
SUPPORTING INFORMATION S2 

The uncoupled DA and its Markov Chain equivalent 

The inaccuracy of the uncoupled form of the Diffusion Approximation algorithm to represent 

stochastic channels with multiple gating particles has been extensively studied numerically and 

analytically [1,2,3,4,5]. As shown analytically by [5], the uncoupled DA is accurately representing 

another type of MC modeling. To confirm this numerically that this is the case (i.e. the DA 

approximation works also in the uncoupled scenario) we compared the uncoupled particles DA 

algorithm with an uncoupled version of the MC modeling.  This was to show that the uncoupled 

DA implementation behaves as independent, two-state MCs where the conductance is calculated 

over the fraction of active gating particles (see Figure S1). 

Figure S2A shows results of the Rubinstein’s Node of Ranvier model testing for both 

coupled and uncoupled MCs and DA algorithms. See Figure 2B and 2D in the main text for a 

description of left and middle panels, respectively; and Figure 3 for the right panel. Figure S2B 

shows results of the spontaneous action potential firing observed in the HH model with the 

uncoupled and coupled versions of DA and MC modeling. Figure description is as in Figures 6A and 

6D of the main text. These results confirm that the uncoupled DA perfectly matches the behavior 

of uncoupled MCs in both models under current clamp testing. As we explain in Supporting 

Information S3, this is also true for voltage clamp simulations (Figure S3D and S3F). Thus, given 

that the DA is appropriately implemented, it will always approximate very closely the behavior of 

exact Markov Chain modeling; what makes a difference is the coupling or uncoupling of gating 

particles.  

 We want to note that to simulate uncoupled MCs not only means to switch from N 5-state 

(K) or 8-state (Na) to 4N 2-state MCs. If the conductance is calculated as the fraction of channels 

that have all gating particles active, then this is a coupled particles scenario. However, this type of 

simulation requires keeping track of each gating particle and channeling individually [6], making 

impossible to apply the efficient channel number tracking algorithm employed here (see Methods 

and [7]). Our definition of uncoupled MCs implies that the conductance is calculated over the 

fraction of active particles (Figure S1), an approach that may seem wrong when in the context of 

MCs but that nevertheless is exactly what the uncoupled DA is representing.  

Methods: Simulation of Uncoupled independent particles 

N channels are simulated as 4N independent, 2-state particles: 

          
where a is the transition probability from the 0 to the 1 state, and a the transition probability 

from the 1 to the 0 state. NNa Sodium channels are simulated as 3NNa m particles and NNa h 

particles, and at each time step the sodium conductance is calculated as 
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where Nm1 and Nh1 are the number of m and h particles in the ‘1’ (active) state, respectively. NK 

Potassium channels are simulated as 4NK n particles and the potassium conductance is calculated 

as  
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Nn1 is the number of n particles that are in the ‘1’ state. 

Diffusion Approximation 

The DA in the case of independent particles uses the variables m, h, n [0,1] to keep track of the 

fraction of m, h, and n particles, respectively, that are in the ‘1’ state. It follows immediately that 

the fraction of particles in the ‘0’ state will be 1-m, 1-h, and 1-n, respectively. Fox and Lu [8] 

showed that the time evolution of the variables is given by the SDE 
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where a represents either m, h or n. The stochastic term (t) is a Gaussian white noise with zero 

mean and unit variance that is scaled by a(t), being 
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where Na is the number of a particles (Nm=3NNa, Nh=NNa and Na=4NK). When the steady state 

approximation was used, the noise scaling factor was calculated as 
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The conductance of sodium and potassium are calculated using the classical Hodgkin & Huxley 

expressions 
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Figure S1 
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