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1. Introduction and Overview 

The Archimedes Model is a large-scale simulation model of physiology, diseases, and healthcare 

systems that has been described in the literature (1-4).  While a number of modeling 

frameworks exist (e.g. Markov models), the Archimedes Model is relatively distinct. For 

example, unlike Markov models in which individuals probabilistically transition from one 

disease state to another at discrete time intervals (e.g. annually), and in which there may be no 

“memory” of prior disease states, the Archimedes Model is built up from the underlying 

anatomy, physiology, and biological variables.  Diseases and outcomes are defined in terms of 

these underlying variables and can therefore occur and progress in a continuous fashion.  

Interventions and treatments act on the underlying variables to modify or prevent disease 

progression.  Validations of the model have appeared in the literature (5-7). Currently, the 

model includes submodels for diabetes, hypertension, obesity, coronary heart disease, stroke, 

and cancers of the breast, lung and colon. 

The structure and equations of the Archimedes Model pertinent to diabetes and its 

complications have been discussed in detail in the literature (2, 6, 8). Equations that predict the 

progression of diabetes over time and cause people to develop diabetes at rates that match 

observed rates were derived from national surveys (9-10). The risk of developing diabetes 

depends on many factors including body mass index (BMI), age, gender, and race. The biological 

variables captured by the diabetes submodel include fasting plasma glucose (FPG), HbA1c, oral 

glucose tolerance (OGT), random plasma glucose, and blood pressure. The diabetes submodel 

also tracks symptoms relating to glucose metabolism), diabetes-related events (i.e. 

ketoacidosis, hypoglycemia), and diabetic complications (i.e. coronary heart disease, stroke, 

neuropathy, retinopathy and nephropathy). Diabetes patients can either die of the 

complications of diabetes (e.g. myocardial infarction) or from other causes (e.g. cancers). The 

model predictions of diabetes-related outcomes have been validated against a large number of 

epidemiological, basic science, clinical and health service research studies, and controlled 

clinical trials (5).  

 

The colorectal cancer (CRC) component in the Archimedes Model was developed in 

collaboration with the American Cancer Society. The CRC component is fully integrated with 

other diseases in the Archimedes Model. Sections 1-3 of the current appendix provide a 

detailed description of the CRC submodel within the Archimedes Model. Section 4 summarizes 

validations of the CRC submodel. 
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1.1 Scope of the colorectal cancer submodel 

The CRC component within the Archimedes Model provides a comprehensive description of 

CRC at the clinical level. It is designed to evaluate the impacts of screening and prevention on 

health and economic outcomes associated with CRC. More specifically, it is designed to answer 

questions such as the following: 

• What are the effects of perfect and feasible compliance to recommendations 

regarding cancer screening, smoking, diet/exercise, and weight control, on CRC in 

terms of incidence, mortality, years of life lost and healthcare cost?  

• Is screening for CRC using stool DNA cost effective? 

• For people who have had an adenomatous polyp found at colonoscopy, what 

difference does it make in terms of diagnosed incidence and mortality if the next 

exam is in three years, five years, or ten years? 

1.2 Sources of data 

The CRC model was built from the following types of data sources: 

• Summary data of small studies: Small studies involving tens to hundreds of 

individuals were used to estimate parameters for a specific aspect of CRC, such as 

tumor growth rates or adenoma incidence. These included clinical trials, autopsy 

studies, colonoscopy screening studies, and retrospective studies. The information in 

these studies was synthesized through meta-analysis. 

• Large-scale clinical trials and databases: Large-scale trials or databases involving 

tens of thousands of patients were used to construct and to calibrate several 

components of the model. For instance, information on polyp location and size were 

extracted from the Clinical Outcomes Research Initiative (CORI) database(11), which 

contains data on 220,000 colonoscopies. 

• National surveys: Information from national surveys and databases was used to 

model various aspects of the general population. The Surveillance Epidemiology and 

End Results (SEER) database (12) was used to calibrate the rates of malignant 

transformation and to construct the model for survival of cancer patients following 

diagnosis. SEER-Medicare data was used to estimate costs of cancer treatments (13). 

1.4 Structure of the CRC submodel 

The model consists of: 
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• a natural history component that tracks cancer progression, including adenoma 

development, tumor growth, and symptoms, as a function of non-modifiable risk factors 

such as age, gender, ethnicity, and family and personal history, and modifiable risk 

factors such as obesity (BMI) and exercise;  

• a screening component that allows for detection and removal of adenomas and 

diagnosis of preclinical CRC;  

• a treatment component that predicts survival following diagnosis of CRC as a function of 

tumor stage, size, and type; and  

• a cost component that tracks the cost of diagnosis, prevention measures, screening, 

complications of screening, follow-up in the event of a positive screening, and 

treatment.  

1.5 Literature and data search 

A systematic literature search was conducted in MEDLINE, Cochrane Database of Systematic 

Reviews, PUBMED, Web of Science and Google Scholar, supplemented with manual searches of 

references. We reviewed all the abstracts that indicated quantitative measurements of relevant 

model parameters. When the abstract did not offer enough information for deciding whether it 

is relevant to the search, we retrieve the full-text to search for data and measurements that 

would clarify the matter. When two or more studies used the same data, we only include one 

study in the meta-analysis. If a study had been superseded, the more recent study was used in 

the analysis. Table 1 summarizes the keywords used for each search topic. 

 

Topic  Keywords 

Polyp categories (colorectal OR colon OR rectum) AND (polyp OR neoplasm 

OR neoplasia) AND (classification OR type) 

Risk factors for polyps and 

adenomas 

(colorectal OR colon OR rectum) AND (polyp OR neoplasm 

OR neoplasia) AND (classification OR type) 

Growth of polyps and 

adenomas 

(colorectal OR colon OR rectum) AND (polyp OR adenoma 

OR neoplasm) AND (risk factor OR predictor) 

Size distribution of polyps and 

adenomas 

(colorectal OR colon OR rectum) AND (polyp OR adenoma 

OR neoplasia) AND (size distribution) 

Prevalence of polyps and 

adenomas 

(colorectal OR colon OR rectum) AND (polyp OR adenoma 

OR neoplasia) AND (prevalence OR frequency) 
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Incidence of polyps and 

adenomas 

(colorectal OR colon OR rectum) AND (polyp OR adenoma 

OR neoplasia) AND (incidence OR rate) 

Polyp location (colorectal OR colon OR rectum) AND (polyp OR adenoma 

OR neoplasia) AND (location OR distribution) 

Family history (colorectal, adenoma, colon, OR rectum) AND (family OR 

familial OR family history) 

Physical activity  (colorectal, adenoma, colon, rectum) AND (physical activity 

OR exercise) 

Cancer growth (colorectal OR colon OR rectum) AND (cancer OR tumor OR 

carcinoma) AND (growth OR doubling time OR natural 

history) 

Diabetes and colorectal cancer (colorectal OR colon OR rectum) AND (cancer OR tumor OR 

carcinoma) AND (diabetes OR diabetes mellitus)  

Colonoscopy performance colonoscopy AND (sensitivity OR performance OR specificity) 

Colonoscopy complications colonoscopy AND (complication OR adverse event) 

Adenoma histology (colorectal OR colon OR rectum) AND (adenoma) AND 

histology 

Delay in diagnosis (colorectal OR colon OR rectal) AND (cancer) AND (delay 

diagnosis) 

Table 1. Summary of literature search algorithm. 

 

In addition to data from literature, we also have access to individual data from 

(i)  the Clinical Outcomes Research Initiative (CORI) database (11), which contains 

data on 220,000 colonoscopies. 

(ii) the Surveillance Epidemiology and End Results (SEER) database (12)  

(iii) the Cancer Prevention Study-II (CPS-II)  

1.6 Flow of the model 

We model three types of lesions, namely (i) benign polyps, which will never become cancer; (ii) 

adenomatous polyps (i.e., adenomas), which have the potential to transform into cancer; and 

(iii) IBD-associated dysplasia, which is a precursor to cancer in patients with inflammatory 

bowel diseases.  
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The category “benign polyp” includes hyperplastic, inflammatory, and other non-neoplastic 

polyps and accounts for one-third of the total number of polyps (21). In the model, polyps arise 

in the colon and the rectum stochastically through a non-homogenous Poisson process (22). 

The incidence of polyps increases with age and is a function of several risk factors including 

gender, BMI, and family history. Polyps can arise at 8 different anatomical sites along the colon-

rectum, namely rectum, sigmoid colon, descending colon, splenic fixture, transverse colon, 

hepatic fixture, ascending colon and ceacum. Polyps can occur at eight different anatomical 

sites: cecum, ascending colon, hepatic flexure, transverse colon, splenic flexure, descending 

colon, sigmoid colon, and rectum.  

