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ABSTRACT "Basic" and "gross" free energy levels of a
macromolecule such as myosin or Na,K-ATPase, defined in a
previous publication, are discussed here for two relatively
complicated cases: a six-state kinetic diagram of the sort that
could be used to describe the actin activation of myosin-
ATPase in solution; and muscle contraction, where a similar
kinetic diagram is needed for each value of a positional vari-
able x.

This paper is a continuation of a previous publication (1).
The first paper contained general considerations and some
simple examples. Here we discuss a more complicated illus-
trative case involving solution kinetics and then turn to the
corresponding problem in muscle contraction. The notation
is unchanged (1); the reader is assumed to be familiar with
the earlier work.

A multi-cycle diagram at steady state

We consider a large ensemble of N independent and equiva-
lent macromolecular systems in solution, each of which has
the same kinetic diagram (states, transitions, and rate con-
stants). We let E represent the particular macromolecule of
interest. Also, let L = ligand, S = substrate, and P = prod-
uct. Possible states of a system are then E, ES, EP, LES, etc.
Fig. 1 shows the explicit diagram that we consider. In this
case there are six states in the diagram; the enzymatic reac-
tion S -- P provides the thermodynamic drive or chemical
force; and the ligand L modifies the enzyme kinetics. For
example, E = myosin, S = ATP, P = ADP + Pi, L = actin.
The diagram in this case has 14 cycles (Fig. 2). The reac-

tion S -* P provides the only force (,is - Ap > 0) but it ap-
pears at two places in the diagram. The arrow in cycles a
through h shows both the direction of positive force and the
positive direction assigned to the cycle flux. In view, then, of
Eqs. 22 and 23a of ref. 1 as applied to each of these cycles,
we have ja > 0 .- Jh > 0 at steady state. Cycles i through
n include no force and have zero net steady-state flux. In the
actin-myosin (heavy meromyosin or subfragment 1)-ATP
system in solution (as well as in muscle), cycle c is believed
to dominate.

Let us begin by considering the rate of entropy produc-
tion under transient conditions. This argument can obviously
be extended to an arbitrary, more general, diagram. In Eq.
18 of ref. 1, we first separate out the terms in i.s, ip and AL:

d.S
T E-JijAI.ij + MS(J:2 + J45) - AP(J31 + J64)

+ ML(J14 + J25 + JM), [1]

where Aej = -jj. The ij sum is over the nine lines in
the diagram. The kinetic equations of the system can be

written

dpi
N i- =-_EZJik,

ki
[2]

where the sum here is over those (three) states k1 that are
connected to state i by lines in the diagram. Using Eq. 2, the
ij sum in Eq. 1 becomes

6 dp1:Ji~ + J --A ) = AZ(Jjk) -* -NZM+ [3]

The second expression results on collecting those terms that
belong to each state i. Thus

dt =-NY,.ui dp + JUs(J12 + JIM) - MP(J31 + J64)

+ AL(J14 + J25 + Jo). [4]

Eq. 18 of ref. 1 expresses the rate of entropy production as a
sum over the transitions of the system while Eq. 4 relates the
same quantity to the reaction participants S, P. L, i = 1, - - *,
6 (see, for example, Eq. 7.105 of ref. 2). See also Eq. 31 of
ref. 1 (steady state only) for a third mode of expression.
We turn now to the special case of a steady state. We ex-

amine first the sign of each of the nine J'j (and hence of the
Ag',U) by writing these quantities in terms of Ja, Jb, *'I,JhA
all of which are positive. We can ignore Ji, -.-, J, since
they are all zero. We find, on inspection of Fig. 2, using sim-
plified notation,

J1-= a + d + e + g
J=3- a + c + g + h
J31 a + d + f + h

Joj - b + c + f + h
J -= b + d + e + f
J64 = b + c + e + g
J14- e + f -g + h
J25 -= + d + e - h
J3v =c-d-f + g. [5]

Obviously, the first six fluxes (and the Ait'q) are all positive.
These are transitions in cycles a and b, in the direction of the
force. But the sign of the three downward fluxes (Fig. 2) is
uncertain. Their sum, however, is zero (because the total top
and bottom populations in the diagram are constant). Al-
though Autij is positive for each step in cycles a and b, this is
not possible for all of the other force-containing cycles (c
through h). This follows from the last three of Eqs. 5. But of
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FIG. 1. Kinetic diagram for E = enzyme, S = substrate, P =

product. L is a ligand that modifies the enzyme kinetics.

course the sum of Aiu'q around any of the cycles a through h
is ,.s - ftp. This sum is zero around cycles i through n.
We also note that

J12 + J4. (bind S) = J23 + J56 (S P)
= J31 + J64 (release P)

Ja + Jb + + Jh J. [6]

where J is the total flux in all cycles. Thus, at steady state,
Eq. 4 becomes

d=S
T = J(us - A)dt [7]

a particularly simple result. This is a special case of Eq. 31,
ref. 1.

