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We model the retinoic acid (RA) signaling system in the zebrafish hindbrain with chemical reactions, 

assuming diffusion of extracellular RA. A one-dimensional domain represents the anterior-posterior (A-P) 

axis of the hindbrain. The concentration of extracellular RA is represented by [RA]out , intracellular RA by 

[RA]in , binding proteins (Crabps) by [BP] , RA receptors by [R] , the RA degradation enzyme Cyp26a1 by 

[Cyp] , and Fgf by [ fgf ] . There are also two complexes that can form, [RA ! R]  and [RA ! BP] . The 

strength of the RA signal is represented by[RA ! R]n . We let n=2 assuming co-operativity in signaling 

(White et al. 2007). The RA signal [RA ! R]  is formed when [RA]in  binds to [R]or when [RA ! BP]  binds 

to receptors [R] . We assume that [RA ! BP ! R]  is at quasi-equilibrium and is short-lived which simplifies 

the reaction  
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in the model. Molecules can degrade in both bound and unbound forms, with possibly different rates. For 

example, the complex [RA ! BP]  may undergo either [RA] degradation or [BP] degradation. The [RA ! R]  

complex may only undergo [R]  degradation because the receptors are located inside the nucleus and we 

assume that RA can only be degraded outside the nucleus through interacting with [Cyp].  

  



In the domain 0 ! X ! x f , we let 
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where  

 [Fgf ] = f0 exp(!"(X ! x f ))   

and 
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with the coefficient C0 = radeg ,  for j = RA,  and C0 = rabpdeg ,  for  j = RABP.  



A smaller region of interest than that of (White et al. 2007) is used, with X=0 corresponding to the posterior 

border of the anterior domain of high cyp26a1 expression. The source of RA is posterior to the hindbrain so 

we let V (X) = VRA at X > x f ! 40 , and V (X) = 0 otherwise. The anterior region has a no flux boundary 

condition  

 

![RA]out
!X

= 0  at X = 0   

and the posterior region has a leaky boundary condition 
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