Growth of benign polyps and adenomas is modeled using a log-linear equation. We assume that 

adenomas and benign polyps are identical in terms of site distribution and growth. The sizes of 

the polyps increase as function of time according a log-linear growth equation. Polyps have a 

minimum size of 1 mm and a maximum size of 50 mm. The lower limit comes from what a 

gastroenterologist may consider to be polyps during an endoscopic section. The upper limit 

prevents the simulated polyps from attaining unreasonable sizes, given the size of the colon 

and the rectum. As an adenoma grows in size, its histology and grade of dysplasia worsen. The 

propensity of an adenoma to become cancerous is a function of age, adenoma size, and 

adenoma location. The model allows all adenomas to go through the full disease process, such 

that individuals may develop multiple clinically detectable cancers each of which may result in 

their death due to cancer. 

 Once an adenoma becomes a malignant tumor, it will grow exponentially, with a doubling time 

of ~ 1 year, as derived from a meta-analysis of the literature (23-26). When a tumor reaches a 

certain size, the patient will experience symptoms of colorectal cancer, and after a delay 

period, will be diagnosed by the health care system with symptomatic colorectal cancer. The 

distribution of tumor sizes when a patient is diagnosed with symptomatic colorectal cancer is 

derived from early SEER data (12) to minimize the effects of screening. If there is screening, 

malignant tumors are detectable before the symptoms surface. The survival of a patient 

following diagnosis of colorectal cancer is modeled based on current SEER survival data and is a 

function of age, gender, stage, and tumor size. 

1.7 Model validations 

The colorectal cancer outcomes predicted by the Archimedes Model  have been validated 

against several studies including the National Polyp Study (14), Minnesota FOBT Screening Trial 

(15), Cancer Prevention Study II Nutrition Cohort (16), Women Health Study  (17), Women 

Health Initiative (18), the UK Flexible Sigmoidoscopy Trial (19) and the Veterans Affairs 

Cooperative Study Group (20).
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2. Natural history of polyps 

2.1 Overview 

In order to correctly capture the progression from adenoma to cancer, we need to be able to 

accurately predict the arrival time of polyps, their distribution within the colon and the rectum, 

their growth rate, the histology and the grade of dysplasia of adenomas as they grow in size, 

and the rate at which adenomas become cancerous.  An accurate description of all five of these 

properties of polyps (i.e., incidence, location, growth, histology, and malignancy) is also 

necessary in modeling the interactions between the disease and the health care system. For 

instance, the sensitivity of colonoscopy depends on the size and location of the polyps.  

The model for incidence, location and growth of polyp relies heavily on the data from  the 

Clinical Outcomes Research Initiative (CORI) data base (27-29). The CORI database represents a 

consortium of 580 specialists in GI diseases selected to obtain a cross-section of endoscopic 

practice in the United States. Participants use a computerized endoscopic report generator to 

produce all endoscopic reports. Data from a total of 220,000 colonoscopy procedures were 

recorded in the CORI database. The database recorded demographic information (e.g., age, 

gender, race/ethnicity, time period, site, type), quality of bowel preparation, size location, and 

shape (sessile or pedunculated) of polyps. Histopathologic data for most polyps are not 

consistently retrieved so it is not possible to distinguish between adenomas and benign polyps 

from the database, at least not at the time that the data was made available to Archimedes. 

2.2 Polyp categories 

Assumption 1: We model two classes of polyps, benign polyps and adenomas. Benign polyps 

are polyps that do not become cancer, while adenomas have the potential to become cancer if 

left untreated and patients live long enough.  

Justifications:  

• Polyps are often classified into two categories: benign polyps (also known as non-

neoplastic polyps) and adenomatous polyps (adenomas).  

• 90-95% of CRC arise from adenomas, so it is reasonable to assume that cancer does not 

originate from other types of polyps. 
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• Benign polyps include several distinct categories (e.g., hyperplastic polyps, mucosal 

polyps, inflammatory polyps, submucosal polyps) (30). From a clinical perspective, it 

does not make a lot of difference to  distinguish between different types of benign 

polyps.  

Assumption 2: Sixty-six percent of all colorectal polyps are adenomas (21). 

Assumption 3: Due to lack of information, benign polyps and adenomas are assumed to have 

similar anatomical distribution and growth characteristics. The only difference between benign 

polyps and adenomas in the current model is their propensity to become cancerous. 

2.3 Polyp incidence 

Assumption 1: The incidence of polyps depends on the following risk factors: age, gender, BMI, 

and family history.  

Justification: 

• Our literature review indicates that age, gender, BMI and family history are strong 

predictors of incidence of polyps and adenomas. These are also the risk factors that are 

available in the NHANES database. 

Assumption 2:  The occurrence of polyps follows a non-homogeneous Poisson process (22). The 

annual risk iλ of developing a new polyp for an individual i is given as follows: 

( )
BMIFHiiiiii RRRRagesex 210exp θθθλ ++=

  

where i0θ  is the baseline risk for the individual i, i1θ and i2θ account for the influence of gender 

and age, and BMIRR  and FHRR  account for the effects of BMI and family history. 

Justifications:  

• The proposed model of adenoma incidence is inspired by an earlier model developed by 

Rutter and colleagues who used a meta-analysis to combine information from 14 

autopsy studies of adenoma prevalence and counts (22). The occurrence of adenomas 

was assumed to follow a non-homogeneous Poisson process, with an annual adenoma 

risk depending on age and gender. Across individuals, the distribution of baseline log-

risk follows a normal distribution.  

• We extended the Rutter et al. model to include other risk factors such as BMI and family 

history. 
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Parameter estimations 

• Parameters characterizing the dependency on age and gender are estimated from CORI 

data and Rutter et al. 

• To estimate BMIRR  and FHRR , we conducted meta-analyses of studies quantifying the 

dependence of adenoma and polyp incidence on BMI (40-45) and family history (31-33, 

46).  

• BMIRR is modeled as a continuous function of BMI and depends on gender. The relative 

risks for adenoma by BMI were reported for discrete BMI groups. We believe that the 

effect of BMI on adenoma incidence is continuous. Therefore, a linear equation is fitted 

to these data points to model the continuous effects of BMI on adenoma incidence. 

• FHRR  depends on history of CRC in first-degree relatives and is estimated to be 2.21 

(95% CI :2.00 –2.53) (31-33, 46). 

2.4 Polyp location 

Assumption 1: Polyp location is represented by a discrete index Al , ranging from 1 to 8, 

representing the rectum, sigmoid colon, descending colon, splenic fixture, transverse colon, 

hepatic fixture, ascending colon, and cecum. Multiple polyps can initiate in the same part of the 

large intestine.  

Justifications: 

• Ideally, we would like to have data on the location of adenomas as distance from the 

rectum. However, in literature, the locations of adenomas are often reported in term of 

their anatomical sites, whether they are at rectum, sigmoid colon, etc (48-49). 

Furthermore, the length of each part in the intestine may vary considerably between 

individuals. Thus, we believe the best way to represent adenoma location is to use a 

discrete position index Al ranging from 1 to 8. The subscript A represents adenoma. Each 

position index corresponds to a part of the large intestine (see Table 2). Multiple 

adenomas can grow from the same site.  

Al  (Position 

index) 

Part of the large 

intestine  

Typical length Fraction of polyps 

(CORI) 

1 Rectum ~12 cm 0.118 
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2 Sigmoid colon  ~40 cm 0.314 

3 Descending colon 22-30 cm 0.114 

4 Splenic fixture  0.023 

5 Transverse colon ~45 cm 0.128 

6 Hepatic fixture  0.051 

7 Ascending colon 12-20 cm 0.149 

8 Caecum  5-7 cm 0.102 

Table 2. Anatomical distribution of polyps in the large intestine. 

Assumption 2: Based on the CORI dataset, we assume that the probability )( AAL lp  of a new 

polyp located at site Al  depends linearly on age at polyp initiation as follows: 

lnewlAAL bagealp +=)(
 

where newage is the age at which the new adenoma initiates. The values of la and lb  for each 

anatomical site were obtained by calibrating the model to CORI data. We assume that 

adenomas and benign polyps have similar anatomical distributions.  

Justifications: 

• Analysis of the CORI dataset reveals that the site distribution is a linear function of age 

and relatively independent of gender and race.  

• The anatomical distribution of polyps shifts from the distal colon to the proximal colon 

at increasing age. In other words, the probability that a new polyp will appear in the 

proximal colon increases with age. This is consistent with observations reported by 

other studies (50-51). 

