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SI Text
S1 Traditional Spike Sorting. To keep our presentation clear, we
made simplifying assumptions. Eq. 1 in the main text

f ðaÞ ¼ ∑
I

i¼1

πif iðaÞ: [S1]

suggests that each spike belongs to one and only one cell i, since
the number of summands is equal to the number of cells I. How-
ever, we could add some components to that mixture to account
for spikes emitted by several cells firing approximately together.
Similarly, in the main text we assumed that coincident spikes
never occurred exactly together, so that waveforms never over-
lapped. This assumption could easily be relaxed, but would re-
quire additional notation without adding illustrative value. The
results presented here are general, and so this distinction does
not matter.

We also assumed for simplicity that neurons had constant fir-
ing rates. In the case when neurons’ firing rates are modulated by
covariates c such as environmental parameters or experimental
time, c contains information about spikes identities, and using
constant πi’s in Eq. 1 effectively consists of ignoring that informa-
tion (1). This in turn yields a suboptimal spike sorter, and biased
estimates of tuning curves. This presumably also biases estimates
of correlated activity, although we did not provide proof of that in
this paper, because it was not our primary focus.

If cells’ firing rates are modulated by covariates, the optimally
efficient approach is to obtain the joint posterior probabilities
of spike identities, given all the variables that contain information
about these identities; i.e., PðX ¼ ija; s; cÞ instead of PðX ¼
ija; sÞ in Eq. 4. For the traditional spike sorter, Ventura (2)
showed that calculating PðX ¼ ija; cÞ consists of applying the
same spike sorting procedure outlined for traditional sorting in
the main text, but with the constant πi in Eq. 1 replaced by func-
tions πiðcÞ that depend on the cells’ firing rates. We will address
the inclusion of rate modulating covariates c for ensemble sorting
in future work.

S2 Ensemble Sorting. S2.1 Relationship to traditional sorting. In the
main text, we pointed to similarities and differences between
traditional and ensemble sorting. For example, we noted that
the posterior probabilities in Eqs. 4 and 2, and the spike assign-
ments in Eqs. 5 and 3, had the same structures. Eqs. 2 and 3 apply
to a single spike, while Eqs. 4 and 5 apply jointly to n spikes, and
are further conditioned on the spike train’s history s. Here we
show that ensemble sorting reduces to traditional sorting when
neurons are Poisson and independent, and their waveforms
are independent.

Ensemble sorting is based on Eq. 6 in the main text:

PðX1 ¼ i1;…; Xn ¼ inja; sÞ ¼
πiðsÞf iðajsÞ

f ðajsÞ :

where πiðsÞ ¼ PðX1 ¼ i1;…; Xn ¼ injs; N ¼ nÞ is the probability
that the n spikes were emitted by cells with identities
i ¼ ði1; i2;…; inÞ, f iðajsÞ ¼ f ðaji; sÞ is the joint distribution of
their waveform measurements, and

f ðajsÞ ¼ ∑
I

i1¼1
∑
I

i2¼1

…∑
I

in¼1

πiðsÞf iðajsÞ

is the unconditional joint distribution of the waveforms (uncon-
ditional, although all probabilities and densities are conditioned
on s).

To relate ensemble to traditional sorting, consider the situation
where the n spikes and their waveforms are independent. Then
the history of the electrode spike train s contains no information
about spike identities, so that conditioning on ða; sÞ is equivalent
to conditioning only on a. Then the denominator of Eq. 6, f ðajsÞ,
reduces to

f ðaÞ ¼ ∑
I

i1¼1

…∑
I

in¼1

PðX1 ¼ i1Þ…PðXn ¼ inÞ
∑

I

j1¼1
…∑

I

jn¼1
PðX1 ¼ j1Þ…PðXn ¼ jnÞ

× f i1ða1Þ…f inðanÞ ¼
�
∑
I

i1¼1

PðX1 ¼ i1Þ
∑

I

j1¼1
PðX1 ¼ j1Þ

f i1ða1Þ
�

…

�
∑
I

in¼1

PðXn ¼ inÞ
∑

I

jn¼1
PðXn ¼ jnÞ

f inðanÞ
�

¼
Yn
k¼1

�
∑
I

i¼1

PðXk ¼ iÞ
∑

I

j¼1
PðXk ¼ jÞ f iðakÞ

�
¼

Yn
k¼1

�
∑
I

i¼1

πif iðakÞ
�

¼
Yn
k¼1

f ðakÞ;

which is the product of the marginal distributions of the wave-
forms in Eq. 1 in the main text, as we should expect under inde-
pendence. It is equally easy to show that, under independence,
PðX1 ¼ i1;…; Xn ¼ inja; sÞ reduces to the product of the mar-
ginals,

Q
n
j¼1 PðXj ¼ ijjajÞ, which implies that ensemble sorting

reduces to traditional sorting as described in the main text.

S2.2 Waveform and joint spiking models.To specify the spike sorting
scheme for a group of n ≥ 1 spikes, we need to specify Eq. 6 in the
main text:

PðX ¼ ija; sÞ ¼ f ðaji; sÞPðX ¼ ijsÞ
f ðajsÞ ;

which are the joint probabilities that the spike IDs have value
i ¼ ði1;…; inÞ, given all waveforms a ¼ ða1;…; anÞ and ISIs
s ¼ ðs1;…; sn; snþ1Þ. We specify the three components of
Eq. 6 below.

• The denominator, f ðajsÞ, is evaluated as the sum over all i of
the numerator.

