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Expectation Maximization for the Two-Allele Model. When comput-
ing the likelihood according to our two-allele model, we require a
partition R ¼ γ1 ∪ γ2 of the reads assigning each read to one of
two alleles. This partition is missing information, and we infer the
expected partition by assigning indicator variables for the events
that individual reads have membership in γ2. Assuming two
alleles, and therefore two methylation probabilities for each
CpG (cytosine guanine dinucleotide), we let θi1 and θi2 be the
methylation probabilities at CpG i for allele 1 and 2, respectively.
The read set R is partitioned into two subsets γ1 and γ2 according
to the allele of origin for each read. When calculating the like-
lihood, the methylation probabilities are the parameters
Θ ¼ fðθ11; θ12Þ;…; ðθn1; θn2Þg. Let μi; i ∈ f1; 2g denote the prob-
ability that a read comes from allele i, so μ1 ¼ μ2 ¼ 0.5. We use
the indicator functions I1ðriÞ and I2ðriÞ ¼ 1-I1ðriÞ for events that
ri originated from allele 1 and allele 2, respectively. The complete
data likelihood is

LðΘjR; γÞ ¼
Ym
i¼1

Y2
j¼1

ðμj
Yn
k¼1

θmðri;kÞ
kj ð1-θkjÞuðri;kÞÞIjðriÞ [S1]

wheremðri; kÞ and uðri; kÞ are indicators for the methylation state
of the read ri at the kth CpG, and we let mðri; kÞ ¼ uðri; kÞ ¼ 0
when the kth CpG is not covered by ri.

The expectation (E) step updates the missing data γ with the
observed data R and parameters Θ. We define pji as the probabil-
ity that a read ri comes from allele j. These pji are essentially the
expected values of membership in the subsets γ1 and γ2 of the
partition. Therefore, pji can be calculated as the ratio of the prob-
ability that the read ri comes from the allele j and the sum of
probabilities that the read comes from either allele. At the nth
iteration,
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where the parameters on the right-hand side are as estimated in
iteration n − 1. The maximization (M) step updates the para-
meters Θ to maximize the likelihood
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p1i

; [S3]
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p2imðri; kÞ

∑
m

i¼1
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: [S4]

With these expectation maximization (EM) steps, we can esti-
mate values for all parameters Θ ¼ fðθ11; θ12Þ;…; ðθn1; θn2Þg
and the probabilities for each read originating from either allele.

Preprocessing High-Throughput Short-Read Bisulfite Sequencing. For
efficient computation, we took the following preprocessing steps
before AMR identification.

• Bisulfite sequencing data was mapped with the RMAPBS soft-
ware (1) after removing adaptor sequences.

• Only one read per mapping location was retained to eliminate
bias from PCR duplicates.

• All paired-end reads having both ends map within 1,000 bp
were merged as a single read, possibly including a spacer
consisting of N characters.

• All reads were converted from genomic coordinates to CpG
coordinates, and all non-CpG positions were removed form
each read. The characters in the converted reads were C, T,
and N, to indicate methylated, unmethylated, and unknown.

• Only reads with at least one non-N character were retained
after the conversion.

• When processing reads, positions with N were ignored com-
pletely.

Issues Related to Selecting a Sliding Window Size. In selecting a
window size, the two main considerations (other than computa-
tional speed) are (i) the window size must be small enough that
allelically methylated region (AMR) boundaries are accurately
identified with the desired resolution; (ii) to be large enough that
we can leverage as much information as possible from the over-
lapping reads. In general, there is no single window size that will
optimally identify AMRs through the entire genome, and differ-
ent datasets likely will benefit most from using different window
sizes (e.g., based on average CpGs per read, and total amount
of data).

To select the window size of 10 CpGs, we tested windows of
size 5, 10, 15, and 20 using the blood cell methylomes. We exam-
ined how these window sizes identify known AMRs in the H19,
GNAS, SGCE, SNRPN, KCNQ1, ZIM2, and MEG3 loci.

When experimental technology produce longer reads, it is
likely that a larger window size will capture a much greater
amount of information about how the reads corresponding to
the same allele overlap. However, using a larger window size will
still blur boundaries of AMRs, and potentially will cause smaller
AMRs to be missed. When a better gold standard training set
exists, we will be in a better position to optimize parameters such
as the window size.
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Rationale for Merging Nearby AMR Fragments. As described, we
identified AMRs by applying our model in a sliding window along
the chromosomes and any identified AMR “fragments” that were
adjacent were merged if they were within 1 kbp of each other.
Some motivation for this procedure can be found in the figure
above, which shows the difference between the AMRs before
(black blocks) and after (blue blocks) merging for the blood
methylomes at the H19 imprinting control region (ICR). In this
case, due to fluctuations in coverage through the 5 kbp known
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H19 ICR, several fragments of AMRs were identified initially,
and after merging the intervals covered by the hematopoietic
stem/progenitor, B-cell neutrophil and CD133+ cord blood were
very similar. Using such a method will always fail to join nearby
fragments if they are more distant than the cutoff, as illustrated
for the peripheral blood mononuclear cells methylome (also in
the figure above).