 

Parameter estimations  

To obtain values of la and lb  for each anatomical site, we follow 100,000 individuals from their 

births to their deaths. The arrival times of new adenomas are predicted by the polyp incidence 

modeling unit. The location of each new adenoma is given by Assumption 2. We then compute 

the anatomical distributions of the simulated adenomas for different ages and compare the 
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predicted distributions with CORI data. The parameters are then adjusted to give the best fits to 

the data for each gender-race combination.  

 

2.5 Polyp size 

Evidence review  

Data from the CORI database provides extensive information on cross-sectional distributions of 

polyp size. The size distribution appears to approximately log-normal. It appears that gender 

does not strongly affect polyp size. Overall, ~50% of polyps are smaller than 5 mm, ~40% of 

polyps are between 5 and 9 mm, and ~8% are larger than 9 mm. This is consistent with the size 

distribution reported in the past (20, 48, 59-61). Roughly 6%-8% of patients have polyps > 9 mm 

(62-63).  

Overall, CORI data suggest that polyp growth is relatively independent of gender. Black race 

tends to have larger adenomas as compared to white and Asian. The main factor that affects 

polyp growth is age. For ages above 50, both the mean and standard deviation of polyp size 

increase with age. The data also suggest that polyps do not grow exponentially like tumors. 

 

Modeling  approach 

Assumption 1: Polyp size increases over time and no regression. 

Justifications: 

• There is little information available on longitudinal evolution of polyp size. Hofstad and 

colleagues (52-58) published a series of papers measuring growth rates of adenomas. 

They purposely left medium-size adenomas ( ≤ 9 mm ) in place and followed them with 

annual colonoscopies for three years. Within the observational period, adenomas can 

grow, remain unchanged, or shrink. All three events can occur within the same patient.  

The growth rates are independent of age, gender, and adenoma location. Interestingly, 

adenomas in the 5 to 9 mm size range showed a slight net regression in size, while 

adenomas < 5 mm showed a mean increase in size of 0.5 mm over three years (54). 

Based on these observations, it was speculated that adenomas grow to a certain size 

and then spontaneously regress. This hypothesis is not supported by any biological 

model. A much longer observational period is required to test this hypothesis. In 
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practice, this is not possible since for ethical reasons polyps that are larger than 10 mm 

must be removed. 

• At this point, there is insufficient robust data to model polyp regression. For the time 

scale of interest (5  years and longer), it is sufficiently accurate to assume that polyp size 

continuously increases over time. 

Assumption 2: We model polyp growth using a log-linear growth equation (64)  

)(ln)1(ln tdtd
ijAijijijA βα +=+

 

where subscript j denotes the jth adenoma in individual i, and ijα  and ijβ are the growth 

parameters, and )(td Aij is the size of the jth adenoma in individual i at time t. ijα  and ijβ  are 

sampled from normal distributions, whose mean and standard deviation are calibrated to 

reproduce polyp size distributions derived from the CORI dataset for different race and gender 

combinations.  

Justifications: 

• The log-linear equation is selected over other growth equations (e.g., Gompertzian, 

Janoscheck, or logistic) mostly due to the fact that the polyp size distribution is log-

normal. For convenience, we assume that adenomas are spherical. 

• We found that model prediction is relatively independent of the growth equation for 

polyps, as long as it predicts an upper limit of adenoma size. 

 

Parameter estimation 

The main limitation of the current CORI dataset is that it does not specify whether a polyp is 

adenomatous or benign. To facilitate analysis of polyp growth, we assume that benign polyps 

and adenomas behave similarly in terms of growth. This assumption can be relaxed if we have 

more data that differentiate growth of adenomas and benign polyps. 

Both the mean and the standard deviation of polyp size increase with age for ages above 50.  

Based on this observation, we assume that α and ασ depend linearly on age (see equation 5.7 

below) and β is a constant, independent of age.  

� = ����� × age + �
���  

�� = ����� × age + �
���  
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The algorithm used for calibration of parameters (�����,	�
���, �����,	�
���,  and β )  iteratively minimize 

the differences between the prediction and data  and consists of 5 steps as follows: 

� Step 1: Guess the value of �����,	�
���, �����,	�
���,  and β  

� Step 2: Simulate growth of adenomas in 100,000 individuals with for a given race and 

gender  

• For each person, predict the time of polyp inception, and “grow” his/her polyps from 

age = 0 to his/her death  

• At age=age of colonoscopy (randomly picked from CORI age distribution for the race 

and gender combination of interest), send the person to colonoscopy. 

• At colonoscopy, detect polyps with size-dependent sensitivity  

• Record polyp properties (e.g. size, location) 

� Step 3: Construct the distribution of polyp size for age groups 50-55, 55-60, and 60-65. 

� Step 4: Quantify the error between the predicted distributions and distributions 

obtained from CORI data for the gender-race combination of interest. 

� Step 5: If the error is smaller than the error calculated for the previous parameter set, 

accept the parameters. If not, make a new guess on the parameters by adding 

perturbations to the current guess and go back to step 2. 

� Step 6: Repeat step 2 through step 5 until the error is smaller than a pre-defined 

threshold. 

 

2.6 Adenoma histology 

Evidence review 

The histology of adenoma is categorized as tubular, tubulovillous, and villous.  

• The tubulovillous category contains microscopic areas of both tubular and villous 

patterns.  

• The villous category includes adenomas containing at least 75% or more villous patterns.  

• The tubular adenomas contain 25% or less villous patterns.  

• Any adenoma that contains from 25% to 75% villous patterns is classified as 

tubulovillous.  
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Figure 1 depicts the probability that an adenoma is tubulovillous and villous. The data points 

are adapted from Shinya and Wolff (49)  and  Butterly, et al. (65). The bigger the adenoma is, 

the more likely it contains 25% or more villous patterns. 

 

Figure 1. Probability of having 25% or more villous pattern as function adenoma size (Shinya and 

Wolff  (49); Butterly, Chase, et al. 2006 (65)). 

Modeling approach 

The probability that an adenoma contains 25% or more villous patterns as a function of 

adenoma size is fitted to data using a sigmoidal function of the following form 
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where Ad  is the size of the adenoma, )(%25 Avillous dP>  is the probably that the adenoma contains 

25% villous patterns or more, oustubulovilln and  villousAK %25,> are constants characterizing the 

sigmoidal function. We use this function to generate for each adenoma the size at which it 

becomes tubulovillous. 

We use a similar approach to construct a function for the probability of having 75% or more 

villous patterns based on data from Butterly et al. (2006) (65) and Shinya and Wolff (1979) (49) 

and use this function to predict for each adenoma the size at which it becomes villous. 
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2.7 Adenoma dysplasia 

Evidence review 

Dysplasia, or dysplastic changes, are atypical changes in the nuclei of cells,  the cytoplasm (the 

portion of the cell surrounding the nuclei), or in the growth pattern of cells. These changes can 

be subtle or very pronounced and considered to be pre-cancerous changes (increases the risk 

of developing cancer). Adenomas with severe or high-grade dysplasia are thought to have a 

greater likelihood of progressing to cancer. The probability of adenoma containing high grade 

dysplasia increases with adenoma size (see Figure 2).  

 

Figure 2.Probability of severe dysplasia as function of adenoma size in mm  (O'Brien, Winawer et al. 

1990; Butterly, Chase et al. 2006). 

Modeling approach 

Based on data reported by Butterly et al (2006) and O’Brien et al (1990), we derive a linear 

equation to predict the probability of an adenoma displaying severe dysplasia as function of 

adenoma size Ad (in mm).  

 

2.8 Malignant transformation 
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Evidence review 

Effects of size 

The estimates of the rate of transition from adenoma to preclinical invasive cancer vary greatly 

between publications. Villavicencio and Rex (66) argued that the malignant transformation rate 

depends on size and estimated the ten-year cumulative incidence of CRC to be 0.35% in 

persons with adenomas < 5 mm and 0.65% in persons with adenomas > 5 mm.  Hofstad et al. 

(58) and Hermatek and Karrer (1983) reported the dependency of adenoma malignancy on size 

(see Figure 3). 

 

Figure 3. Likelihood of malignancy as function of adenoma size. The line represents a sigmoidal fit to 

data. 

Effects of location 

Analysis of the CORI dataset indicates that the anatomical distribution of tumors is different 

from that of adenomas, suggesting that the rate of malignant transformation might depend on 

location.  

Effects of age 

It is well-established that cancer incidence follows a power-law relationship with age (see 

Figure 4). However, the dependency of adenoma incidence on age cannot explain such strong 

dependence of colorectal cancer incidence on age. This suggests that the rate of malignant 

transformation also varies nonlinearly with age. 
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Figure 4. Colorectal cancer incidence as function of age (SEER), in a log-linear plot. 