• The first term in the numerator, f iðajsÞ, is the joint distribution
of n observed waveforms a fired by cells i, and with ISIs s. It is
determined by the properties of the spike waveforms. For ex-
ample, if waveforms are independent and stationary, they do
not depend on the history of the electrode spike train. Then
f iðajsÞ ¼ f iðaÞ, which further reduces to the product of the
marginals,

Qn
j¼1 f ijðajÞ, where f i is the distribution of wave-

forms emitted by cell i that appeared in Eqs. 1 and 2 in the
main text. Typically, f i are assumed to be Gaussian distribu-
tions.
If waveforms are attenuated after short ISIs, then the condi-
tion on s cannot be dropped. However, waveforms are
independent conditional on s and i, so we can write
f iðajsÞ ¼ f ðaji; sÞ ¼ Q

n
j¼1 f ðajji; sÞ, and design appropriate
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attenuation models for the individual components. To illustrate
this, imagine that an electrode records I ¼ 2 cells, and that we
recorded only two spikes with identities ði1; i2Þ, waveforms
ða1; a2Þ, and ISIs ðs1; s2; s3Þ. Imagine that s1 is long enough
so that the first observed waveform a1 is not attenuated, but
that s2 is short enough that the second waveform would be at-
tenuated in the event that the same cell emitted both spikes.
This means that f ða1ji; sÞ ¼ f ða1ji1Þ ¼ f i1ða1Þ, i1 ¼ 1; 2, does
not depend on the past. Similarly, f ða2ji ¼ ð1; 2Þ; sÞ ¼ f 2ða2Þ
and f ða2ji ¼ ð2; 1Þ; sÞ ¼ f 1ða2Þ do not depend on the past
either, given that the two spikes were emitted by different cells.
However, f ða2ji; sÞ depends on s2 when i ¼ ð1; 1Þ or ð2; 2Þ. A
possible model was proposed by Pouzat et al. (3): They used
the amplitudes of the waveforms as features, assumed that they
were normally distributed with different means for each cell,
and used an exponential relaxation to model attenuation of
waveform amplitude. In our small example, it means that
f ða1ji; sÞ ¼ Nðμi1 ; σ2Þ, f ða2ji ¼ ði1; i2Þ; sÞ ¼ Nðμi2 ; σ2Þ when
i1 ≠ i2, and f ða2ji ¼ ði1; i2Þ; sÞ ¼ Nðμi2ð1 − ae−bs2Þ; σ2Þ when
i1 ¼ i2, where a and b are positive constants.

• The other term we must specify in Eq. 6 is πiðsÞ ¼ PðX1 ¼
i1;…; Xn ¼ injsÞ; the probability that the n spikes were fired
by cells i ¼ ði1; i2;…; inÞ, given that the electrode history is
s. It is determined by the cells’ ensemble spiking. The simplest
case is that of independent and Poisson cells. Then the spikes’
identities do not depend on the past, so that πiðsÞ ¼ πi ¼Q

n
j¼1 πij , where πi is the proportion of spikes from cell i that

appeared earlier in Eqs. 1 and 2 in the main text. Note that
when spikes and waveforms are independent, ensemble sorting
reduces to traditional spike sorting, as shown in the previous
section.
When spikes are not independent, we must specify a joint spik-
ing model, and derive πiðsÞ given that model. We first rewrite
πiðsÞ ¼ PðX ¼ ijsÞ as PðX ¼ i; sÞ∕f ðsÞ, where f ðsÞ is obtained
as the sum over i of PðX ¼ i; sÞ, and we condition iteratively to
obtain

PðX ¼ i; sÞ¼ f ðsnþ1jXn ¼ in; sn;Xn−1 ¼ in−1;…;X1 ¼ i1; s1Þ
·PðXn ¼ injsn;Xn−1 ¼ in−1; sn−1;…;X1 ¼ i1; s1Þ
· f ðsnjXn−1 ¼ in−1; sn−1;Xn−2 ¼ in−2;…;X1 ¼ i1; s1Þ
..
.

·PðX1 ¼ i1js1Þ · f ðs1Þ: [S2]

We thus need to determine

PðXj ¼ ijjsj; Xj−1 ¼ ij−1; sj−1;…; X1 ¼ i1; s1Þ;
j ¼ 1;…; n

the probability that spike j has identity ij, given the IDs of all
previous spikes and the ISIs up to spike j. This probability is
given by the conditional spiking rate function of neuron with
identity ij, given the previous spikes of the neuron ensemble.
Such conditional rate models are routinely used in the analysis
of neural data (4). See also the analytic expression for πiðsÞ in
Supporting Information, Sec. S5.3 for the illustration in the
main text.
We also need to determine

f Sj jXj−1;Sj−1;Xj−2;…;X1;S1
ðsÞ; j ¼ 1;…; nþ 1

the ISI distribution given past ISIs and spike identities. When
spikes are independent, this reduces to an exponential distri-
bution. Otherwise it must be derived analytically based on the
properties of the assumed joint spiking model. Supporting In-

formation, Sec. S5.3 contains that derivation for the illustration
in the main text, which shows that the solution involves mix-
tures of truncated and shifted exponential distributions. The
general case will be obtained similarly.

S3 Estimation of Coincident Spiking. The main conceptual contribu-
tion of this paper is the idea of ensemble sorting: Because the
history of an electrode spike train contains information about
spikes identities, spikes should be sorted jointly rather than
one at a time, otherwise estimates of coincident spiking will be
biased. But there is another, unrelated, source of bias that afflicts
statistical estimates calculated from sorted data, not just esti-
mates of coincident spiking. This is discussed below.

S3.1 Full versus probabilistic spike assignments. Traditional sorting
assigns each spike fully to one cell. When model based spike sort-
ing is used, as we do in this paper, each spike is typically assigned
fully to the one neuron that has the highest probability of having
emitted the spike (Eq. 3). Then the probabilities that the other
neurons emitted that spike (Eq. 2) are discarded for subsequent
analyses. But when waveform clusters overlap, one can never be
perfectly confident that a spike was emitted by a particular cell;
we know that some spikes will be misclassified. Therefore, assign-
ing each spike fully to a neuron ignores our uncertainty about
spike assignments. Ventura (1) showed that this induces bias
in estimates of firing rates, unless neurons have equal firing rates.
Ignoring that uncertainty biases other estimates. For example in
Fig. 2B, it is clear that estimated and true coincidence rates do
not match in expectation; i.e., EðT⊥Þ ≠ θ, even when neurons are
Poisson and independent (β ¼ 1).