Numerical Examples Based on Fig. 1. Here we supple-
ment the above discussion with numerical examples that
bear some superficial resemblance (but no more than that)
to the subfragment 1-F actin-ATP system. Fig. 3a shows the
basic free energy levels chosen for the six states. The level A4
+ A.p is arbitrarily chosen as zero. The vertical free energy
unit used (between pairs of states) is kTln 300 = 5.704 kT.
The thermodynamic force here, /.s -,p (double-headed ar-
rows in Fig. 3), is equal to four of these units, or 22.815 kT
(roughly the free energy of ATP hydrolysis at actual concen-
trations). An extra level has been included at top and bottom
of the figure so that all nine transitions in the diagram (Fig.
1) can be indicated by vertical or slanting lines.

FIG. 3. (a) Basic and (b) gross free energy levels for the nu-
merical example in Fig. 4.

The rate constants are shown in Fig. 4. This is a quite ar-
bitrary set except, of course, inverse rate constants for each
line in the diagram must be consistent with the basic free
energy level difference already assigned in Fig. 3a (Eqs. 6
and 9 of ref. 1). For example,

a56 a A5 A6
a65 a/(9 X 104 ) =exp kT /=(300)2. [8]

Also, the rate constants have been selected to make cycle c
the dominant cycle (as in the myosin case).
With the rate constants available from Fig. 4, the steady-

state probabilities of the six states may be calculated by com-
puter from Eq. 12 of ref. 1 and Eq. 2 (together with pi =
1). These probabilities are given in Table 1. The transition
fluxes Jij/Na then follow from Eq. 12 of ref. 1 and the cycle
fluxes Jn/Na from Eqs. 5. These fluxes are also included in

3 2

j~

4

g~ h

$1

FIG. 2. The 14 cycles that belong to the diagram at upper left.
The arrows indicate the direction of positive force and positive
flux. The force is zero in the last six cycles and the corresponding
steady-state cycle fluxes are also zero.

FIG. 4. Rate constants assigned in numerical example corre-
sponding to Figs. 2 and 3.
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Table 1. Example in Figs. 3 and 4

JigsLij
Pi ij JqI/Na NcikT n Jn INa

1 0.000025 12 0.00075 0.01 a 0.00075
2 0.6961 23 0.6736 2.31 b 0.0248
3 0.0225 31 0.0015 0.00 c 0.6721
4 0.2326 45 0.6976 5.54 h 0.00075
5 0.0248 56 0.0248 0.28 sum 0.6984
6 0.0240 64 0.6969 2.39

14 0.00075 0.01
52 0.6729 1.59
36 0.6721 3.79

Table 1. The important transition fluxes are those belonging
to cycle c, which is seen to have the largest cycle flux by far.
Cycles d, e, f, and g have negligible fluxes and hence are
omitted from the table. The total flux J (Eq. 6) is 0.6984 Na
and hence the total rate of entropy production (Eq. 7) is J(As
-ip) = 15.93 NakT.

Since the five large transition fluxes (those in cycle c) are
all about equal, the separate contributions JqA^t'i of these
transitions to the total rate of entropy production (Table 1)
are approximately proportional to the AA"t'. The latter
quantities can be seen in Fig. Sb.

Fig. Sb shows the gross free energy levels for this model,
calculated from the basic levels (Fig. 3a), the state probabili-
ties in Table 1, and Eq. 3 of ref. 1. That is, the i-th basic
level is lowered by an amount -kTln pi to obtain the i-th
gross level. The single-arrowed lines in Fig. Sb belong to
those six transitions (in cycles a and b) for which AAt'q is nec-
essarily positive. Note that although AA'31 is negative, the
steady-state probabilities p, and p3 turn this around and
make AA'31 positive (as it must be).