Modeling approach 

Definition of malignant transformation: The objective of the model is to capture the effects of 

early detection and prevention on incidence and mortality of CRC. The model was not designed 

to describe the biological processes underlying the transformation of adenoma to cancer.  From 

this rather specific perspective of cancer screening, we use the term “malignant 

transformation” to refer to a specific event at which an adenoma transforms into “a preclinical 

cancer”, which is detectable by screening but does not yet result in clinical symptoms.   

Assumption 1: The probability )(, tP CAij →  that the transition of an adenoma to a malignant 

tumor has occurred by time t  is given by the following propensity function 
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t

t

A

ijCAij dhtP
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where the hazard rate, 
A

ijh , represents the rate that an adenoma j in an individual i becomes 

cancerous. The subscript CA → denotes the transition from adenoma to cancer, and 0t is the 

time of adenoma inception.  

Justifications: 

• This is a standard way of capturing transition between disease states. 
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Assumption 2: 
A

ijh  depends on adenoma size Ad , adenoma location Al , age, and gender and is 

given in the following form: 

age

sizesize

size

n

An

sizeML

n

A

n

A

CA

A

ij agelRR
Kd

d
Vh )(

,+
= →

 

where  

o CAV →  is the maximum transition rate for an adenoma located at site Al of 

an individual at a specified age. 

o )( AlRR  represents the dependency of the malignant propensity on 

adenoma location. The values of )( AlRR are derived from the tumor data 

in the CORI database. 

o The term 
sizesize

size

n

sizeML

n

A

n

A

Kd

d

,+
 is a sigmoidal function fitted to data derived 

from Hofstad et al. (58) and Hermatek and Karrer (1983) ( Figure 3) to 

represent the dependency of malignancy likelihood on adenoma size. 

o The term agen
age  represents the dependency of malignant transformation 

on age. 

Justification:  

• The form of the equation is motivated by the evidence discussed above. 

To predict when the transition occurs, we draw a random number ξ from the uniform 

distribution U[0,1] and solve the equation ξ=→ )(, tP CAij for time t.  

Parameter estimation 

The values of )( AlRR for are derived directly from the CORI data. sizen and sizeMLK , are based on 

data from Hofstad et al. (58) and Hermatek and Karrer (1983). We use an iterative procedure to 

estimate CAV →  and agen . The target distribution in this case is the CRC incidence by age derived 

from SEER. 

  

3. Natural history of colorectal tumors 
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3.1 Overview 

In the current model, a colorectal tumor can arise from either an adenoma or a dysplasia 

associated with IBD. The tumor will grow inside the colon or the rectum until it is detected 

either by symptoms or screening. The stage of cancer will be assigned according to the 

characteristics of tumors at detection. 

The algorithm for predicting the natural history of a tumor in an individual consists of 3 steps: 

• Step 1: Calculate the growth trajectory of the tumor from inception. 

• Step 3: Calculate the time that the tumor will be detected by symptoms. 

• Step 4: Assign cancer stage to the patient based on the tumor characteristics at 

diagnose either by screening or by symptoms.. 

 

3.2 Tumor growth 

Evidence review 

There have been only a few studies of tumor growth in CRC, because of the difficulty in 

obtaining follow-up images. Each study only contains information on a limited number of 

tumors, typically 10 to 30. The growth of the tumor is often characterized by doubling times. 

The reported average doubling time range from 0.36 to 2.2 years (see Table 3). Many authors 

distinguish between rapidly and slowly growing tumors. Figure 5 plots the probability 

distribution of the doubling times obtained from Bolin et al. (1983) and Umetani et al. (2000). 

These are the only publications that provide access to the doubling time of individual cancer. 

Figure 5 suggests that the doubling times are log-normally distributed. Similar distributions of 

doubling times have been observed for tumor growth in breast cancer (Peer et al., 1993).  

 

Reference No of Cancers Observed Doubling time (years) 

Umetani et al. 

(2000) 

11 Early 0.78 ± 0.41, Advanced 0.40 ± 

0.12, Mean 0.56 ± 0.3 

Welin et al. (1960) 20 1.13 (0.25-infinity) 
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Fiegel et al. (1973) 18 0.22-0.87 

Matsui et al. (2000) 31 2.2 ± 1.5 

Bolin et al. (1983) 27 0.36 (0.14-4.3) 

    

Table 3. Doubling time of colorectal tumors 

Although characterizing tumor growth in term of doubling times implies that the tumors grow 

exponentially, however, there is no concrete evidence to either support or reject the 

assumption on exponential growth. Most studies only report two measurements of tumor size. 

Animal studies seem to suggest tumor growth is Gompertzian. In other words, the growth rate 

declines as the tumor approaches a maximum size. This could be due to the limited volume 

available for tumor growth in animals or limited access to nutrients.  

 

 

Figure 5. Distribution of doubling time of colorectal tumors. The symbols represent data from Bolin et 

al. (1983) and Umetani et al. (2000). 
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Assumption 1: We assume further that the tumor grows exponentially with a volume doubling 

time TGT , where TG is short for tumor growth. The volume of the tumor (carcinoma) is given by 

the following equation: 

)(
ln)(

tV
Tdt

tdV
C

TG

C ⋅=
2

  

where )(tVC is the volume of the tumor, and the subscript C refers to cancer.  

The solution of the above equation is 

)exp(ln
)(

)( ,

, TG

inceptionC

inceptionCC

C

T

tt

tV

tV −
×= 2

 

where inceptionCt , is the inception time of the carcinoma (i.e. when malignant transformation 

occurs).  

For convenience, we assume that the tumor is spherical and that tumor growth occurs in all 

three dimensions. In other words, 

3
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. Thus, the tumor size Cd can be estimated as 

follows  
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where )( ,inceptionCC td is the tumor size at carcinoma inception.  

 

Justifications: 

• There are animal experiments and clinical experiences suggesting that tumor growth is 

Gompertzian. Unfortunately, there is insufficient longitudinal data of on colorectal 

carcinoma to construct a robust Gompertzian growth model. We cannot use data from 

animal experiments, clinical anecdotes or data on other types of tumors to build a 

reliable growth model of colorectal carcinoma. All available publications on growth of 

colorectal carcinomas report only 2 measurement points (at the beginning and at the 

end of the observation, see for instance), while the 3-parameter Gompertzian equation 

requires at least 3 data points. An exponential growth model with 2 parameters would 

provide a much more robust representation of tumor growth given the limited 



24 

 

information available. Furthermore, we only use the exponential growth model to 

describe tumor growth during a short interval between preclinical (screen-detectable) 

cancer and clinical cancer. We are not interested in tumor growth prior to preclinical 

cancer and after cancer diagnosis. During this short period, the Gompertz equation can 

be mathematically approximated by an exponential equation. 

• In summary, given the lack of data and the precise measurements of growth of 

colorectal tumors, we believe that our assumption of exponential growth from 

preclinical cancers to clinical cancers is reasonable from both modeling and clinical 

perspectives. In future, we will investigate the model sensitivities to the assumptions on 

tumor growth. 

Assumption 2: The doubling time is assumed to follow a log-normal distribution (25). The mean 

and standard deviation of this distribution are synthesized from the data reported by Bolin et 

al. (24), Umetani et al. (25), Matsui et al. (26) and Welin et al. (23).  

 

Assumption 3: The model does not address the differences in growth rates between advanced 

and early cancers.  

Justification: 

• While there is data to suggest that growth rates of advanced and early cancers are 

different, it is beyond the scope of the current model to capture that level of details. 

 

3.3 Symptoms  

Evidence review 

The symptoms of colorectal cancer are  

1. Abdominal pain 

2. Change in bowel habit 

3. Hematochezia or melena 

4. Weakness 

5. Anemia  

6. Weight loss 

We do not intend to model each symptom separately. Rather, we are only interested in the 

characteristics, more specifically, the size of the tumor at the time of detection. Knowing the 

size at detection will allow us to calculate how long it takes to detect the tumor.  
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Before 1986, only a small fraction of the general population participated in a CRC screening 

program, and most cancers were detected by symptoms (e.g. weight loss, abdominal pain etc.). 

Therefore, SEER data prior to 1986 provides us information on tumor size at the time that the 

patients are diagnosed by symptoms. Figure 6 plots the probability distribution of tumor size at 

the time of diagnosis for white males and white females, derived from early SEER. It appears 

that gender does not strongly affect tumor sizes at detection. Similarly, age at detection does 

not have much effect on the overall size distribution (see Figure 7). The distribution of tumor 

size at the time of detection can be fitted using a log-normal distribution (see Figure 8) 

Only limited data is available on the delay between symptom onset and diagnosis.  Majumdar 

et al. (1999)  reported that the mean and median duration of symptoms, from onset to tissue 

diagnosis, were 32 weeks and 14 weeks. Fernandez et al. reported a mean duration of 132 days.  