To remove that source of bias, one must preserve the uncer-
tainty about spike assignments. We do that by making partial as-
signments of spikes to neurons according to the posterior
distribution of spike identities, instead of using only the largest
posterior probability. For example, consider an electrode that re-
cords three neurons. Then each spike could have been emitted by
one of the three neurons. Imagine that a spike with waveform a
was observed, and that the posterior probabilities that this spike
was emitted by neuron i ¼ A; B, andC are PðX ¼ ijaÞ ¼ 0.1, 0.3,
and 0.6, respectively. Typically, the spike is assigned to the neuron
that is most likely to have emitted it; i.e., neuron C in this case.
But neurons A and B also have relatively high probabilities of
having emitted that spike. Probabilistic (“soft” in Ventura’s, refs. 1
and 2, terminology) assignments consist of allocating 0.1, 0.3, and
0.6 partial spikes to the three neurons, respectively. Similarly,
imagine that we want to estimate the spike count correlation be-
tween two neurons. Typically, spike counts from full spike assign-
ments are used for that calculation. Let N be the number of
spikes from cell A in some bin: We cannot be certain that this
number is correct, because some spikes will be misclassified even
by the best spike sorter when waveform clusters overlap. Instead
ofN, we use the posterior expected number of spikes from cellA,
because that number summarizes the uncertainty in spike assign-
ments. The estimators we recommend are based on that princi-
ple. We illustrate this below for the coincidence rate θ and the
spike count correlation ρ.

S3.2 Estimates of the coincidence rate θ. In the main text, we ex-
plained how to calculate T⊥ and ~T∪ without using mathematical
formulas. These formulas are much less intuitive than the de-
scription we gave, but we need them to prove Theorems 1.1
and 1.2.

Let θ denote the probability that two cells both spike in time
bins of length γ. The usual estimate for θ is the observed propor-
tion of bins in which these cells emitted at least 1 spike each. This
is written as
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T⊥ ¼ M−1
∑
M

m¼1

Ifðxm1;…; xmnmÞ ∈ Cmg; [S3]

where IfAg ¼ 1 if A is true and 0 otherwise, M is the number of
bins, m indexes them, nm is the number of spikes in bin m, and
Cm ¼ fðim1;…; imnmÞ such that ðiml; imkÞ ¼ ð1; 2Þ for some
ðl; kÞ ∈ f1;…; nmg2g is the set of all joint spike identities that
code for cells 1 and 2 both spiking in bin m. Note that we mod-
ified our notation: Previously, xk denoted the identity of spike k,
k ¼ 1;…; n; xmk now denotes the identity of the k th spike in bin
m, k ¼ 1;…; nm. Eq. S3 also applies when spikes are sorted
jointly per Eq. 5, which yields the estimate we called T∪ in the
main text.

The estimator we recommend, ~T∪, is the average over bins of
the posterior probabilities of observing at least one spike from
each cell:

~T∪ ¼ M−1
∑
M

m¼1

PððXm1;…; Xmnm Þ ∈ Cmja; sÞ [S4]

where PððXm1;…; XmnmÞ ∈ Cmja; sÞ is the joint posterior prob-
ability function of the identities of the nm spikes in bin m, ob-
tained by summing the full joint posterior in Eq. 6 over all
variables, except ðXm1;…; XmnmÞ. Eqs. S3 and S4 have the same
structure; Eq. S3 uses spikes that were each assigned fully to a
neuron, whereas Eq. S4 preserves the uncertainty in determining
spike identities.

To make sense of Eqs. S3 and S4, consider the spike train
sketch in Fig. 1 of the main text. We observed N ¼ 5 spikes with
waveforms a and history s on an electrode that records I ¼ 3
cells. The spikes’ joint identities can be one of I n ¼ 35 possibi-
lities, with posterior probabilities (Eq. 6 in the main text) given in
Fig. 1. These values are for illustrative purposes only, and did not
result from actually applying our spike sorter to data; see the il-
lustration in the main text and sec. S5 below for an application of
our spike sorter to simulated data. To estimate θ, we cut the re-
cording time into M ¼ 2 bins of width γ, as shown in Fig. 1. The
first two spikes belong to the first bin, the other three to the sec-
ond bin.

We first calculate T∪. The largest joint posterior probability
for the 5 recorded spikes is PððX1; X2; X3; X4; X5Þ ¼
ðA; A; B; A; AÞja; sÞ ¼ 0.4, so joint spike sorting (Eq. 5) assigns
the third spike to cell B and all others to cell A. Only the second

bin contains spikes from cells A and B, so T∪ ¼ 1∕2. We now
verify that Eq. S3 gives the same answer. Bin 1 has n1 ¼ 2 spikes,
C1 ¼ fðA; BÞ; ðB; AÞg are the possible identities that code for a
coincidence, and the identities of the first two spikes are
ðx11; x12Þ ¼ ðA; AÞ. Since ðx11; x12Þ∉C1, the contribution of bin
1 to T∪ is Ifðx11; x12Þ ∈ C1g ¼ 0. Bin 2 has n2 ¼ 3 spikes, and
C2 ¼ fall permutations ofðA; B; kÞ; k ¼ A; B; Cg. The identi-
ties of the three spikes in bin 2, ðx21; x22; x23Þ ¼ ðB; A; AÞ,
are in C2, so the contribution of bin 2 to T∪ is
Ifðx21; x22; x23Þ ∈ C2g ¼ 1. Hence T∪ ¼ 1∕2, as needed.

Next, we make sense of Eq. S4 to calculate ~T∪. The contribu-
tion to ~T∪ of the first bin is PððX11; X12Þ ∈ C1ja; sÞ ¼
PððX11; X12Þ ¼ ðA; BÞ or ðB; AÞja; sÞ ¼ 0.13þ 0.1 ¼ 0.23. The
contribution of the second bin is PððX21; X22; X23Þ ∈ C2ja; sÞ ¼
PððX21; X22; X23Þ ¼ any permutation ofðA; B; kÞ; k ¼
A; B; Cja; sÞ ¼ 0.4þ 0.13þ 0.07þ 0.06þ 0.04 ¼ 0.7.
Hence ~T∪ ¼ ð0.7þ 0.23Þ∕2 ¼ 0.465.

