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Supplemental Materials and Methods 

Tightrope, rotarod and hair re-growth assays 

For tightrope test, mice were placed on the middle of a bar of circular section (60 cm long; 3 cm in 
diameter). The test was considered successful when a mouse passed the tightrope during a period of 
60 sec in at least one out of five consecutive trials. For rotarod test, each mouse was pre-trained at a 
constant speed (3 rpm) until it was able to remain on the apparatus for 60 sec. On the following day, 
each mouse was given three trials, with a 30-min rest period in between. During the test, the rotarod 
started at 3 rpm and accelerated to 24 rpm over a period of 9 min, the maximum length of each trial. 
For hair re-growth analysis, dorsal hair was removed by plucking from a square of approximately 
1.5 cm×1.5 cm. Hair re-growth was scored three weeks later blindly by two other investigators from 
digital photographs and a semi-quantitative assessment was done using an arbitrary scale from one 
to four, where four represents complete hair regeneration. 

Metabolic and serum measurements of mice 

Total body fat content was measured by nuclear magnetic resonance (NMR) using the Minispec 
Mq7.5 (Bruker, Germany). Oxygen consumption and physical activity were measured using the 
comprehensive laboratory animal monitoring system (CLAMS, Columbus Instruments, Columbus, 
Ohio, USA) according to the manufacturers’ instructions. Mice were allowed for acclimation to the 
CLAMS for 16-20 hours, and measurements were conducted for the following 24 hours. Voluntary 
activity was monitored from the x-axis beam breaks recorded every 15 min. 

Glucose tolerance test was performed in mice after overnight fasting. Mice were injected 
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intraperitoneally with glucose at 1g/kg, and blood glucose concentrations were measured at 15, 30, 
45, 60, and 120 min after insulin injection using a glucometer (FreeStyle, Alameda, CA). 

Blood samples were collected from tail bleeding after overnight fasting in mice at the desired 
ages. After centrifugation at 12,000 rpm for 30 min to pellet blood cells, serum was transferred to a 
new tube and stored at -80 °C until further use. The serum levels of insulin and leptin were 
quantified by the Bioplex Suspension Array System (Bio-Rad) using a mouse cytokine 
immunoassay panel (Linco Research, St. Charles, MO). Serum triglyceride and cholesterol were 
respectively determined using the Serum Triglyceride Determination Kit (Sigma, St. Louis, MO) 
and Amplex Red Cholesterol Assay Kit (Molecular Probes, Eugene, OR). 

Body temperature 

The rectal body temperature was measured for mice at 90 weeks of age. The measurements were 
performed between 8:00 a.m. and 10:00 a.m. after an overnight fast using microprobe thermometer 
(Physitemp Instruments, Clifton, New Jersey, USA). 

Liver physiological analysis 

For midlife metabolic phenotype analyses, 8 mice at 62 weeks of age were randomly selected from 
each group and were humanely euthanized for blood and tissue collection. To analyze the liver 
function, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST) were 
determined by the Alanine/Aspartate Transaminase Detection Kit (ShenSuoYouFu, Shanghai, 
China). To measure hepatic triglyceride and cholesterol levels, 40-50 mg of liver tissue were 
homogenized in 1.5 ml of CHCl3-CH3OH (2:1, v/v), followed by shaking at room temperature for 2 
hr. After addition of 0.5 ml of 0.1 M NaCl, the suspension was centrifuged at 3,700 rpm for 10 min 
at room temperature. The lower organic phase was then transferred and air-dried overnight. The 
residual liquid was subsequently resuspended in 400 µl of 1% Triton X-100 in absolute ethanol, and 
the concentrations of triglyceride and cholesterol were determined using the Serum Triglyceride 
Determination Kit (Sigma, St. Louis, MO) and Amplex Red Cholesterol Assay Kit (Molecular 
Probes, Eugene, OR), respectively. For histology analysis, liver tissue specimens were fixed in 10% 
neutral formalin, and paraffin-embedded tissue sections were stained with hematoxylin-eosin (H&E) 
or picrosirius red (Sigma-Aldrich, St. Louis, MO). Three whole sections (4× magnifications) from 
each animal were examined by BX61 fluorescence microscope (Olympus, Japan) and images were 
quantified using NIH ImageJ software (http://rsb.info.nih.gov/ij/). For measurement of the 
mitochondria, liver tissues were processed as described (1). Briefly, livers that were cut into 1-mm3 
sections were subsequently put into the electron microscopy fixative buffer, embedded in spur resin 
and sectioned. Thin sections were obtained and viewed under transmission electron microscope 
(H-7650, HITACHI) equipped with a charge-coupled device camera (ER-B; AMT). Mitochondrial 
number was counted from images at 1200X and normalized to the hepatocyte size. The sizes of 
hepatocytes and mitochondria were quantified from images at 6000X by NIH ImageJ software. 

http://rsb.info.nih.gov/ij/
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Identification of aging patterns 

Liver RNA samples from six mice at 4, 8, 13 or 21 months of age were respectively pooled and 
subjected to whole-genome microarray analyses following the same protocol as for the 18 mice 
from the intervention study. The microarray data were likewise log2-transformed and normalized 
using 'affy' package in bioconductor. The significance of age-related patterns was determined by 
STEM (2) (P < 0.01). 