As a second example, suppose the concentration of sub-
strate cS is reduced by a factor of 300, with no other change
in the system. This is a step nearer to equilibrium, for if CS is
reduced by a factor of (S0)4, then As -Ap = 0 and the
steady-state kinetic system will be operating at equilibrium.
In the cs/300 case, all rate constants in Fig. 4 remain un-
changed except a12 and al45, which are both reduced by a
factor of 300. In Fig. Sa, the basic free energy levels are the
same except that the top two levels (states 1 and 4, because
of the ,us term) are both lowered by one unit, kTln 300. The
left-hand side of Table 2 shows the new steady-state proba-
bilities and gives the only three significant cycle fluxes. Most
systems are now in state 4 because of the small rate constant
a45. The transition fluxes (omitted from the table) follow
from Eqs. 5. The total flux j is reduced here to 0.00986 Na
and the total rate of entropy production is lowered to 17.111
kTJ = 0.169 NakT. These much smaller values reflect the

Table 2. Effect of reduction of cS

CS X (1/300) CS x (1/300)4

i Pi n Jn/Na i pie
1 5.65 x 10-7 b 0.00035 1 3.69 x 10-8
2 0.00983 c 0.00949 2 1.11 X 10-5
3 0.000328 h 0.00002 3 1.11 x 10-5
4 0.9859 sum 0.00986 4 0.9967
5 0.000350 5 3.69 x 10-8
6 0.00361 6 0.00332

fact that this steady state is closer to equilibrium than in the
previous case (Figs. 3 and 4).
The gross free energy levels have the same general ap-

pearance as in Fig. Sb, but are somewhat compressed, with
the top level (Ml + AL + AS) at 19.84 kT and the bottom
level (,g4 + tp) at -0.01 kT.

In the equilibrium case referred to above (a third exam-
ple), again only a12 and ai4 are changed: both are reduced
from the values in Fig. 4 by a factor of (300)4. In this case,
the top two levels in Fig. Sa are lowered by four units, kTln
(300)4, so that they now coincide with the levels Al + Mp +
AL and A4 + I.p (since As = Mp). Thus there is only a single
set of six basic free energy levels, namely, the bottom six lev-
els in Fig. 3a, and there is a Boltzmann probability distribu-
tion among these levels, as given on the right-hand side of
Table 2. State 4 is practically the only state occupied. The
flux J and rate of entropy production are both zero. The
compression of the gross free energy levels (mentioned
above) is now complete, because all states are at the same
gross level, -kTln P4 = -0.0033 kT (because we have taken
A,, + ApO0).

If, instead of reducing the value of CS as in the two pre-
ceding examples, we had changed the value of CL or Cp,
then the basic levels in Fig. Sa that include AL or Mp, respec-
tively, would have been altered, with corresponding changes
in the aj (for transitions 14, 52, 36 or for S1, 64, respective-
ly).

Extension to muscle contraction: Single actin site
models
In this section we extend the previous discussion to the prob-
lem of muscle contraction. The situation is somewhat more
complicated here because the biochemical kinetics depend
on a structural variable x. Furthermore, this same variable
brings external mechanical work into the analysis. Inciden-
tally, as applied to muscle, "steady-state" as used in previous
sections refers here to a steady isometric contraction (and
any value of x). A steady isotonic contraction at a finite ve-
locity v requires separate analysis (see below).
To avoid undue notational complexity, we consider only

single actin site models (3, 4): at any instant a given myosin
cross-bridge has accessible to it (we assume) only one actin
site. Multi-site models do not differ in any fundamental way
(4); multiple sites simply lead to a proliferation of states in
the diagram and possibly to a change in the repeat distance
(below).
The longitudinal location of the actin site relative to the

cross-bridge is specified by a variable x. The actin site repeat
distance is d; the origin of the x-axis is chosen for conve-
nience so that an integral from -d/2 to +d/2 may be used
in taking averages over x.
We assume that the reader of this section is familiar in a

general way with the necessary theoretical formalism (3) for
models of this type. Most details of the formalism will not be
repeated here.

In effect, we have a different ensemble of cross-bridges,
all of equal size, for each equal interval dx between x =
-d/2 and x = + d/2. We shall use Fig. 1 (E = M = myosin
cross-bridge, S = T = ATP, P = D = ADP + Pi, L = A =
actin site) as a prototypal biochemical diagram; cycle c in
Fig. 2 presumably dominates in this diagram (5).
The free energies Ai of the unattached states (i = 1, 2, 3)

are constants while the. A, of attached states (i = 4, 5, 6) are
functions of x. "Attached" refers here to the AM link. All
rate constants a,> are in general functions of x except those
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between pairs of unattached states. For given t, pi(t,x) is the
fraction of cross-bridges at x in state i. We have a set of basic
and a set of gross free energy levels of the sort shown in Fig.
3, at each x, where the chemical potentials Ai are defined as
before (Eq. 3 of ref. 1). However, for both the basic and
gross free energy levels, gL is here omitted from Fig. 3 be-
cause L = A = actin site is now part of the permanent myo-
filament structure and is not a ligand in solution with a con-
centration. The role of actin is in this respect analogous to
that of a solid adsorbent with sites for the binding of an ad-
sorbate. The thermodynamic force AT -D in Fig. 3 is the
same for all x.

