaining initial covariate effects in combination

with evaluating a number of possible initial values of polygenic variance is intended to min-

imize such dependency.

Step 2: Null model estimation

After the preliminary steps described in Step 1, maximum likelihood parameter estimates

are computed based on each of the K initializing parameter sets {β̂0, σ0
k}. Each of these

calculations takes as inputs the covariate and phenotype data; {ac} and {wc}, c = 1, ..., C;

{β̂0, σ0
k}; and a set of algorithm control parameters {δ, ε}. We apply successive iterations

of 1) a Newton-Raphson update (Press et al 1999, Chapter 9.6) on parameter estimates

conditional on current cubature point weights followed by 2) cubature point reweighting

and reassignment of point weights less than ε to zero, conditional on updated parameter

estimates until convergence has been reached (see Appendix 2 for details).

Once complete, these calculations result in K combinations of maximum likelihood pa-

rameter estimates {β̂k, σ̂k}, k = 1, ..., K and associated posterior cubature weights {wkc}, c =

1, ..., C. The final maximum likelihood parameter estimate and cubature weights are then

taken to be those with the largest log likelihood amongst the K. Let them be denoted as
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{β̂∗, σ̂∗} and associated posterior cubature weights {w∗
c} respectively.

Step 3: Score statistic calculation

After computing the maximum likelihood parameters and cubature weights, we conclude

by using them to compute score statistics across all markers. Inputs into this step include

the phenotype, covariate and genotype data; {β̂∗, σ̂∗}; and {w∗
c}. Once score statistics are

computed, we perform genomic control to correct for any scaling errors and compute p-values

from a χ2 distribution with one degree of freedom.
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Appendix 2: Logistic mixed model estimation

In describing our estimation procedure we concentrate on the general case (not estimation

under the null model), with the understanding that inference under the null model can be

accomplished by removing the genotype term. To approximate the likelihood integral in Eq.

2 as a weighted sum over points in a cubature, let C be the number of points in the cubature,

ac the cth point, and wic the weight of the cth point at the ith iteration. Let Θ̂i = {β̂i, γ̂i, σ̂i}

be the ith iteration parameter estimates. The approximated Eq. 2 evaluated at Θ̂i is then

expressed as:

ln(Li(Θ̂i)) ≈ ln

(
C∑
c=1

exp(lac(Θ̂
i))wic

)
. (1)

To solve for Θ̂i+1 conditional on {wi1, ..., wiC} we perform the following steps:

Step 1: Jacobian and Hessian computation

Let the Jacobian and Hessian of ln(Li(Θ̂i)) be denoted as DΘ ln(Li(Θ̂i)) and D2
Θ ln(Li(Θ̂i))

respectively. See Appendix 3 for component-wise derivative calculations.

Step 2: Perform Gauss-Newton parameter update

The Gauss-Newton updated parameter is:

Θ̂i+1 = Θ̂i −D2
Θ ln(Li(Θ̂i))−1DΘ ln(Li(Θ̂i)) (2)

Step 3: Check termination criterion

Termination is based on the Jacobian. If ||DΘ ln(Li(Θ̂i))|| − ||DΘ ln(Li(Θ̂i+1))|| < δ then

the estimation procedure has converged, and Θ̂i and {wic}, c = 1, ..., C are returned as the
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maximum likelihood parameter estimate and cubature weights.

Step 4: Update cubature weights

After solving for Θi+1, wi+1
c are computed using Bayesian updating, followed by reassignment

of weights less than ε to zero, and reweighting of the remaining points. Let

ri+1
c = Pr(y|ac) Pr(ac) (3)

= exp(lac(θ̂
i+1))wic. (4)

and si+1
c = 0 if ri+1

c < ε, and si+1
c = ri+1

c otherwise. Then, wi+1
c is computed:

wi+1
c =

si+1
c∑C

c=1 s
i+1
c

(5)

Reassignment of cubature point weights near zero to be equal to zero is intended to speed

computation times. Such points have only a minimal effect on likelihood scores and their

derivatives, and if wc = 0 then functions of ac (e.g. exp(lac(Θ̂
i)) in Eq. 5) do not need to be

evaluated.
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Appendix 3: Derivatives of the logistic mixed model

For both estimating parameters of the logistic mixed model as well as calculating score test

statistics under the null model, derivatives of the approximated likelihood function in Eq. 5

must be evaluated. In this appendix we provide general forms for these derivatives. Ignoring

iterations and use of estimated parameters, we want first and second derivatives of

ln(L(Θ)) ≈ ln

(
C∑
c=1

exp(lac(Θ))wc

)
(6)

with respect to Θ. First derivatives take the form:

∂

∂Θ
ln(L(Θ)) =

∑C
c=1

∂
∂θ
lac(Θ) exp(lac(Θ))wc∑C

c=1 exp(lac(Θ))wc
(7)

where

∂

∂Θ
lac(Θ) =

N∑
n=1

zΘ
n (yn − pn), (8)

pn =
exp(βTxn + γgn,m + σac(n))

1 + exp(βTxn + γgn,m + σac(n))
, (9)

ac(n) is the polygenic effect for the nth individual, and zΘ
n is the covariate for the nth indi-

vidual corresponding to the element of Θ under consideration (e.g. zΘ
n = 1 for a baseline

effect term, and zΘ
n = ac(n) for the polygenic effect). Second derivatives take the form:
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∂2

∂Θ∂ΘT
ln(L(Θ)) =

∑C
c=1( ∂2

∂Θ∂ΘT lac(Θ)− ∂
∂Θ
lac(Θ) ∂

∂ΘT lac(Θ)) exp(lac(Θ))wc∑C
c=1 exp(lac(Θ))wc

−

∂

∂Θ
ln(L(Θ))

∂

∂ΘT
ln(L(Θ)) (10)

where

∂2

∂Θ∂ΘT
lac(Θ) =

N∑
n=1

zΘ
n z

ΘT

n (p2
n − pn). (11)
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Appendix 4: Simulation study models

Table 1 provides the logistic regression models corresponding to simulation models A-E in

Table 2 of the main text. In our regression models, gn,1 corresponds to the risky marker for

the nth individual, sexn is a binary covariate corresponding to sex, and an is the sampled

polygenic effect.

Model logit−1(pn)
A −2 + 2gn,1 + 2an
B −3 + 2sexn + 2gn,1 + 2an
C −4.5 + 3sexn + 2gn,1 + 2an
D −4.5 + 5sexn + 2gn,1 + 2an
E −4.5 + 8sexn + 2gn,1 + 2an

Table 1: Simulation study models.
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Appendix 5: Risk calculations

An individual disease risk p is defined as:

p(x, g, a) =
exp(βx+ γg + σa)

1 + exp(βx+ γg + σa)
, (12)

where x is a binary covariate, g is a biallelic marker, a is the polygenic effect, and β, γ, σ are

effect sizes for fixed, genetic and polygenic covariates respectively. We are concerned with

three quantities: 1) The relative risk associated with the binary covariate; 2) the relative

risks associated with having one or two deleterious alleles; and 3) the sibling relative risk.

The relative risk associated with the binary covariate is equal to:

RRx =

∫
p(1, g, a)fg(g)fa(a)dgda∫
p(0, g, a)fg(g)ga(a)dgda

(13)

where fg and fa are distributions for the number of deleterious alleles and polygenic effect,

and we have integrated over both. In Table 1, we compute this as:

RRx ≈
∑10000

i=1 p(1, gi, ai)∑10000
i=1 p(0, gi, ai)

(14)

where gi, i = 1, ..., 10000 are sampled from a distribution taking the values {0, 1, 2} with

probabilities 0.5687, 0.3622 and 0.0691 respectively, and ai, i = 1, ..., 10000 are sampled from

a N(0,1) distribution. We note that the sampling distribution for gi was determined using

the average minor allele frequency, taken across all markers, of the Hutterite population that

our simulation studies were based on.

Analogously, the relative risk associated with having 1 deleterious allele (and analogously
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for 2 alleles) is equal to and is computed:

RRg(1) =

∫
p(x, 1, a)f(x, a)dxda∫

p(x, 0, a)fx(x)fa(a)dxda
(15)

≈
∑10000

i=1 p(xi, 1, ai)∑10000
i=1 p(xi, 0, ai)

(16)

where ai, i = 1, ..., 10000 are again sampled from a N(0,1) distribution, and xi, i = 1, ..., 10000

are sampled from a Bernoulli(0.485) distribution. This represents a 48.5% chance of an indi-

vidual being male, which corresponds to the percentage of males in the Hutterite population

under consideration.