 

 

Figure 6. Probability distribution of tumor size at the time of detection by symptoms for white males 

and white females (SEER). 
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Figure 7. Distribution of tumor size at detection by symptoms for different age groups. 

 

 

Figure 8. Cumulative probability distribution of tumor size at detection by symptoms for the white 

population in the SEER database. The circles represent data and the solid line represents a log-normal 

fit. 
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• We use log-normal distributions to fit to the distributions of tumor sizes at the time of 

diagnosis by symptoms, )( ,symptomCC td , for different races. Age and gender do not strongly 

influence 
)( ,symptomCC td

.  

• The tumor size at detection for a particular individual is picked randomly from the 

distributions according to race.  

• The time it takes for a tumor to grow from the size at inception )( ,inceptionCC td to the size 

at diagnosis by symptoms 
)( ,symptomCC td

 is 

2

3

ln

)(

)(
ln

,

,

,,














=
− inceptionCC

symptomCC

TG

inceptionCsymptomC
td

td

T

tt

  

• Delay between symptom onset and diagnosis is modeled using a log-normal 

distribution. The parameters of the log-normal distribution are estimated based on 

combining data reported by Barrett et al. (67), Majumdar et al. (68) and Fernandez et al. 

(69). We use this distribution to predict delay between symptom onset and diagnosis by 

symptoms for each patient. 

• Knowing the delay and the age at which patients are diagnosed by symptoms, we can 

calculate the age of symptom onset. 

 

3.4 Stage  

Evidence review 

Colorectal cancer is often classified using either the Duke or the American Joint Committee on 

Cancer (AJCC) staging system. The stage of a cancer is usually quoted as a number I, II, III, IV 

derived from the TNM value grouped by prognosis; a higher number indicates a more advanced 

cancer and likely a worse outcome. 

In the present model, we are only interested in the AJCC stages of cancer. We focus on the 

primary classification, 0 to IV, but not the sub-stages.  

Figure 9 depicts the distribution of stages as function of tumor size. The y-axis represents the 

fraction of tumors at stage 1 through 4. The symbols are SEER data for all races and ages. The 
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reason we do not split the data into different races and age groups, because we believe staging 

should only depend on the properties of the tumor, in this case, the size of the tumor. The lines 

are our fitted equations to the data. For large tumors, 55% of tumors are diagnosed with stage 

3 and stage 4.  

Modeling approach 

Stage of a tumor is set to be a function of tumor size. The relationships between stage of a 

tumor (T,N, M) and tumor size are derived from SEER. For each tumor, we first use the tumor 

size at detection to calculate the probabilities of the tumor being stage 0 to 4. We then pick a 

random number from U(0,1) and assign the stage according to the value of the random 

number. 

 

 

 

Figure 9. Cancer stage as function of tumor size at detection (SEER data). 

3.5 Survival after diagnosis 

Evidence review 

Survival following diagnosis of CRC is often reported as a function of stage. Most patients will 

be alive after five years if the tumor has not reached the intestinal wall (stage I). This rate 

decreases to 60% if the tumor has invaded regional lymph nodes and to only 5–15% if the 

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size (mm)

F
ra

c
ti
o

n

Stage 1

Fitted Stage 1

Stage 2

Fitted Stage 2

Stage 3

Fitted Stage 3

Stage 4

Fitted Stage 4



29 

 

neoplasm has metastasized (stage IV). However, stage is a derived variable, based on the tumor 

characteristics, such as size, number of positive lymph nodes, and state of metastasis.  

Analysis of SEER data indicates that both metastasis and the number of positive lymph nodes 

correlate with tumor size.  

Modeling approach 

Assumption 1: Survival is assumed to depend on a patient’s age, gender, race, size of primary 

tumor at diagnosis, and BMI at diagnosis.  

Justification: Survival is a function of lymph node status and distant metastasis. In the modeling 

world, we need to predict these variables from other observable variables such as age, 

race/ethnicity, and tumor size at diagnosis. In other words, we can choose between two 

approaches: 

• Approach 1: first predict lymph node status and distant metastasis as function of tumor 

size, age and race/ethnicity and then predict survival as function of lymph node status 

and distant metastasis or 

• Approach 2:  predict survival directly as function of tumor size, age and race/ethnicity. 

 The first approach is better than the second approach as it provides more details. However, 

mathematically speaking, the two approaches are equivalent in terms of predicting survival for 

a virtual patient if we only know tumor size. The Archimedes breast cancer model employs the 

first approach. The current colorectal cancer model employs the second approach.  

Assumption 2: We use the following form to predict survival, 
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where )( ,diangosisCttS − is the probability that a patient will survive at least diangosisCtt ,− years after 

diagnosis with CRC at time diangosisCt , . Diagnosis can occur either by symptoms or by screening. 

b and c are constants, whose values are determined a priori for each individual. The 

distributions forb and c  depend on race, gender, age, BMI, and tumor characteristics at 

diagnosis.  At longer time horizons, )( ,diangosisCttS − approaches 








b

c
exp , which represents the 

cure rate. 



30 

 

To predict the time of death due to CRC, we pick a random number ξ from a uniform 

distribution U(0,1) and calculate time of CRC death deathCt ,  as follows: 

o If )exp(
b

c
≤ξ then the patient never dies of CRC. 

o Otherwise, the time of death is given by solving ξ=− )( ,diangosisCttS , i.e. 

ξ

ξ

ln

ln
,,

bc
tt diangosisCdeathC

−
=−

  

We chose the SEER data obtained between 1990 and 2006 to build the survival model. This will 

provide a good approximation of CRC survival if patients are given treatment according to the 

current guidelines. It should be noted here that despite changes in cancer treatment in recent 

years, survival of CRC patients has been only slightly improved.  
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4. Validations 

4.1 Overview of validation methodology 

The complete description of Archimedes validation methodology is described in a separate 

report titled “Validation Methodology and Performance Report for ARCHes Innovator”, and can 

be made available upon request.  

 

The purpose of this section is to quantify the accuracy of the colorectal cancer model in 

predicting the rates of cancer incidence and mortality in a specified population and the benefits 

of cancer screening.  The ultimate objective is to answer the questions: “Is there reason to 

believe there is a flaw in the Model or code? Is there anything that can be improved? Is there 

any reasons to change the Model, or should it be left as it is?”  

 

We classify each data source used for validation as “independent” (no information about the 

study was use to build the Model), “dependent” (the source was the only one to use as part of 

the model, or the model was calibrated to fit the source), and “partially dependent” (the source 

was used to build or calibrate part of the Model, but that part by itself does not wholly 

determine the outcome to be validated).  Because the category “partially dependent” is so 

broad, we identify two subcategories. A validation is considered “largely dependent” if the 

source was one of very few used to build the parts of the model tested by the validation. A 

validation is considered “largely independent” if it is only one of a large number of sources used 

to build the parts of the model tested by the validation. As will be described below, the 

validations of many of the treatment arms of trials in the validation suite are largely 

independent. The reason is that the outcome of a treatment arm is determined primarily by the 

rate of the outcome in the absence of treatment (i.e. the “control arm”) in combination of the 

effect of the study treatment. If a trial was not used to build the physiology model that 

determines the outcomes in the control arm, and was only one of many trials used in a meta-

analysis to estimate the effect of treatment, then the validation of the control arm is fully 

independent and the validation of the treatment arm is largely independent. 

Validation of the Model against a clinical trial involves several steps. The first step is to use the 

Archimedes Model to generate a virtual population that matches the study population as 

closely as possible. The process begins by selecting people randomly from the NHANES 1999-

2008 database. The Model then creates simulated people, one-by- one, who match the real 

people in the database in the sense that when the Model calculates their physiology starting 
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from the birth of the simulated person (age = 0) up to the current age of the real person, the 

values of biomarkers, medical history, and other variables for the simulated person closely 

match the values of the real person.  

The second step is to screen the simulated people to see if their medical histories and baseline 

characteristics meet the inclusion and exclusion criteria for the study, as would happen in a real 

trial. Call this the “trial-eligible population”.  

The third step is to select a subsample of people from the simulated trial-eligible population so 

that the subsample (call this the “simulated trial population”) has the same baseline 

characteristics as the real trial population. The Archimedes Model contains automated methods 

that select simulated people in a way that causes the selected population to converge on any 

specified targets for biomarkers and other variables, subject to the limitations of the NHANES 

database. This method achieves the best match possible on each variable, and retains all the 

correlations present in the US population as represented by NHANES. This is very important: to 

evaluate the Model, the simulated and real trial populations should be matched as closely as 

possible with respect to all variables that affect the outcomes of interest. This is necessary to 

avoid having the comparison of event rates in the simulated and real trials confounded by 

differences in baseline characteristics. It is also important that these steps be done without 

using any information about the outcomes of the real trial. Thus in the Archimedes Model these 

first three steps are done before the start of the trial simulation. 