Visualization of the KEGG peroxisome pathway 

KEGG peroxisome pathway was colored using the pathway visualization tool in KEGG 
(http://www.genome.jp/kegg/tool/color_pathway.html). 

RT-PCR analyses 

Total mouse liver RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA). After 
treatment with RNase-free DNase I (Roche Applied Science, Penzberg, Germany) to eliminate 
possible DNA contamination, first-strand cDNA was synthesized with M-MLV reverse transcriptase 
and random hexamer primers (Invitrogen). Real-time quantitative PCR was conducted with the 
SYBR Green PCR system (Applied Biosystems, Foster City, CA), using cyclophilin as an internal 
control for normalization. The oligonucleotide primers used for each target gene were as follows:  
mouse Pex1, forward primer 5’-AGCTTGGTGGCACTCATCG-3’ and reverse primer 
5’-GTTCCGGATTGGGAGGCT-3’; 
mouse Pex5, forward primer 5’-AATGCAACTCTTGTATCCCGAG-3’ and reverse primer 
5’-GGCGAAAGTTTGACTGTTCAATC-3’; 
mouse Pex13, forward primer 5’-GATTTTGTTGCCGTGTCTGATG-3’ and reverse primer 
5’-TTTGACCGTCAAGACTAGCCAG-3’; 
mouse Pxmp4, forward primer 5’-TGTCTATGGAGTCAAAATCCGGG-3’ and reverse primer 
5’-AGAGTGGATGTACGTGGCTTT-3’; 
mouse Sirt1, forward primer 5’-TGAGCTGGATGATATGACGC-3’ and reverse primer 5’- 
GGAAGTCCACCGCAAGG -3’； 
mouse Ppargc1a, forward primer 5’-TATGGAGTGACATAGAGTGTGCT-3’ and reverse primer 
5’- CCACTTCAATCCACCCAGAAAG-3’； 
mouse cyclophilin, forward primer 5'-ATGGCAAATGCTGGACCAAA-3' and reverse primer 
5'-CATGCCTTCTTTCACCTTCCC-3'; 

Heat stress resistance assays 

Heat stress assays in C. elegans were performed as described previously (3) with minor 
modifications. About 100 adult worms (day 4) per group were transferred to 3 new RNAi NGM 
plates with RNAi bacteria. The number of dead worms on each plate was scored every 2 hours for 
the first 8 hours after shifting to 35oC. Survival was determined as described for lifespan analysis. 

http://www.genome.jp/kegg/tool/color_pathway.html
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Supplemental Figures