Removal of LSU-rRNA Genes from Predictions.We observed that sev-
eral of our top identified AMRs (i.e., those most consistent across
methylomes) overlapped LSU-rRNA genes. Such a finding would
be consistent with reports of dosage compensation, analogous
to X chromosome inactivation, for rRNA genes (2). However, we
also noticed that the number of reads mapping over these regions
was generally much more than in other top identified AMRs.
BLASTing several of these in the National Center for Biotechnol-
ogy Information nonredundant (NCBI) database revealed that
most of them matched only one location in hg18, but matched ad-
ditional locations in newer assemblies of chromosomes, frequently
even newer than are included in hg19. We therefore decided to
remove these from our predictions because we believe they are
likely artifacts representing methylation states from multiple geno-
mic intervals superimposed on a single interval.

Optimizing of Regions of Allele-Specific Methylation. Our genome-
wide AMR identification was based on testing for allele-specific
methylation in sliding windows along each chromosome. We also
designed an algorithm that did not require a sliding window,
allowing us to optimize the boundaries of the identified AMRs
so that we might more precisely locate these boundaries. This
algorithm is much more computationally expensive, and so it is
not appropriate for genome-wide application. This method uses
scores that are based on the likelihoods (described in the paper)
for either one or two alleles, and is equivalent to testing all ways
to partition of a genomic interval into alternating subintervals of
allele-specific and single-allele methylation. We did not use Baye-
sian information criterion (BIC) in this method, but instead used
a heuristic penalty term equal to a linear function of the number
of reads inside the AMR to offset the difference in model com-
plexity between the allele-specific and single-allele models. This
criterion is similar to Akaike information criterion. Because of
the logarithmic function in the BIC, it could not be computed
incrementally in the dynamic programming recurrence presented
below.

The effect of this different penalty term is increased sensitivity,
but also decreased specificity. This method is only suitable for
applying in regions where we have prior information telling us
we should find an AMR, and our goal is to locate the boundaries
of that AMR. The importance of this task is evident from exam-
ples, such as PEG10 (3, 4) and GNAS (5, 6) promoters (Fig. 3),
where precise boundaries seem to distinguish allelic states of
nearby promoters.

Let L2ði; jÞ denote the maximum likelihood of the two-allele
model using only CpGs i through j as estimated by EM and let
L1ðiÞ denote the likelihood of the single-allele model computed
only for the ith CpG. For CpG i, we use score1ðiÞ to indicate the
maximum likelihood of the interval ½1; i� assuming the ith CpG
has single-allele methylation, and score2ðiÞ is the maximum like-
lihood of the interval ½1; i� with the ith CpG as the end of an
AMR. Assume the size distribution of non-AMR is a geometric
distribution with parameter τ, and the size distribution of AMR
(f 2) is arbitrary. Then we use the recurrences

score2ðiÞ ¼ max
1≤i 0<i

flogL2ði 0; iÞ þ log f 2ði − i 0Þ þ score1ði 0Þg;
[S5]

and

score1ðiÞ ¼ logL1ðiÞ þmax
� score2ði − 1Þ þ log τ;

score1ði − 1Þ þ logð1 − τÞ:
[S6]

to compute the maximal values of likelihoods for partial segmen-
tations of the data up to each i. We record such score1 and score2
for each CpG. The estimated optimal value is found at the nth
CpG and a traceback provides the precise locations of AMRs.

In practice we impose a minimum size (10 CpGs) on the AMRs
and spaces between AMRs. The reason why the function f 2 is
described as “arbitrary” above is because the value of score2 can-
not be built up incrementally, and each individual value of score2
must be computed using EM. In this context no one duration dis-
tribution will lead to faster computation; because of this there is
no speed benefit to using a geometric distribution for the sizes of
AMRs in our scoring function. However, we did not evaluate
other distributions and simply used a geometric distribution for
f 2. The value of τ and the corresponding parameter for f 2 were
set by assuming that the mean AMR size was 100 CpGs, and that
the mean inter-AMR distance was 10,000 CpGs.

Semisimulated Data. We used a strategy that we call “semisimu-
lated” data to reflect the coverage variance of the real sequencing
data. All simulated reads took the locations of real data, and their
methylation states were generated according to the simulated
methylation probabilities of CpGs in the genome. For each CpG,
we randomly generated two methylation profiles by sampling
individual CpG methylation levels as Beta variants skewed to-
ward 0 or 1 (e.g., Beta distribution with mean 0.75 for one allele
and 0.25 for the other with variance also controlled). For CpGs
designated within non-AMR, both alleles’ methylation probabil-
ity was set as one of the two profiles randomly. In this way, the
average methylation level through a region was always roughly
0.5, even for single-allele simulations. Then we assigned each
read with equal probability to one of the two alleles and the
methylation states of the CpGs within the read were sampled
according to probabilities given by the methylation profile corre-
sponding to that allele. Mimicking the bisulfite conversion, all
unmethylated read cytosines were converted to thymines.

