Appendix 2 - Numerical Methods

A dimensionless form of the model is obtained by applying the following scales,
t=x> /D, X=x_x,T=1t,

{a,b,c,d,e,f}={[RA],, [RA]

out? in?®

[R],[RA—R],[BP],[RA-BP]}/c,.
We use the following set of lumped parameters for clarity,

{pr VoV =11¢0{Vep Vi, Viads

k, =7k, {k,,ks} = Tcy{ray, rabp,,},

{k41 ’k42 ’kSI ’kSZ} = T{rdegl ’rdeg2 ’dpdegl ’dpdeg2}’

{rl ’r2’ml’m2 ’]1’]2} = T{cor(m ’roﬁ"’c()mon ’mojj‘"co.]on ’.]oﬁ"}'

The model reduces to

2
g_ctl: 373+v(x)—(l+ﬂ)kla+klb,
ob
" =k,a— (k,[cyp]+ k)b —rbc +1r,d —mbe+m,f +k,d+kf,
ac : .
g = Vr - k4]C— r'le+ de— .]lfc+ Jzed’
o (0.1)
o =rnbc—rd+ j fc— j,ed—k,d,
de : .
> =V,, —kse+kslcyplf —mbe+m,f + j fc— j,ed,
o . :
g = —Jlfc + ]zed + mlbe — mzf - k6 [cyp]f - kszf'

Because we are concerned with RA signal gradient formation at the gastrula stage, the
system can be assumed to be at a steady state. Therefore, we solve the model at the

steady state. The model reduces to a boundary value problem with respect toa,
2

0= D% +v(x) =+ Bka+kb, 0.2)
X

and five algebraic equations at the steady state.

The boundary value problem is solved using a fourth order Runge-Kutta method together
with the shooting method. The values b, d and f'are obtained by finding the roots of the
equations,
0=rbc—rd+ j fc— jed—k,d, (0.3)
0=—jfc+ j,ed+ mbe—m,f —kicyplf — ks, f, (0.4)
0= ka—[cypl(k,b+k f)—k,b. (0.5)



51 k41
The Gauss-Newton method is used to solve the algebraic equations for b, d and f. For
simulations that do not converge (successfully find the roots of the system) using Gauss-
Newton alone, we iteratively use the bisection method on (0.5) to find b and the
Levenberg-Marquardt method to solve (0.3) and (0.4) for 4 and f- We check the validity
of the steady state numerical solver by feeding its output (steady state solutions) as the
inputs into a numerical solver for the entire partial differential equation model (0.1) to
make sure that the solutions are indeed steady states. The full partial differential equation
model was solved by a fourth order Runge-Kutta method in time and finite differences in
space. All numerical methods were implemented in the C programming language.

These values then give e =