S3.3 Estimates of the spike count correlation ρ. Perhaps the most
common measure of association in the activities of two cells is
the spike count correlation ρ. Fig. 2 in the main text shows that
the sample correlation is biased when spike identities are deter-
mined by traditional spike sorting. Here, we define an unbiased
estimator of ρ based on the joint posterior probabilities of spike
identities.

The true correlation ρ between the spike counts of two neu-
rons in bins of specified lengths is

ρ ¼ EðNANBÞ − EðNAÞEðNBÞ
σðNAÞσðNBÞ

; [S5]

where NX; X ¼ A; B denotes the number of spikes emitted by
cells A and B in a bin, EðNX Þ denotes its true mean, and
σ2ðNX Þ ¼ EðN 2

X Þ −E2ðNX Þ its true variance.
The usual estimate of ρ is the sample correlation, which is ob-

tained by replacing the true expectations in Eq. S5 by their esti-
mates in the data. That is,

R ¼ NANB − N̄A N̄Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

A − N̄A
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

B − N̄B
2

q ; [S6]

where the estimates of the various expectations are

True value Replaced by Estimate Sample mean over bins of…

EðNX Þ N̄X ¼ M−1 ∑M
m¼1 NX;m The spike count for cell X

EðNXi
NXj

Þ NXi
NXj

¼ M−1 ∑M
m¼1ðNXi ;mNXj;mÞ The product of spike counts for cells Xi and Xj

EðN2
X Þ N2

X ¼ M−1 ∑M
m¼1 N

2
X;m The squared spike count for cell X

For the example in Fig. 1 in the main text, the most likely set of
spike identities assignments—i.e., the set that maximizes the joint
posterior probability in Eq. 6—is for the 3rd spike to be assigned
to cell B and all 4 other spikes to cell A. Then the first bin (Fig. 1)
contains two spikes from cell A and none from cells B and C, and
the second bin contains 2 spikes from cell A, 1 from cell B, and
none from cell C.

Therefore, EðNAÞ is estimated by N̄A ¼ 2−1ð2þ 2Þ ¼ 2

EðNBÞ is estimated by N̄B ¼ 2−1ð0þ 1Þ ¼ 1∕2
EðNANBÞ is estimated by NANB ¼ 2−1ð2 × 0þ 2 × 1Þ ¼ 1

EðN 2
AÞ is estimated by N 2

A ¼ 2−1ð22 þ 22Þ ¼ 4

EðN 2
BÞ is estimated by N 2

B ¼ 2−1ð02 þ 12Þ ¼ 1∕2
which yields R ¼ 0 in this example.

The estimator we recommend is

~R∪ ¼ EðNANBja; sÞ −EðNAja; sÞEðNBja; sÞ
σðNAja; sÞσðNBja; sÞ

[S7]

where the expectations are calculated with respect to the full joint
probabilities of spike assignments. This estimator has the same
form as the usual estimator R, but all spike counts are replaced
by their expectation under the full joint posterior distribution of
spike identities (Eq. 6 in the main text). For example, for X ¼ A
or B,
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N̄X ¼ M−1
∑
M

m¼1

NX;m is replaced by

EðNX ja; sÞ ¼ M−1
∑
M

m¼1

EðNX;mja; sÞ [S8]

where

EðNX;mja; sÞ ¼ ∑
nm

k¼0

k × PðNX;m ¼ kja; sÞ [S9]

is the posterior expected number of spikes from cell X in bin m.
The summation is from 0 to nm, the total number of spikes in the
bin, allowing for the possibility that cell X spiked k ¼ 0; 1;…, up
to nm spikes, and EðNX;mja; sÞ is the sum of these k’s, weighted
by the posterior probabilities of observing k spikes from cell
X ; i.e., PðNX;m ¼ kja; sÞ. Basic laws of probability obtain
PðNX;m ¼ kja; sÞ by summing the full posterior probabilities in
Eq. 6 (main text) over all configurations of joint spike identities
that have a total of k spike identities belonging to cell X in binm.

Consider the example in Fig. 1 (main text) again to illustrate
the calculation of ~R∪. There are two bins; the first contains the
first two spikes, so nm ¼ 2, and the possible number of spikes
from cell A are k ¼ 0, 1, and 2. According to the listed posterior
probabilities, the chance of getting no spikes from cell A in bin 1
is

PðNA;1 ¼ 0ja; sÞ ¼ 0;

the chance of observing one spike in bin 1 from cell A is

PðNA;1 ¼ 1ja; sÞ ¼ PððX1; X2Þ ¼ ðA; BÞ or ðA; CÞ or ðB; AÞ
or ðC; AÞja; sÞ

¼ 0þ 0þ ð0.13þ 0.1Þ þ ð0.07þ 0.06þ 0.04Þ
¼ 0.4;

and the chance of observing two spikes from cell A in bin 1 is

PðNA;1 ¼ 2Þ ¼ PððX1; X2Þ ¼ ðA; AÞja; sÞ ¼ ð0.4þ 0.2Þ ¼ 0.6:

Bin 2 has a total of three spikes, so the possible values of NA;2,
the spike count for neuron A in bin b ¼ 2, are k ¼ 0, 1, 2, and 3,
with posterior probabilities calculated using the same process.
We collected the posterior probabilities for NA;1 and NA;2 in
the following tables:

NA;1 0 1 2

probability 0 0.4 0.6

and

NA;2 0 1 2 3

probability 0.3 0.1 0.6 0

This yields (Eq. S9)