In the simulation, we manipulated three independent vari-
ables: mean coverages, read lengths, and CpG density distribu-
tions. The mean coverages were {5×, 10×, 15×}, and the read
lengths were {50, 100, 150} bases. All reads were taken from the
human B-cell and neutrophil methylomes. Different CpG densi-
ties were taken from three sets of regions:

1. All CGIs defined in ref. 7, with mean size of 760 bp;
2. non-CGI promoters defined as 1 kb regions upstream of

refSeq TSS but not CGIs;
3. non-CGI intergenic regions that were intergenic regions with

CpG density (observed/expected) between 0.2 and 0.4 and
mean size of 1,457 bp.

For each combination of variables, 100 regions were randomly
selected from one of the three sets. Then each region was simu-
lated as AMR and non-AMR 10 times, respectively. In total,
there were 2; 000 ¼ 2 × 10 × 100 data points in one simulation.
To calculate the variances of specificity and sensitivity, we re-
peated the simulations 100 times for each variable combination.

Estimating False-Discovery Rate (FDR) Using Semisimulated Data. We
used the idea of semisimulated data to obtain bounds on false-
discovery rate for the five blood methylomes analyzed. Our
procedure was as follows. Using the real data from reads, we ran-
domly shuffled methylation states corresponding to each CpG
site. In other words, the methylation states were collected from
all reads mapping over a specific CpG site, and then randomly
permuted before being assigned back to those reads. This simula-
tion preserves exactly the likelihood for any interval under our
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single-allele model. We used chr10, and we did 1,000 such ran-
dom experiments for each of the five blood methylomes, which

provided a false-positive rate (type I error rate) that can be used
to bound the FDR.

AMRs identified

Cell type In real data In random data Estimated type I error rate

Neutrophil 133 0.009 6.8e−05
B cell 160 0.008 5.0e − 05
Hematopoietic stem/progenitor 132 0.038 0.00029
CD133+ cord blood 138 0.008 5.8e−05
Peripheral blood mononuclear cell (PBMC) 58 0.035 0.0006

Because in each case above the number of AMRs identified
under our null hypothesis is less than 0.1, we may estimate an
upper bound on the FDR as 0.1∕x, where x is the number of
AMRs identified. In all cases, this simulation would result in
an FDR of less than 0.01.

Caveat: The major caveat associated with estimating an FDR
in the way we have above has to do with the underlying biology.
Cell populations grow as mixtures of clones. DNA methylation
has a stochastic component that remains poorly understood.
At the same time, any stochastic changes in methylation will
be preserved due to the mitotic inheritance of the methylation.

Therefore, any real methylome will likely by chance contain in-
tervals that truly represent a mixture of two different methylation
profiles, yet these may be associated with absolutely no biological
function (according to our current understanding).

The best way to ensure that identified AMRs are not spurious,
therefore, is to analyze replicate experiments where the cells are
grown or purified separately. In the case of the methylomes we
have analyzed, each comes from a very different population of
cells, and therefore AMRs that overlap between cell types should
be absent from the intersection of the AMR sets.
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Fig. S1. Allele-specific methylation identified at the XIST promoter. Consistent with earlier findings, allele-specific methylation is found in exactly those
methylomes that are (1) female, and (2) not from ESCs or iPSCs.
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Fig. S2. Clustering of all 22 methylomes according to their methylation patterns in all identified AMRs. The numbers in cells indicate the correlation of
methylation patterns between two cell types, and a higher number corresponds to a darker color. Basically, three clusters are formed: (i) ESCs/iPSCs; (ii) cultured
differentiated cells; (iii) uncultured cells.
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Fig. S3. Examples for iPSC reprogramming of AMRs. Twenty-two methylomes were divided into four groups: uncultured cells, cultured differentiated cells,
iPSCs, and ESCs. (A) Differentially methylated region (DMR) in GNAS EXON1. Some ESCs and iPSCs lost the allele-specific methylation in this region. (B) DMR in
ZNF331. All ESCs were hypermethylated, four out of five iPSCs reprogrammed such hypermethylation from allele-specific methylation (ASM) except ADSiPSC.
Some cultured differentiated cells also had both alleles methylated (C and D) GDMR and SDMR for MEG3. All ESCs and iPSCs showed hypermethylation in these
regions. Some cultured differentiated cells lost the ASM marks as well.
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Fig. S4. Refined AMRs near MEG3. One AMR consistently appears in the promoter region of the lncRNA MEG3, and another AMR approximately 15 kb
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at CpG sites in each uncultured cell, and red bins are methylation levels in sperm.
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