After the simulated population has been created, the fourth step is to set up the treatment 

protocol. Treatment protocols can be complicated, involving pre-randomization tests and 

treatments, withdrawing treatments or giving placebos in control groups, and applying complex 

protocols for treatment groups. The Archimedes Model includes care processes and behaviors 

that can be set to replicate the processes and behaviors in real trials fairly closely. Any available 

information about adherence to treatment protocols can also be incorporated in the setup. The 

success of this part of the setup process can be checked by comparing the trajectories of 

biomarkers in the simulated and real trials over the course of the trial. If necessary, simulated 

protocols can be calibrated to improve the match between simulated and real levels of 

biomarkers. 

A related step is the need to replicate the background level of care that was being delivered at 

the time the trial was conducted. The Archimedes Model includes current guidelines, calibrated 

to current levels of biomarker control, performance and compliance. For some trials it is 

necessary to turn off or modify some healthcare care processes in the Model to reflect the level 

of care patients were receiving at the time the clinical study was conducted.  
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The steps just described are required for validations that involve clinical trials for which there is 

information about the trial’s design. When any pieces of this information are not available, it is 

not posible to match the study as closely. In particular, for cohort studies there is no 

information about tretment protocols or performance/compliance. And for the studies of age-

specific incidence rates there may not be good information even about the population. In these 

cases, the Model is simply run using the NHANES population and current US practices. The 

importance placed on comparisons of simulated and real results will depend on how well the 

conditions of the real study could be matched by the setup of the simulation. Specifically, 

because they it is not possible to replicate the study populations used on studies of age-specific 

incidence, they can only be used as general checks on the Model.    

After the simulated trial has been set up, the next step is to run it. The sample size of the 

simulated trial is set to be the same as the real trial. Its duration is set for the duration of the 

real trial. When the simulation is complete, the important biomarker trajectories and the 

outcomes of interest are recorded, using the same follow-up protocols described for the real 

trial.  

The final step is to interpret the results. This has two parts. The first is to calculate some 

measures of how well the Model’s results match the real results. The second is to examine the 

measures in light of the potential mismatches identified during the set up of the simulation, as 

well as other issues that might be identified after the results are examined.   

To compare predicted Kaplan Meier curves with data, we introduce a metric called the 

validation hazard ratio (vHR).  It is calculated by fitting a Cox proportional hazard model to the 

survival data from the simulation and from the study. The vHR is similar to the hazard ratio 

used in most randomized clinical trials to show the treatment effect, just renamed to 

emphasize its use for comparing the simulated and the actual event rates in validations. A 

classical interpretation is that if the 95% confidence interval of vHR contains 1, there is not 

sufficient evidence to conclude that the Model’s result differs from the real result.  

It is important to recall that any mismatches in the setup of the simulation could cause the 

simulated rate to differ from the observed rate. They include: imperfect matching of baseline 

characteristics or trial protocols, incomplete reporting of performance and/or compliance to a 

treatment protocol, changes in standard of care over time, differences in definitions of health 

outcome, placebo effects, and so forth. Assuming that every effort has been made to reduce 

the effects of these factors, the effects of any that remain can only be addressed subjectively. It 

is expected that vHR would be larger than 1 in some trials and lower than 1 in other trials. 
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4.2 Overview of validations for the colorectal cancer submodel 

Table 4 summarizes the studies that were used to validate the colorectal cancer model. We 

tested the model predictions against different types of outcomes, including polyp prevalence, 

size distribution, incidence, and mortality of CRC, as well as the effects of CRC screening by 

stool test (15) and colonoscopy (14).  

The following sections in this chapter provide brief summaries of the key validations for the 

colorectal cancer model. Full description of each validation with detailed discussion on 

simulation setup, validation outcomes and sensitivity analyses will be made available in future. 

 

Data Sets 

Type of validation Outcomes Tested 

Polyp 

outcomes 

CRC 

incidence  

CRC 

mortality  

Effects of 

screening 

CPS-II Mortality 

(78) 

Independent 

  
X  

CPS-II Nutrition 

(79) 

Independent 

 
X X  

Surveillance 

Epidemiology and 

End Results (SEER) 

data (12) 

Partially 

dependent 

 
X X  

Minnesota FOBT 

Trial (15) 

Independent 

   
X 

National Polyp 

Study (14) 

Independent 

   
X 
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Veterans Affairs 

Cooperative Study 

Group (20) 

Independent 

X 
  

 

Women Health 

Study(80) 

Independent 

 
X 

 
 

Women Health 

Initiative 

Independent 

 
X 

 
 

UK Flexible 

Sigmoidoscopy 

Study 

Independent 

   
X 

Table 4. Summary of validation exercises of the colorectal cancer model.  

 

4.3 SEER  

Objective 

We want to verify that given our assumptions about colorectal cancer screening behavior in the 

general population, the model reproduces the incidence by age for CRC diagnoses and deaths in 

the general population. The validation is considered to be partially dependent since SEER data 

was used to calibrate the rate of malignant transformation and to construct the survival model. 

Simulation setup 

We created a simulated population that matched the US general population in distributions of 

age, BMI, race, gender, and family history of CRC. We used NHANES III participants to create 

our virtual population. Patients diagnosed with cancers prior to the trial start and during the 

run-in period were excluded. 

The simulation ran for 20 years with a run-in period of ten years. The run-in period allowed 

people full access to the healthcare system before data was collected.  Without a run-in period 

there would be an artificially large number of cancers detected at the beginning of the 

simulation as people have their first cancer screening. 
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The simulation assumes that compliance level of colorectal cancer screening does not change 

with time. Compliance to CRC screening and use of different screening modalities are calibrated 

to match screening data from the Behavioral Risk Factor Surveillance System (BRFSS) data for 

2005. 

Validation results 

Figure 9 show that the model reproduces reasonably well CRC incidence in the general 

population.  

The model over-predicts CRC mortality rate as compared SEER. It should be noted that the 

survival model was built using data from a long period between 1990 and 2005, over which, the 

survival rate has improved significantly. Therefore, it is possible our survival model does not 

reflect the modern rate of survival following diagnosis. In future, we should recalibrate the 

survival model to modern-day survival data from SEER (e.g. between 2005 and 2011). 
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Figure 12. Colorectal Cancer Incidence-By-Age for Male and Female in the general population. 
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Figure 13. Colorectal Cancer Death Incidence-By-Age  
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4.4 Cancer Prevention Study II (CPS-II) 

Objective 

The objective of this validation is to confirm that the CRC model can predict with reasonable 

accuracy the incidence and mortality of CRC in a large-scale population, with a long follow-up. 

We compare CRC outcomes reported in the Cancer Prevention Study II Nutrition dataset with 

those observed in Archimedes’ virtual populations.   

Study description 

The CPS-II Nutrition Cohort was established in 1992–1993; it consists of 86,404 men and 97,786 

women recruited from among members of the CPS-II Baseline Cohort (enrolled in 1982 by 

American Cancer Society (ACS) volunteers in all 50 states, the District of Columbia, and Puerto 

Rico). CPD-II Nutrition Cohort participants included men and women aged 50–90 years residing 

in 21 states with population-based cancer registries. The median age at cohort entry in 1992–

1993 was 63 years. The CPD-II Nutrition Cohort was re-contacted with self-administered 

questionnaires in 1997, 1999, 2001, and 2003.  

A subset of the CPS-II Nutrition dataset was given to Archimedes by the ACS.  This subset 

consists of 76,275 men and 84,285 women and includes the variables most relevant to breast, 

colorectal, and lung cancer.  All participants had no prior diagnosis of cancer at the time of their 

1992 survey.  

There were 1152 instances of CRC and 267 CRC deaths among 84,285 females and 1544 

incidences of CRC and 367 CRC deaths among 76,275 males. The total follow-up was 7.7x105 

person-years for males and 8.9x105 person-years for females.  

Data analysis 

The CPS-II Nutrition Cohort is a high-quality dataset with very little missing data.  Fewer than 

2% of the samples had missing data.  We assume that data was missing at random, and that for 

each variable, the distribution among respondents with non-missing data for that variable was 

representative of the distribution among all respondents. 