EðNA;1ja; sÞ ¼ ð0 × 0Þ þ ð1 × 0.4Þ þ ð2 × 0.6Þ ¼ 1.6

EðN 2
A;1ja; sÞ ¼ ð02 × 0Þ þ ð12 × 0.4Þ þ ð22 × 0.6Þ ¼ 2.8

EðNA;2ja; sÞ ¼ ð0 × 0.3Þ þ ð1 × 0.1Þ þ ð2 × 0.6Þ ¼ 1.3

EðN 2
A;2ja; sÞ ¼ ð02 × 0.3Þ þ ð12 × 0.1Þ þ ð22 × 0.6Þ ¼ 2.5

so that Eq. S8 evaluates to

EðNAja; sÞ ¼
1.6þ 1.3

2
¼ 1.45; and

EðN 2
Aja; sÞ ¼

2.8þ 2.5
2

¼ 2.65:
[S10]

Using the same process, we calculate that the posterior prob-
abilities for the spike count of cell B in bins 1 and 2 are

NB;1 0 1 2

probability 0.77 0.23 0

and

NB;2 0 1 2 3

probability 0 0.64 0.36 0

which yields

ðNB;1ja; sÞ ¼ 0 × 0.77þ 1 × 0.23þ 2 × 0 ¼ 0.23

EðN 2
B;1ja; sÞ ¼ 0 × 0.77þ 12 × 0.23þ 22 × 0 ¼ 0.23

EðNB;2ja; sÞ ¼ 0 × 0þ 1 × 0.64þ 2 × 0.36þ 3 × 0 ¼ 1.36

EðN 2
B;2ja; sÞ ¼ 0 × 0þ 12 × 0.64þ 22 × 0.36þ 32 × 0 ¼ 2.08

so that

EðNBja; sÞ ¼
0.23þ 1.36

2
¼ 0.795 and

EðN 2
Bja; sÞ ¼

0.23þ 2.08
2

¼ 1.155:
[S11]

It remains to calculate EðNANBja; sÞ ¼ M−1 ∑M
m¼1

EðNA;mNB;mja; sÞ. For the first bin, we have

PðNA;1NB;1 ¼ 0ja; sÞ ¼ PðNA;1 ¼ 0

or NB;1 ¼ 0ja; sÞ ¼ PðNA;1 ¼ 0ja; sÞ þ PðNB;1 ¼ 0ja; sÞ
¼ 0þ 0.77 ¼ 0.77:

PðNA;1NB;1 ¼ 1ja; sÞ ¼ PðNA;1 ¼ 1 and NB;1 ¼ 1ja; sÞ

cannot be reduced to the product of the marginal probabilities
calculated earlier, because the spike counts may not be indepen-
dent. Instead we must use the joint probabilities, which gives

PðNA;1NB;1 ¼ 1ja; sÞ ¼ PððX1; X2Þ ¼ ðA; BÞ
or ðB; AÞja; sÞ ¼ 0.13þ 0.10 ¼ 0.23

PðNA;1NB;1 ≥ 2ja; sÞ ¼ 0

This gives EðNA;1NB;1ja; sÞ ¼ 0.23: Similarly, for the second bin,
we have

PðNA;2NB;2 ¼ 0ja; sÞ ¼ 0.3þ 0 ¼ 0.3
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PðNA;1NB;1 ¼ 1ja; sÞ ¼ PðNA;1 ¼ 1 and

NB;1 ¼ 0ja; sÞ ¼ 0.04

PðNA;1NB;1 ¼ 2ja; sÞ ¼ PðNA;1 ¼ 1 and

NB;1 ¼ 2ja; sÞ þ PðNA;1 ¼ 2 and

NB;1 ¼ 1ja; sÞ ¼ 0.4þ 0.13þ 0.07þ 0.06 ¼ 0.66

PðNA;1NB;1 ≥ 3ja; sÞ ¼ 0

Hence EðNA;2NB;2ja; sÞ ¼ 1 × 0.04þ 2 × 0.66 ¼ 1.36, which
gives

EðNANBja; sÞ ¼
0.23þ 1.36

2
¼ 0.795: [S12]

Putting Eqs. S10, S11, and S12 together, we have

~R∪ ¼ 0.795 − 1.45 × 0.795ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.65 − 1.452

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.155 − 0.7952

p ≈ −0.67;

which is quite different from the usual estimate R ¼ 0. This illus-
trates why using the biased, traditional estimate R can have pro-
foundly poor consequences for inferences about correlation, as
we observed in Fig. 2 of the main text.

S4 Theorem Proofs. S4.1 Proof of Theorem 1.2.Before we prove The-
orem 1.2, it is useful to point out that if the true identities of the
spikes were known, we would estimate the coincidence rate with

T true ¼ M−1
∑
M

m¼1

Ifx truem ∈ Cmg;

which has the same form as T⊥ in Eq. S3, but involves the true
spike identities x truem ¼ ðxm1;…; xmnmÞ true rather than the identi-
ties determined by traditional spike sorting, xm ¼ ðxm1;…; xmnmÞ.
The expectation of T true is θ, since it uses the true spike identities.
It is written as

θ ¼ EðT trueÞ ¼ M−1
∑
M

m¼1

PðXm ∈ CmÞ [S13]

since the expectation of an indicator function is the probability of
its argument. Note that this calculation depends neither on the
waveforms a, nor on the spike train history s.

To prove Theorem 1.2, we will show that the expectations of
T true and ~T∪ are equal. The expectation of ~T∪ is

Eð ~T∪Þ ¼ M−1
∑
M

m¼1

�
∑

im∈Cm

EðPðXm ¼ imja; sÞÞ
�
;

where PðXm ¼ imja; sÞ is the sum over all i except im of the joint
posterior of X given ða; sÞ in Eq. 6 in the main text, and its ex-
pectation is with respect to the joint distribution of the random
variables inside the probability; i.e., ða; sÞ. Hence

E¼EðPðXm¼ imja;sÞÞ¼
Z
s

Z
a

�
∑
i\im

PðX¼ ija; sÞ
�
f ða;sÞdads

¼
Z
s

�Z
a

�
∑
i\im

PðX¼ ija;sÞ
�
f ðajsÞda

�
f ðsÞds

¼
Z
s

�Z
a

�
∑
i\im

πiðsÞf iðajsÞ
f ðajsÞ

�
f ðajsÞda

�
f ðsÞdsbyEq.6 in themain text

¼
Z
s

�Z
a

�
∑
i\im

πiðsÞf iðajsÞÞda
�
f ðsÞds

¼
Z
s

�
∑
i\im

πiðsÞ
Z
a
f iðajsÞda

�
f ðsÞds

¼
Z
s

�
∑
i\im

πiðsÞ
�
f ðsÞds sinceadensity function integrates to1

¼
Z
s

�
∑
i\im

PðX¼ ijsÞ
�
f ðsÞdsbydefinitionof πiðsÞ

¼
Z
s
½PðXm¼ imjsÞ�f ðsÞds¼PðXm¼ imÞ:

Putting the result together, we have

Eð ~T∪Þ ¼ M−1
∑
M

m¼1

�
∑

im∈Cm

PðXm ¼ imÞ
�

¼ M−1
∑
M

m¼1

PðXm ∈ CmÞ;

which is Eq. S13. Hence Eð ~T∪Þ ¼ θ : ~T∪ is unbiased for the true
coincidence rate. QED.

It is not possible to prove in general that the variance of ~T∪
tends to zero in large samples. This is because the summands of
~T∪ are not independent, since they all depend on the same vector
of random variables ða; sÞ. However, if the firing rates of the cells
depend on a finite rather than on the infinite past, then ~T∪ is the
average of terms whose correlation decreases with time. Provided
the correlation wanes off sufficiently fast, a central limit theorem
applies to ~T∪ so that Varð ~T∪Þ tends to zero when the sample size
increases, which guarantees consistency. This is the case in the
illustration in the main text (Fig. 3), where groups of spikes se-
parated by more than the coupling length of 10 ms are indepen-
dent (See section S5.3).

S4.2 Proof of Theorem 1.1. It is useful to introduce another estima-
tor for θ, ~T⊥, which is obtained from spikes sorted one at a time
(traditional sorting), but which uses the posterior of spikes iden-
tities in Eq. 2 rather than the maximum posterior probability in
Eq. 3. The usual estimator for θ, T⊥, suffers from two sources of
bias: the bias that originates from sorting spikes independently,
and the bias that originates from using full spike assignment; ~T⊥
only suffers from the former source, which we now prove.

If spikes are sorted one at a time, then

~T⊥ ¼ M−1
∑
M

m¼1

�
∑

im∈Cm

�Ynm
k¼1

PðXmk ¼ imkjamkÞ
��

;

which is obtained by replacing the joint probability in Eq. S4 by
the product of the marginals from traditional sorting (Eq. 2 in the
main text). Following basic rules of probability, the expectation of
~T⊥ is calculated by integrating over the random variables, the am,
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with respect to their true distribution, f ðamÞ. This gives

Eð ~T⊥Þ ¼ M−1
∑
M

m¼1

�
∑

im∈Cm

Z
am

Ynm
k¼1

�
πimk

f imk
ðamkÞ

f ðamkÞ
�
f ðamÞdam

�
;

which does not reduce to θ in Eq. S13, hence ~T⊥ is biased. But if
the cells and their spikes are independent, the joint distribution
reduces to the product of its marginals; i.e., f ðamÞ ¼

Qnm
k¼1 f ðamkÞ.

In that case,

Eð ~T⊥Þ ¼ M−1
∑
M

m¼1

�
∑

im∈Cm

Ynm
k¼1

Z
amk

πimk
f imk

ðamkÞdamk

�

¼ M−1
∑
M

m¼1

�
∑

im∈Cm

Ynm
k¼1

πimk

�
;

and
Qnm

k¼1 πimk
¼ Qnm

k¼1 PðXmk ¼ imkÞ ¼ PðXm ¼ imÞ iff the
spikes are independent, so that EðT⊥Þ reduces to Eq. S13. QED.

The usual estimate of θ, T⊥, suffers from the additional source
of bias that originates from using full spike assignments, so it will
be biased even when spikes and their waveforms are independent.
To prove this formally, one would need to calculate its expecta-
tion

EðT⊥Þ ¼ M−1
∑
M

m¼1

PðX full
m ∈ CmjaÞ

with respect to the joint distribution of the waveforms a, where
X full

m is the random variable of full spike assignments, which is
different from the true spike identities Xm. This calculation is
very difficult because it involves evaluating the integral of f ðaÞ
over the values of a that are such that fðargmaxim PðXm ¼
imjaÞÞ ∈ Cmg. We avoid the general proof and instead refer to
the illustration in the main text (Fig. 3) for counterexamples
to the claim that T⊥ is unbiased.

There are exceptions. First, if spikes can be classified perfectly,
then T⊥ ¼ T true since the true spike identities are known. Sec-
ond, if spikes are independent, then sorting spikes one at a time
is equivalent to ensemble sorting, the “correct,” unbiased sorting
procedure. But unlike ~T⊥, T⊥ is not unbiased despite cells being
independent, unless neurons have equal firing rates, because it
uses full spike assignments.

S5 Supplement for the Illustrations. S5.1 Additional comments for
Fig. 1—Tolerated percentage of misclassified spikes. Figs. 2 and 3
in the main text show that the spike count correlation and coin-
cidence rate estimates can be substantially biased for physiologi-
cally plausible true values of neuronal correlations, even for
relatively low rates of misclassified spikes. Here we discuss the
types of misclassification rates one can expect from sorting ex-
perimental data.

To know for certain the typical spike misclassification error
rate in a neurophysiology experiment would require knowing
the ground truth (which cells actually emitted which spikes).
There is at least one dataset which contains this information
(5), and the rate of misclassification has been compared against
two easily computed metrics, L-ratio and Isolation Distance,
which are available to any analyst for use with their own, uncer-
tain data. The values of these metrics are sometimes reported in
papers which make use of ensemble recordings (for a recent ex-
ample, Allen et al. ref. 6, where the Isolation Distance ≈ 18).