Eq. 18 of ref. 1 and the following paragraph are relevant
here: Jq(t,x)AM'iJ(tx) 2 0 for all transitions at any t and x.
But definite directional statements about Jq and AMA'ii sepa-
rately are more difficult (as we have already seen, even
without x dependence).

In isometric contractions, an ensemble at any x has no in-
teraction with the other x-ensembles. Therefore, the prior
conclusions for single-cycle models and multi-cycle models
apply here at each x without change. No external work is in-
volved. Under nonisometric conditions, however, the differ-
ent x-ensembles are not independent of each other and ex-
ternal work must be taken into account.
The interdependence of x-ensembles is implicit in the ap-

propriate kinetic equations. These are (3)

v(t)(ax) =- Jiki(tx)(i = 1, 2, ,6) [9]

where v(t) is the velocity of contraction and, for conve-
nience, from this point on we omit the factor N in Eq. 12 of
ref. 1 and Eq. 2 so that Ja is a mean flux per cross-bridge at
x. In a steady isotonic contraction with v = constant, we
have

() ° V ax - Jikj(x)(i = 1,2, ,6). [10]
ki

This equation illustrates the interaction between ensembles
at different x values: Eq. 10 may be regarded as the steady-
state kinetic equation for the components of a chemically re-
acting system with hypothetical one-way (x decreasing; v >
0), one-dimensional diffusion (diffusion coefficient = v)
subject to periodic boundary conditions (what "goes out" at
x = -d/2 "comes in" at x = +d/2). The "diffusion" mixes
the x-ensembles when v > 0. the more so the larger the
value of v.
We see from Eq. 10 that, in a steady isotonic contraction,

the total flux into each state i at x, owing to transitions, is
not equal to zero; but it is equal to zero if we average over

oi
(i = 1, 2, ,6) [11]

where the term in v drops out because of the periodic
boundary conditions. We have used, in Eqs. 11, the defini-
tion

- 1 r+d/2
Jij(t) dJ-d/2 Jij(tx)dx. [12]

It is easy to show from the set of Eqs. 11 that

J12 + J45 = J23 + J56 = J31 + J64, [13]

just as in Eq. 6. But here x averaging is required and we can-
not make use of the diagram method (because v . 0).

Let us turn now to the rate of entropy production per
cross-bridge, averaged over x, and under arbitrary transient
conditions:

diS I +d/2
T = I:J .(t~x),ApM'-(t~x)dx > 0,

dt a -d/2i
t [14]

where the sum is over the nine lines in the diagram (Fig. 1).
We can separate out the terms in AT and.MD (as in Eq. 1),
use Eqs. 3 and 9, and find

djS 1C+d/21
= __ - )v at)'dxdt -d/2 L ax

+ '44J12 + J45) - AD(J31 + J64). [15]

To examine the terms in v(t), we replace Ai by Ai + kTln
pi. For unattached states (i = 1,2,3), Ai = constant. Then
both integrals (At, In pi) are zero (periodic boundary condi-
tions, integration by parts). For attached states (i = 4,5,6),
the In pi integral is also zero but the At integral (integration
by parts) introduces the force FP, since Fi(x) = MAi(x)/ax.
Thus

dS 1 +d/2 ap dx
- F(t)#t)dt dd/2 iAx at d

+ PATJ12(t) + J45(t)] - D[J31(t) + 164(t)] > 0, [16]

where F = F4 + F5 + F,. The "reaction participant" terms
(i = 1, * * *, 6; T,D) are essentially as in Eq. 4, but a new fea-
ture here is the appearance of the rate of performance of ex-
ternal work, Fv. The work term obviously originates, mathe-
matically, from the x-ensemble "mixing" term, -vapi!ax, in
Eq. 9. The interpretation of Eq. 16: not all of the macroscop-
ic free energy drop in the over-all reaction system (terms in
Ai, AT, AD; see Eq. 7.105 of ref. 2) is wasted or dissipated
(Td4S/dt); some of it is converted into external work (Fv).
Or to turn this statement around: the macroscopic free ener-
gy drop of all participants arises not only from dissipative
transitions but also from external work done by the system.