Figure S1. Exercise monitoring and glucose tolerance of mice. (A) Voluntary running distance
was recorded and the average running distance was plotted biweekly for mice fed LF or HF in the
exercise groups (n>6). (B) Glucose tolerance test (GTT) was performed at the indicated ages for
each intervention group (n=8-10 per group). In the left panels, the blood glucose levels are plotted
against the times after i.p. injection of 1 g/kg glucose. Shown in the right panels are the calculated
areas under the curve (AUC) of blood glucose, presented as mean ± SEM, **P < 0.01 versus LF, and
++P < 0.01 versus HF tested by ANOVAs.
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Figure S2. Aging-sensitive markers, midlife physical activity and body temperature of mice.
(A-C) Aging-sensitive markers. (A) Hair re-growth assay for mice at 90 weeks of age (n=9-12 per
group). Hair re-growth capacity of the dorsal skin was scored at 21 days after shaving and
quantified in arbitrary units (a.u.). (B) Rotarod tests for mice at 85 weeks of age. Shown are the
maximal time to fall from the accelerating rotarod, averaged from three trials per mouse (n=11-12
per group). (C) Tightrope test for mice at 85 weeks of age. The percentage of mice passing the test
is shown for each group (n=8-12 per group). (D) Physical activity during the light and dark cycles
was determined by CLAMS for mice at 57-58 weeks of age (n=5 per group). (E) Rectal
temperatures of mice at 90 weeks of age (n=10 per group). Data are presented as mean ± SEM, *P <
0.05, **P < 0.01 versus LF, and +P < 0.05, ++P < 0.01 versus HF tested by ANOVAs.
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Figure S3. Liver functions affected by the diet interventions. Liver functions were measured in
mice (n=8 per group) that were sacrificed at 62 weeks of age. (A) Liver function was assessed by
the serum abundance of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). (B)
Representative images of liver sections of mice of each indicated group (n=4-5 per group) that were
subjected to hematoxylin and eosin staining. Original magnification: 20X. (C) Evaluation of liver
fibrosis by Sirius-Red staining for collagens. Representative images are shown. Original
magnification, 20X. The extent of fibrosis was quantified as the percentage of Sirius-Red positive
area (n=4 per group). (D) Mitochondrial density and size. Liver sections were analyzed by
transmission electron microscopy. Shown are representative images at a magnification of 6,000.
Mitochondrial densities were determined by normalizing the counted number of mitochondria to the
area of each randomly selected cell (n=30 cells for each group). Quantification of mitochondrial
size was performed for 4 mice from each group. Data are shown as mean ± SEM, *P < 0.05, **P <
0.01 versus LF, and +P < 0.05, ++P < 0.01 versus HF by ANOVAs.
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Figure S4. Hierarchical clustering of the samples based on the differentially expressed genes
(Methods). The sample prefix ‘VC’ represents HF group, ‘VE’ HF+Ex, ‘VR’ HF+CR, ‘NC’ LF, ‘NE’
LF+Ex and ‘NR’ LF+CR, respectively.
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Figure S5. Fold of enrichments over the background of lifespan correlated or anti-correlated genes,
significantly differentially expressed genes between any single pair of treatments, lifespan/aging
related genes in AGEMAP, and our aging liver time-course dataset on (A) MGI aging dataset and
(B) combination datasets of GenAge, MGI aging and reviews recruited manually.
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Figure S6. Hierarchical clustering of the expression profiles of age-related genes based on
microarray profiles from mice at 4, 8, 13 and 21 months of age (A), or based on AGEMAP liver
expression profiles (B) constituting the significant age-dependent gene expression patterns
determined by STEM (P < 0.01).
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Figure S7. KEGG ‘peroxisome’ pathway with each gene (node) color-coded for its correlation to
the mean lifespan across the six dietary groups according to the color key. Red color represents
positive correlation between PEX genes and lifespan, while green color indicates negative
correlation.
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Figure S8. Gene-wise analysis of peroxisomal function categories. (A) With each peroxisomal
function category, the correlation (PCC) of each gene’s expression level with lifespan across the six
different treatment groups and the fold changes between seven comparisons as indicated are
visualized in the heatmap according to the color keys. (B) The midlife expression levels of the
indicated four hepatic PEX genes, which showed negative correlation with the lifespan of mice
through microarray analysis, were confirmed by real-time quantitative PCR. Data are presented as
mean ± SEM (n=8/group). *P <0.05, **P<0.01 versus LF, and +P < 0.05, ++P < 0.01 versus HF by
ANOVAs.
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Figure S9. Expression level changes of the proxisomal proliferation genes (PEX) during
human brain aging. Average and standard deviation of the log2 expression levels of the 11 PEX
genes in each of the 30 sample are shown by the height of the bar and whisker, respectively.
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Figure S10. Survival curves of the N2 stain of worms with RNAi knockdown of prx genes starting
from L1 (A) or in response to heat stress at 35oC (B).
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Figure S11. Hepatic expression levels of Sirt1 and Ppargc1a in the six intervention groups of
mice. Real-time quantitative RT-PCR was performed, and data are presented as mean ± SEM
(n=8/group). **P<0.01 versus LF by ANOVAs.
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Supplemental Tables 

Table S1. Metabolic biomarkers in mice of the six intervention groups at 60~62 weeks of age. 

 
Parameter LF+CR HF+CR LF+Ex LF HF+Ex HF 

Serum Triglycerides (mg/dl) 
14.53 
(3.63) 

13.23 
(5.07) 

14.88 
(2.84) 

18.85 
(5.58) 

24.48 
(5.64) 

27.425 
(2.16) 

 
Cholesterol (mg/dl) 

64.18 
(7.72)##** 

140.37 
(17.40)## 

106.32 
(6.82)## 

121.73 
(8.18)## 

200.17 
(14.64)# 

243.97 
(17.10)** 

 
insulin (ng/ml) 

0.48 
(0.03)## 

0.89 
(0.16)## 

0.65 
(0.06)## 

0.52 
(0.08)## 

3.80 
(0.77) 

3.46 
(0.56)** 

 
leptin (ng/ml) 

0.83 
(0.14)## ** 

10.04 
(1.04)## 

2.12 
(0.09)## 

5.14 
(0.38)## 

53.6 
(12.17) 

72.09 
(5.53)** 

 
GTT AUC 

2.79 
(0.79)** 

9.99 
(1.61) 

8.09 
(1.67) 

11.41 
(1.79) 

11.93 
(2.28) 

12.06 
(1.85) 

Liver Liver weight (g) 
1.21 
(0.04)## 

1.26 
(0.05)## 

1.26 
(0.06)## 

1.37 
(0.05)## 

2.43 
(0.26) 

2.98 
(0.17)** 

 
Triglycerides (mg/dl) 

14.79 
(1.90)##** 

27.50 
(2.16)## 

29.30 
(3.84)## 

30.80 
(3.19)## 

65.84 
(7.08) 

71.36 
(5.43)** 

 
Cholesterol (mg/dl) 

2.18 
(0.23) 

2.26 
(0.26) 

2.77 
(0.31) 

3.15 
(0.31) 

3.40 
(0.35) 

3.53 
(0.32) 

 
Values shown are mean (± SEM). 
**P<0.01 versus LF, # P<0.05 and ## P<0.01 versus HF by two-way ANOVA. 
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