Consider a large number of cells of equal firing rate recorded
on a tetrode. A common approach is to spike sort using the first

three principal components from each of the four wires on the
tetrode, yielding 12 spike features. Suppose that each cluster is
Gaussian, and evenly spaced in this multidimensional feature
space. The isolation distance of a cluster is defined (5) as the
square of the radius from the cluster’s center for which exactly
half of the spikes contained within that radius belong to that clus-
ter. In this configuration, if each cluster is separated from its
nearest neighbors by μ ¼ 3, with μ defined as in the main text,
then the isolation distance is D2 ≈ 25. In other words, if each
cell’s waveform distribution is about three standard deviations
away from its nearest neighbors in each feature dimension, then
the isolation distance is approximately 25. This isolation distance
is typically considered to be adequate by experimentalists, and yet
it implies a pairwise misclassification rate (considering only near-
est neighbor clusters in a single feature dimension) of approxi-
mately 6.7%. While this may not seem large, it is more than
enough to lead to mistaken inferences about correlation, accord-
ing to the results in Fig. 2. Furthermore, the total misclassification
rate due to “pollution” from all neighboring clusters in all dimen-
sions will be much higher.

Alternatively, we can use the experimental data from Schmit-
zer-Torbert et al. (5) to directly estimate the impact of a given
isolation distance on misclassification rate, and indirectly on bias
of correlation estimates. In the Schmitzer-Torbert et al. (5) data, it
is reported that an Isolation Distance of 25 corresponds to a Type
1 error rate of 1% and a Type 2 error rate of 10%, for a mean
misclassification rate of 5.5%. There is great variability around
this mean, and the misclassification rate even for cells with more
impressive Isolation Distances may still be quite large. As can be
seen in Fig. 2 of the main text, this rate of misclassification results
in a nontrivial amount of bias in correlation estimates, which will
significantly impact inference and interpretation of scientific
questions.

S5.2 Traditional spike sorting.The application in the main text com-
pares ensemble sorting to traditional sorting. To apply the latter,
we follow the implications of Eq. 3. All we need is to specify Eq. 1,
the distribution of a spike waveform (WF), since spike assign-
ments (Eq. 3) depend on it.

A single spike with WF feature a has distribution f ðaÞ ¼
π1f 1ðaÞ þ π2f 2ðaÞ, where πi is the probability that cell i spiked,
and f i is the distribution of WF features for cell i. By assumption,
f 1 and f 2 are univariate Gaussian distributions with means 0
and μ, and unit variances (with no loss of generality); also π1 ¼
λ1∕ðλ1 þ Λ2Þ and π2 ¼ Λ2∕ðλ1 þ Λ2Þ, since a single spike was
emitted by one of the two cells, with probabilities proportional
to their overall firing rates, λ1 and Λ2.

We explain Λ2. Recall that cell 2 has the stochastic rate
λ2ðtÞ ¼ λ2 × gðCtÞ, where Ct is the time elapsed since the last
spike from cell 1; cell 2 has an altered firing rate βλ2 for a dura-
tion ν ¼ 10 ms after cell 1 spikes, and rate λ2 otherwise. Hence its
overall rate is the expectation of λ2 × gðCtÞ with respect to Ct.
Since cell 1 spikes according to a Poisson process with rate λ1,
Ct is distributed as an exponential random variable with mean
λ−1
1 . A trivial calculation yields Λ2 ¼ Eðλ2 × gðCtÞÞ ¼ λ2 ×
ðβ − βe−λ1ν þ e−λ1νÞ. We can verify that Λ2 ≥ λ2 if β ≥ 1, and
Λ2 < λ2 if β < 1, since Λ2 ¼ λ2 × ð1þ ðβ − 1Þð1 − e−λ1νÞÞ and
ð1 − e−λ1νÞ ≥ 0. If ν ¼ 0 or β ¼ 1, in which cases cell 1 has no
effect on cell 2 spiking, then Λ2 ¼ λ2 ¼ λ2ðtÞ.

S5.3 Joint sorting for the two correlated Poisson cell simulation. To
specify the spike sorting scheme for a group of n ≥ 1 spikes,
we need to specify Eq. 6 in the main text:

PðX ¼ ija; sÞ ¼ f ðaji; sÞPðX ¼ ijsÞ
f ðajsÞ ;
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which are the joint probabilities that the spike IDs have value
i ¼ ði1;…; inÞ, g i v e n a l l w a v e f o rms a ¼ ða1;…; anÞ and
ISIs s ¼ ðs1;…; sn; snþ1Þ.

We assume in this example that WFs are independent and sta-
tionary, so f ðaji; sÞ simplifies to

Q
n
j¼1 f ij ðajÞ, as argued in sec. S2.2,

where, in our illustration, f 1 and f 2 are univariate Gaussian dis-
tributions with means 0 and μ, and unit variances.

Next, we need PðX ¼ ijsÞ. In the main text, we showed that
this amounts to calculating

PðXj ¼ ijjsj; Xj−1 ¼ ij−1; sj−1;…; X1 ¼ i1; s1Þ; j ¼ 1;…; n

the probability that spike j has identity ij ¼ 1 or 2, given the IDs
of all previous spikes and the ISIs up to spike j, and

f Sj jXj−1;Sj−1;Xj−2;…;X1;S1
ðsÞ; j ¼ 1;…; mþ 1

the density of ISI Sj, given the past up to spike j − 1.
The past that is relevant to the probability of Xj is fully con-

tained in the random variableCj ¼ Cðs1; X1;…; sj; XjÞ, the time
elapsed between spike j and the last spike from cell 1; for exam-
ple, CðX1 ¼ 2; X2 ¼ 1; X3 ¼ 1; X4 ¼ 1Þ ¼ 0 and CðX1 ¼ 2;
X2 ¼ 1; X3 ¼ 2; X4 ¼ 2Þ ¼ s3 þ s4. If Cj−1 þ sj > ν (ν ¼ 10 ms
is the coupling duration), then the last spike from cell 1 happened
more than ν ago, so that the firing rate of cell 2 is λ2. This implies
that the spike with ID Xj was fired by cell 1 with probability
λ1∕ðλ1 þ λ2Þ, and by cell 2 with probability λ2∕ðλ1 þ λ2Þ. Conver-
sely, if Cj−1 þ sj < ν, Xj ¼ 1 and 2 with probabilities
λ1∕ðλ1 þ βλ2Þ and βλ2∕ðλ1 þ βλ2Þ, respectively. To summarize,
we have