Death records were followed in CPS-II Nutrition, and all deaths were recorded through June 30, 

2003. This date is used as the censor date for the mortality data.   

Incidence was followed in CPS-II Nutrition in two ways: 
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o When a person reported cancer on a survey, his/her medical record and/or cancer 

registry were checked to fill in a diagnosis date and other details.   

o If a person was confirmed dead from the death registries and had a cause of death 

related to cancer, the cancer registries were checked to fill in the diagnosis date and 

other details.   

o If a person did not return surveys and had no record of cancer from a death record, 

they were not followed for cancer incidence.  A small proportion of cancers were 

self-reported on surveys and not confirmed from medical records or cancer 

registries.   

 

We use the method suggested by epidemiologists at the American Cancer Society for censoring 

incidence data. The method, also known as window-of-opportunity censoring method, is briefly 

described here:   

o If a person returned all their surveys, then they are censored on June 30, 2003, 

which is the day before the 2003 survey was mailed out.   

o If a person stopped returning surveys, then we looked up the date on which the last 

survey was returned and the date on which the next survey was mailed out.  (All 

surveys were sent out on Sept 1, except the 2003 survey, which was sent out on July 

1.)   

� If the person died any time between the return date of his last survey and 

four months past the date on which the next survey was mailed out, then he 

is censored at his death date or June 30, 2003, whichever comes earlier.  This 

is based on the assumption that people who died before four months after 

the mailing date of a survey had been too sick to return the survey or dead, 

and their cancer status can be approximated from their cause of death.   

� If the person did not die in this window, he is censored at the date that his 

last survey was returned.   

If a person had a self-reported cancer (i.e. information on the cancer is not found in the cancer 

registries), then he was assumed to have cancer and randomly given a diagnosis date between 

the survey return date on which he reported the cancer and the return date of the previous 

survey.   

Colorectal cancer screening pattern 
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• Survey participants were asked “Have you ever had a sigmoidoscopy or colonoscopy of 

the bowel?”. Participants who answered “yes” were asked about the number of 

procedures, year(s), the years and the reason for the most recent procedure. 

Procedures were categorized into three groups: (1) diagnostic follow-up because of a 

positive FOBT or symptoms of pain, diarrhea, or visible blood in the stool; (2) diagnostic 

follow-up because of previous CRC; or (3) CRC screening. The third category of screening 

endoscopy was further subdivided into (a) follow-up on a personal history of colorectal 

polyp; (b) follow-up on a family history of CRC; or (c) screening in the absence of 

symptoms, personal history of colorectal polyp, or family history of CRC  (16). 

• Chao et al. (16) analyzed the population who returned the survey in 1997 and reported 

that:  

o 58% of men and 51% of women reported ever having undergone sigmoidoscopy 

or colonoscopy 

o  40% of men and 32% of women reported endoscopy within the past five years 

(1992-1997).  

 

Simulation setup 

We created a simulated population of 80,000 virtual patients that matched the CPS-II 

population in distributions of age, BMI, race, gender, and family history of CRC. The information 

on these variables was extracted directly from the CPS-II Nutrition Cohort dataset.  We used 

NHANES III participants to create our virtual population.  

As in CPS-II Nutrition, patients diagnosed with cancers prior to the trial start and during the run-

in period were excluded. The simulation ran for 20 years with a run-in period of seven years. 

The run-in period allowed people full access to the healthcare system before data was 

collected.  Without a run-in period there would be an artificially large number of cancers 

detected at the beginning of the simulation as people have their first cancer screening. The 

compliance and continuous adherence ratios were selected to match the number of patients 

ever screened by endoscopy at year 5 of follow-up. 

Validation results 

Baseline comparisons 
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• Table 2 compares the baseline characteristics of the CPS-II Nutrition Cohort to those of 

the Archimedes simulated population. 

 

Baseline 

Demographics 

CPS-II 

Nutrition 

 Men 

Archimedes 

Men 

CPS-II 

Nutrition 

 Women 

Archimedes 

Women 

Age (y) 64.5 ± 6.1 64.1 ± 6.2 62.6 ± 6.7 62.9 ± 6.5 

White (%) 98 98 98 98 

BMI (kg/m^2) 26.4 ± 3.7 26.2 ± 3.6 25.6±4.8 25.8±4.8 

Age of first live 

birth 
NA NA 23.9 22.3 

Age of menarche NA NA 12.7 12.7 

Age of 

menopause 
NA NA 47.6 45.0 

Smoking 9.4% 9% 9% 8.8% 

Postmenopausal NA NA 94% 94% 

Table 5. Comparison of baseline characteristics of the CPS-II Cohort and Archimedes simulated 

population.  

Outcome comparisons 

Life-table plots of proportions diagnosed with CRC for females and males are presented in 

Figure 10 and Figure 11, respectively. Life-table plots for CRC deaths are presented in Figure 12 

and  

Figure 13. The validation hazard ratios range from 1.03 to 1.09 for CRC incidence and death in 

female and male populations in the CPS-II study. All 95% CIs cover 1. We can safely conclude 

that the model performs reasonably well against CPS-II data. 
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Figure 10. Cumulative risk of developing CRC in female population of CPS-II Nutrition: data (black) 

versus simulation (red).  

 

Figure 11. Cumulative risk of developing CRC in male population of CPS-II Nutrition: data (black) 

versus simulation (red). 
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Figure 12. Cumulative risk of CRC death in female population of CPS-II Nutrition: data (black) versus 

simulation (red). 

 

 

Figure 13. Cumulative risk of CRC death in male population of CPS-II Nutrition: data (black) versus 

simulation (red). 
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4.5 Women’s Health Study (WHS) 

Objective 

The objective of this validation is to confirm that the CRC model can predict with reasonable 

accuracy the incidence of CRC in a large population of women, represented by the Women 

Health Study. 

Study description 

The Women's Health Study was established in 1992, enrolling 39,876 female US health 

professionals (registered nurses, 75 percent) aged 45 years or older and free of cancer and 

cardiovascular disease at baseline (17). The study was designed as a randomized trial evaluating 

the benefits and risks of low-dose aspirin and vitamin E in the primary prevention of cancers 

and cardiovascular diseases. Upon enrollment in the study, all participants completed a 

baseline questionnaire inquiring about their medical history and lifestyle factors, including 

potential risk factors for cancers. 

Simulation setup 

We created a virtual population of 50,000 women that matches the baseline characteristics of 

the WHS population. We used NHANES III participants to create our virtual population. Based 

on WHS data on family history of cancer, we inferred that 8% of the population has family 

history of CRC. 

The simulation ran for 20 years with a run-in period of seven years. The run-in period allowed 

people full access to the healthcare system before data was collected.  Without a run-in period 

there would be an artificially large number of cancers detected at the beginning of the 

simulation as people have their first cancer screening. 

The adherence to colorectal cancer screening is calibrated to match 41.0% of the population 

undergoing colonoscopy screening and 22.5% undergoing sigmoidoscopy screening in the trial, 

over a period of 10 years. 
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Validation results 

Baseline comparisons 

Baseline 

Demographics 
WHS Archimedes 

Age (y) 54.6 ± 7.0 54.6 ± 7.1 

Age 45-54 60% 61% 

Age 55-64 30% 29% 

Age 65-74 9% 9.6% 

Age > 75 0.7% 0.4% 

BMI (kg/m^2) 26.1±4.8 25.8±4.8 

White 95% 95% 

Current smokers 13% 13% 

Table 6. Comparison of baseline characteristics of the WHS cohort and Archimedes simulated 

population.  

Outcome comparisons 

The model over-predicts the rate of colorectal cancer incidence in the WHS population by about 

21%, see Figure 14. It is possible that the woman population in WHS (consisting of nurses and 

doctors) is eating healthier diet and exercise more frequently than the general population. This 

explains that a model built using data from general population might underpredicts the rate of 

CRC in the WHS population. 
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Figure 14. Cumulative risk of CRC incidence in Women’s Health Study: data (black) versus simulation 

(red). 
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4.6 Women’s Health Initiative (WHI) 

Objective 

The objective of this validation is to confirm that the CRC model can predict with reasonable 

accuracy the incidence of CRC in a large population of women, represented by the Women 

Health Initative. 

Study description 

 

The Women's Health Initiative Dietary Modification Trial, a randomized controlled trial 

conducted in 48,835 postmenopausal women aged 50 to 79 years. 13% of the population has 

family history of Colorectal cancer 13.7% (18). Participants were randomly assigned to the 

dietary modification intervention (n = 19,541; 40%) or the comparison group (n = 29,294; 60%). 

A total of 480 incident cases of invasive colorectal cancer occurred during a mean follow-up of 

8.1 (SD, 1.7) years.  There were no difference in incidence of CRC between the two arms: 201 

women with invasive colorectal cancer (0.13% per year) in the intervention group and 279 

(0.12% per year) in the comparison group (hazard ratio, 1.08; 95% confidence interval, 0.90-

1.29). 