In a steady isotonic contraction, Eq. 16 simplifies to

d

dt = J(T - AD) - Fv > 0, [17]

where J (ATP flux) is defined as either of the expressions in
brackets in Eq. 16 (see Eq. 13). This same relation (Eq. 17) is
introduced in a very different way on pp. 291 and 336 of
ref. 3.
Under steady conditions, it is easy to see that we also have

djS 1 C+d/2
T = E AA'dx=F
dt d d/2 E , = J(MT - D)-Fv >

[18]

because all In pi terms in Eq. 14 make no contribution to the
final result. Thus, so to speak, the dissipation owing to all
transitions ij, averaged over x, can be monitored on either
the gross free energy levels (Eq. 14) or on the basic free en-
ergy levels (if v = constant). The latter point of view is used,
in effect, on pp. 328-329 of ref. 3. The contribution of the
transition ij (averaged over x) to the entropy production is
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clearly
1j+d/2 1 C+d/2

dJ/d2 JijAL'i,,dX = dJd/2 JiiAA'ijdx > 0. [19]
But this ij contribution cannot be further separated into a
work and an ATP flux term (as in Eq. 18) because work is
associated with states, not transitions.

Finally, let us consider what can be said about the sign of
the nine Jjq and YA4j' in Fig. 1 in a steady isotonic contrac-
tion, where, as in Eq. 12, we define

1jP+d/2
-88 dJ d/2 L'1ijdx. [20]

We limit the discussion to systems for which F > 0 and v >
0 (other cases are possible).
When v = 0, the diagram method can be applied at each

x, as in Eqs. 5 and 6. Thus the first six Jtq(x) in Eq. 5 [and
the corresponding AAus'(x)] are positive at every x. On inte-
grating over x, these six Jij (and tAAty) are necessarily posi-
tive. The other three Jt1 and AA'js are uncertain in sign; it is
even possible that one or more corresponding pairs would
not agree in sign. But the sum of the three Jij must be zero
(as it is at every x). Just as in the previous section, AA'ij is
positive for all the steps in cycles a and b but the same can-
not be said for all of cycles c through h.

If v > 0, we have Eqs. 11 and 13, on integrating over x.
Each pair (= J) in Eq. 13 is surely positive, as a consequence
of Eq. 17. We also have

J14 + J25 + J36 = 0. [21]
But the sign of the nine individual Jqjs is not obvious. The
same is true of the nine Ai,'qj's. Also, Jq; and AA'fj need not
always agree in sign. It is easy to see that the sum of the
AAt't around any of the cycles a through h is AT -AD This
sum is zero around the other cycles (i through n).

If v > 0 and only a single cycle is important, say cycle c
(Fig. 2), 236452, then one can go further (see Eq. 11):

j = J23 = J36 = J64 = J45 = J52> °0

That is, after x-averaging, each step has equal and positive
flux. At individual values of x, these Jij(x) are not only not
equal (Eq. 10), but negative values are possible. For exam-
ple, consider J52(x) near x = +d/2 when v > 0. Because p2
< 0 and p3 7 0 while P4 =P = P6 = 0 (attached states) at
x = +d/2, the rate of the transition 5 -- 2 is zero. There-
fore, both J52(x) and AA'52(X) must be negative near x =
+d/2. The larger v, the greater the x interval over which
these negative values will persist before becoming positive.
These comments obviously resemble those made in ref. 1
concerning a transient with t near t = 0.

In the single-cycle, v > 0 case, the sum of the A1.'0j
around the cycle is AT - ALD. Despite Eq. 22, it is not certain
that all of the individual A4t'q's are positive. For example, it
seems possible that AA'52 might be negative when v is large.
Of course all of the AIA'Ij must be positive if v = 0.

As can be seen from the above discussion, x-averaging of
Jh and Asuot (at arbitrary v) does not lead to any particularly
simple or fundamental thermodynamic relations involving
Jj1 and Ait'q. For example, the ij entropy production in Eq.
19, JtAjA5.'ij, is not equal to J A.tA'jj. Although J'1 is an opera-
tional quantity, M'tjq does not seem to have any fundamen-
tal significance. Correspondingly, there does not appear to
be any correct way of giving an x-averaged kinetic account
of this system (i.e., using x-averaged rate constants, state
probabilities, etc.). Many of the fundamental parameters of
a model are functions of x, and this level of detail cannot be
escaped in a rigorous treatment.

Numerical illustration of this section, using an explicit
model of muscle contraction, will be reserved for a later
publication.
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