PðXj¼ ijsj;Xj−1¼ ij−1; sj−1;…;X1¼ i1; s1Þ¼λi∕ðλ1þλ2Þ; i¼1;2;

ifCj−1>ν;

PðXj¼1jsj;Xj−1¼ ij−1; sj−1;…;X1¼ i1; s1Þ¼λ1∕ðλ1þβλ2Þ
ifCj−1≤ν;

PðXj¼2jsj;Xj−1¼ ij−1; sj−1;…;X1¼ i1; s1Þ¼βλ2∕ðλ1þβλ2Þ
ifCj−1≤ν: [S14]

We also split the calculation in two cases to calculate

f SjjXj−1;Sj−1;Xj−2;…;X1;S1
ðsÞ; j ¼ 1;…; nþ 1.

If Cj−1 > ν, the effect of the last spike from cell 1 on the firing
rate of cell 2 has ceased, so the waiting time Sj to the next spike is
exponentially distributed with rate ðλ1 þ λ2Þ. If Cj−1 ≤ ν, cell 2
has rate βλ2 for a duration ν −Cj−1, and rate λ2 after that, so
that Sj has the mixture distribution

f Sj jXj−1;Sj−1;Xj−2;…;X1;S1
ðsÞ ¼ p · f Sj jSj<ν−Cj−1

ðsÞ þ ð1 − pÞ
· f Sj jSj≥ν−Cj−1

ðsÞ;

where p ¼ PðSj < ν −Cj−1Þ ¼ 1 − e−ðλ1þβλ2Þðν−Cj−1Þ, the density
f Sj jSj<ν−Cj−1

ðsÞ is the truncated exponential density
ðλ1 þ βλ2Þe−ðλ1þβλ2Þs∕ð1 − e−ðλ1þβλ2Þðν−Cj−1ÞÞ when s < ν −Cj−1,
and 0 otherwise, and the density f SjjSj≥ν−Cj−1

ðsÞ is the shifted ex-

ponential density ðλ1 þ λ2Þe−ðλ1þλ2Þðs−ðν−Cj−1ÞÞ if s > ν −Cj−1, and
0 otherwise. Putting everything together, we have

f SjjXj−1;Sj−1;Xj−2;…;X1;S1
ðsÞ ¼ ðλ1 þ λ2Þe−ðλ1þλ2Þs if Cj−1 > ν;

¼ ðλ1 þ βλ2Þe−ðλ1þβλ2ÞsIfs<ν−Cj−1g

þ ðλ1 þ λ2Þe−ðλ1þλ2Þse−λ2ðβ−1Þðν−Cj−1ÞIfs>ν−Cj−1g; if Cj−1 ≤ ν:

[S15]

These densities are then evaluated at observed ISI values sj to
obtain PðX ¼ ijsÞ.

The derivation of Eq. S15 shows that the ISIs do contain in-
formation about the spike IDsX , since their distributions depend
on X through the Cj’s. To understand this more intuitively,
imagine that λ1 is relatively low, that β ≫ 1, and that ν is fairly
long, so that cell 2 is very likely to spike shortly after cell 1 spikes.
Imagine that we observe a spike, whose ID Xj we must deter-
mine. Then the odds of cell 1 having fired that spike decreases
as the next ISI Sjþ1 increases, since a spike from cell 1 almost
guarantees a spike from cell 2 shortly afterwards. When sorting
a group of n spikes with IDs X1;…; Xn, it is therefore important
to include the ISIs S1;…; Sn and the extra ISI Snþ1 in the calcu-
lation, as we have done, since Sj contains information about the
IDs of past spikes. Failing to do so will bias spike sorting and
subsequent correlation estimates.

There are two outstanding issues with the calculations of
Eqs. S14 and S15, which arise because the electrode recording
is finite. First, consider a spike j that occurs within ν of the begin-
ning of the recording. Then Cj, the time elapsed since the last
spike of cell 1, is unknown when spike j and its predecessors have
IDs X1 ¼ X2 ¼ … ¼ Xj ¼ 2. Although it is relatively easy to
derive the proper correction for this left truncation problem,
we will ignore it here for simplicity, and instead discard the be-
ginning of the spike train until an ISI larger than ν is observed.
Second, we need a right truncation correction for Eq. S15.
Indeed, given the past up to spike j − 1, the duration Sj until
we observe the next spike is not an ISI, but the minimum between
and ISI and the remaining duration Tj of the experiment.
Although it is true that only the last observed ISI snþ1 is trun-
cated, we cannot assume that we know the future when we derive
the density of the random variable Sj in Eq. S15, since the cal-
culation is not conditioned on the future. Hence Eq. S15 must
be rescaled by the integral from 0 to Tj of Eq. S15. For spikes
that are far from the end of the experiment, this correction will
be negligible, but it may matter for the last few ISIs.

Finally, we can verify that the calculations of Eqs. S14 and S15
do not depend on the IDs of the spikes that are not included the
group of n spikes we are sorting together, provided that s1 and
snþ1 are larger than ν ¼ 10 ms. This means that, in our particular
application, groups of spikes that are separated by more than
ν are necessarily independent, so that we can sort such groups
independently, rather than ensemble sort the whole spike train
at once. To proceed, we thus consider each new spike and check
if adjacent spikes are within ν. If not, we sort the spike alone
and move onto the next spike. Otherwise we collect all spikes
that are less than ν away from their immediate neighbors, and
we sort them jointly, as described above. Then we move onto the
next spike.
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Fig. S1. Partial spike train (Top) with vertical ticks showing 3 consecutive spikes. These spikes have waveform measurements aj−1, aj , ajþ1. The interspike
intervals (ISIs), Sj and Sjþ1, and the length of time between each spike and the end of recording, Tj and Tjþ1, are also indicated. All of these quantities
are used in ensemble sorting, as each contributes information about the provenance of each spike.
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