The sibling relative risk is defined as the risk of two siblings being affected relative to

that of two unrelated individuals. This is defined and is computed as:

SRR =

∫
p(x1, g1, a1)p(x2, g2, a2)fx(x

1)fx(x
2)fgg(g

1, g2)faa(a
1, a2)dxdgda∫

p(x, g, a)fx(x)fg(g)fa(a)dxdgda
∫
p(x, g, a)fx(x)fg(g)fa(a)dxdgda

(17)

≈
∑10000

i=1 p(x1
i , g

1
i , a

1
i )p(x

2
i , g

2
i , a

2
i )∑10000

i=1 p(xi, gi, ai)
∑10000

i=1 p(xi, gi, ai)
(18)

where in the numerator of our calculation, x1
i and x2

i , i = 1, ..., 10000 are independently sam-

pled from a Bernoulli(0.485) distribution, g1
i and g2

i , i = 1, ..., 10000 take the values {0, 1, 2}

with probabilities 0.5687, 0.3622 and 0.0691 respectively, and a1
i and a2

i , i = 1, ..., 10000

jointly from a multivariate normal distribution with standard marginals and covariance of

0.5. We note that the sampling procedure for g1
i , g

2
i is such that identity by descent is pre-

served for the sib pair while assigning one of the sibs marginal probabilities of having 0, 1

or 2 risk alleles as 0.5687, 0.3622 and 0.0691 respectively. In the denominator, xi and ai
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are sampled as in the numerator, and gi takes the values {0, 1, 2} with probabilities 0.5687,

0.3622 and 0.0691 respectively.
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Appendix 6: Effects of cubature size on p-values of associated mark-
ers.

To evaluate the effects of cubature size on the results of our analyses, we reanalyzed the

datasets corresponding to model A in Table I using a Sobol cubature of 800000 points (2x

the size of the initial study). After calculations based on the larger cubature size, − log10

transformed p-values for associated markers analyzed under both cubature sizes were plotted

across simulations, and the power and type I error of the GLOGS procedure when using

800000 points was calculated and compared to that obtained when using 400000 points.

As reported in Table I, using a 400k-point cubature (first row) yielded an 88% detection

power under a Bonferroni-controlled 5% test, with a marker-wise type I error rate of 2×10−5.

Using an 800k-point cubature (second row), the detection power and marker-wise type I error

rates were 86% and 2× 10−5 respectively, suggesting that increases in cubature size did not

substantially change the statistical performance of our algorithm. To provide a visualization

of the sensitivity of our results to cubature size, in Fig. A1 we compare − log10 p-values

of associated markers from the 100 simulated datasets generated under model A across

separate runs of the GLOGS procedure using 400k- and 800k-point cubatures. In Fig. A1,

red lines represent 5% Bonferroni-controlled − log10 p-value thresholds, an individual point

corresponds to the − log10 p-values of an associated marker from a particular dataset under

400k- and 800k-point cubatures (x- and y-axes respectively), and the identity line is colored

in green. If the cubature size had a systematic effect on p-values of associated markers, we

would anticipate a deviation of points from the identity line. However, the points are in

fact scattered about the identity line, suggesting no systematic effect of cubature size on

detection power.

Related to this test, we note the following regarding cubature choice and numerical inte-

gration. 1) For the analyses conducted in this paper, we use a transformed Sobol cubature.

Besides the aforementioned theoretical advantages of doing so, the Sobol cubature has the
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practical advantage of not being a random sample. Rather, it is a quasi-random sample,

and holding the dimensionality of the cubature constant, is determined solely by its size.

This greatly simplifies sensitivity studies, such as conducted here. 2) As suggested, analysts

can use random samples in the GLOGS procedure. We typically do not do so, for reasons

previously discussed. Irrespective of whether or not the choice is made to use a Sobol quasi-

random or random sample (cubature) as the basis for performing GWAS with GLOGS, we

recommend utilizing as large as sample as possible given computational and time constraints.

Doing so will give the most accurate results, as well as remove from consideration the issue

of whether a larger cubature ought to have been used. 3) The size of the population under

study is directly related to the size of cubature that can be feasibly used by the analyst, be-

cause each point in the cubature is a vector of length equal to the population size. This puts

a practical limit, depending on available computational resources, on the population sizes

that GLOGS can analyze. In our analyses of populations of approximately 800 individuals

(more than double that of our simulation studies), a 400k-point cubature is nearly the largest

usable without causing memory allocation errors. If we were to double that population size,

we would anticipate only being able to use a 200k-point cubature.
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Figure 1: Effects of cubature size on p-values of associated markers. −log10 p-values
of associated markers from 100 simulations are compared across two analyses. The first uses
a Sobol cubature of 400000 points, the second 800000 points. Red lines provide critical values
for a Bonferroni-controlled 5% test.
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