 

Simulation setup 

Virtual patients 

We created a virtual population of 20,000 women that matches the baseline characteristics of 

the WHS population. We used NHANES III participants to create our virtual population. We also 

match history of average-risk colonoscopy screening (50%) at baseline.  

Interventions 

Patients have a choice to be screened with either colonoscopy or sigmoidoscopy.The adherence 

to colorectal cancer screening is calibrated to match 44.0% of the population undergoing 

colonoscopy or sigmoidoscopy screening in the trial. 

Validation results 

Baseline comparisons 
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Baseline 

Demographics 
WHI Archimedes 

Age (y) 62.3±6.9 62.3±6.9 

Age 50-59 37% 37% 

Age 60-69 47% 47% 

Age 70-79 16% 16% 

White (%) 82% 81% 

BMI (kg/m^2) 29.1±5.9 29.1±5.9 

Black 11% 11% 

Table 7. Comparison of baseline characteristics of the WHI cohort and Archimedes simulated 

population.  

 

Outcome comparisons 

The model slightly over-predicts the rate of colorectal cancer incidence in the WHS population 

by 13%.  The 95% confidence interval of the validation hazard ratio is [0.97,1.31] and covers 1. 

This suggests that the model captures the incidence of CRC in the WHI population with a 

reasonable accuracy. 
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Figure 15. Cumulative risk of CRC incidence in Women Health Initiative: data (black) versus simulation 

(red). 
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4.7 UK Flexible Sigmoidoscopy Trial 

Objective  

UK Flexible Sigmoidoscopy Trial(19) is a recent landmark trial demonstrating the efficacy of 

once-only flexible sigmoidoscopy screening between 55 and 64 years of age on colorectal 

cancer incidence and mortality. We used the study to validate the model predictions of effects 

of sigmoidoscopy on colorectal cancer outcomes. 

Study description 

 

This randomized controlled trial was conducted in UK.  113 195 people aged 55-64 were 

assigned to the control group and 57 237 to the intervention group, of whom 112 939 and 57 

099, respectively, were included in the final analyses. Exclusion criteria include inability to 

provide informed consent; history of colorectal cancer, adenomas, or inflamatory bowel 

disease; severe or terminal disease; or sigmoidoscopy or colonoscopy within the previous 3 

years. 

 

 In the intervention group, patients were offered flexible sigmoidoscopy screening. In the 

control group, patients were not contacted. The primary outcomes were the incidence of 

colorectal cancer, including prevalent cases detected at screening, and mortality from 

colorectal cancer.   

The median follow-up was 11.2 years. 2524 participants were diagnosed with colorectal cancer. 

In per-protocol analyses, incidence of colorectal cancer in people attending screening was 

reduced by 33% (0.67, 0.60-0.76) and mortality by 43% (0.57, 0.45-0.72). 

Simulation setup 

Virtual patients 

We could not find sufficiently detailed information on distributions of age, BMI and race in trial 

publications, except for median age (60.5),  male fraction and exclusion criteria regarding prior 

screening history (sigmoidoscopy or colonoscopy within the previous 3 years). To overcome this 

lack of information, we adjusted BMI distribution and prior CRC screening history to get the 

cancer incidence in the control arm to match data. Thus, the validation of the colorectal cancer 

incidence in the control arm is dependent. 
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It should be noted that except for the CRC rate in the control arm is calibrated to match data, 

other aspects of the virtual trial are independent in the sense that they are not modified to 

match data. 

Interventions 

The virtual patients are subjected to (i) a screening arm, in which patients are screened by 

sigmoidoscopy at the start of the trial and (ii) a no-screening, in which patients are not offered 

screening. 

In the screened arm, 100% patients received sigmoidoscopy at the start of the trial. A positive 

sigmoidsocopy will lead to subsequent colonoscopy. Patients, who are diagnosed to have high 

risk of colorectal cancer based on colonoscopy and sigmoidoscopy results, will be subjected to 

increased surveillance. The outcomes of this arm will be compared to the data reported for the 

screened group (Figure 2B in Atkin et al., 2010(19)).  

In the no-screening arm, patients only get colonoscopy if they develop symptoms for colorectal 

cancer. The outcomes reported for the no-screening arm of the virtual trial are compared to 

data reported for the control group.  

Validation results 

Figure 16 compares the incidence of colorectal cancer predicted by Archimedes to data in the 

control arm. As discussed above, we calibrated the predicted CRC rate in the control arm to 

data by manipulating distributions of age and BMI and screening history prior to randomization. 

The calibration was done at the minimal level. As the result, the predicted CRC incidence curve 

captures the trend of the data but is not a perfect match to the data. 

Figure 17 compares the incidence of colorectal cancer predicted by Archimedes to data in the 

screened arm. The model predicted a significant jump in colorectal cancer incidence at the start 

of the simulation due to sigmoidoscopy screening. Such a sudden jump in detection of 

colorectal cancer was also observed  in the trial, however, occurring mostly at years 1 and 2. It 

is possible that in reality most sigmoidoscopies in the screened arm are scheduled at year 1 or 

year 2. However, we do not have access to information on timing of sigmoidoscopies. 

Figure 18 and Figure 19 compare predicted rates of colorectal cancer death to data for the 

control arm and the screened arm, respectively. In general, the model captures the trend of the 

data well but tends to slightly underpredicts the rates of CRC deaths. This could be due to the 

fact that the survival model was built using US (SEER) data. 
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Table 8 summarizes the validation results. The model predicts a 27% reduction in CRC incidence 

and a 47% reduction in CRC mortality by once-only flexible sigmoidoscopy, as compared to 33% 

and 44% as reported by the trial. Note that the differences in reductions of CRC incidence and 

mortality between data and model predictions are not statistically significant. 

We conducted sensitivity analyses of the validation by varying different degrees of matching of 

CRC rate in the no-screening arm to data. We found the predicted effects of once-only 

screening by sigmoidoscopy on CRC outcomes to be relatively independent of the degree of 

matching. The predicted reduction in CRC incidence ranges from 24% to 30%. Similarly, the 

predicted reduction in CRC mortality ranges from 41% to 50%. 

 

Figure 16. UK Flexible Sigmoidoscopy Validation. Incidence of colorectal cancer diagnosis in the 

control arm (black: data; red: Archimedes). The population and prior screening history were calibrated 

to make the  predicted cumulative incidence of colorecancer match data. 
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Figure 17. UK Flexible Sigmoidoscopy Validation. Incidence of colorectal cancer diagnosis in the 

screened arm (black: data; red: Archimedes). 

 

 

Figure 18. UK Flexible Sigmoidoscopy Validation. Incidence of colorectal cancer death  in the control 

arm (black: data; red: Archimedes). 
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Figure 19. UK Flexible Sigmoidoscopy Validation. Incidence of colorectal cancer death in the screened 

arm (black: data; red: Archimedes). 

 

Cumulative 

risk at year 

12 

Control Screened Hazard ratio 

 Data  Simulation Data Simulation Data Simulation 

Colorectal 

cancer 

diagnosis 

1.79% 1.84%∗ 1.20% 1.35% 0.67 (0.60-

0.76) 

0.73 (0.70-

0.76) 

Colorectal 

cancer 

death 

0.62% 0.60% 0.34% 0.32% 0·56 (0·45–

0·69) 

0.53 (0.50-

0.56) 

Table 8. UK Flexible Sigmoidoscopy Tria. Summary of simulation results. Asterisk (*) indicates that the 

predicted rate is dependent on data that is comapred to. 
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5. Comparison of Archimedes Model predictions to other models 

The table below compares life years gained by colonoscopy screening predicted by the 

Archimedes Model against those predicted by the CISNET models (MISCAN and SimCRC).  

 

Screening 

strategy 

Definition Life years gained per 1000 people aged 50 

representative of the general US population. 

Archimedes  MISCAN (70) SimCRC (70) 

COL 50-75, 10 Screening 

starting at 

age 50, at 10-

year intervals, 

ending at 75 

269 230 271 

COL 50-85, 10 Screening 

starting at 

age 50, at 10-

year intervals, 

ending at 85 

276 236 273 

 

Table 9. Comparisons of predictions of life years gained by Archimedes Model and the MISCAN and 

SimCRC models. 

It should be also noted that our prediction of reduction in CRC incidence by colonoscopy 

screening is consistent with a recent large-scale retrospective study by Brenner et al. (81). 

The predicted costs are also fairly consistent with other models. For colonoscopy screening of 

an average risk person between ages 50 and 80, at a 10-year interval, the current model 

predicts cost of CRC screening/surveillance to be $2,466, while the MISCAN model predicts it to 

be $2,255 (82).  
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