Organocatalysis in Water at Room Temperature with *In-Flask* Catalyst Recycling

Bruce H. Lipshutz,* Subir Ghorai

Department of Chemistry & Biochemistry University of California, Santa Barbara, California 93106

lipshutz@chem.ucsb.edu

Supporting Information

Table of Contents

I.	General Information	S2
II.	Preparation and characterizations of catalyst 2 and 6	S2-S5
III.	Preparation and characterizations of all aldol products	S5-S10
IV.	Spectral copy (1 H and 13 C) of all new and (1 H) of all known compounds and HPLC data	S11-S49

General Information: All reactions were performed either in a round bottom flask or screw cap glass vials containing a Teflon coated stir bar and septum. Column chromatography was performed using 60 Å flash silica gel. Thin-Layer-Chromatography analysis was conducted using commercially available silica gel 60 F_{254} plates. Nuclear Magnetic Resonance spectra were obtained in CDCl₃, with proton and carbon resonances at 400 and 100 MHz, respectively, and are referenced to the residual solvent signal at 7.27 ppm for ¹H and δ 77.23 ppm for ¹³C. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, sep = septet), coupling constant and integration. Data for ¹³C NMR are reported in terms of chemical shift. Infrared spectra were obtained either neat or by thin-flim on NaCl plates and are reported as cm⁻¹. All commercially available reagents were used without further purification.

4-(((2S,4R)-1,2-bis((benzyloxy)carbonyl)pyrrolidin-4-yl)oxy)-4-

oxobutanoic acid (4). To a solution of (2S,4R)-dibenzyl 4hydroxypyrrolidine-1,2-dicarboxylate (3)¹ (1.00 g, 2.82 mmol) and succinic anhydride (0.70 g, 7.00 mmol) in pyridine (12 mL), DMAP

(0.069 g, 0.56 mmol) was added and the stirring was continued at 22 °C for 12 h. The reaction mixture was added to 1(N) HCl (100 mL) and extracted with CH₂Cl₂. The combined organic layers were washed with 1(N) HCl (3 x 50 mL), water (2 x 30 mL), dried over Na₂SO₄ and concentrated *in vacuo* affording a pale yellow liquid, which was purified by flash column chromatography on silica gel eluting with 40% EtOAC/hexane afforded the title compound **4** (1.25 g, 98%) as a colorless liquid. IR (neat): 3498, 3065, 3034, 2954, 1739, 1712, 1498, 1455, 1420, 1355, 1266, 1167, 1128, 1067, 1004, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.19 (m, 10H), 5.34-5.28 (m, 1H), 5.24 (d, *J* = 12.4 Hz, 0.5H), 5.17 (d, *J* = 12.4 Hz, 0.5H), 5.167 (s, 1H), 5.06 (s, 1H), 5.00 (s, 1H), 4.55 (t, *J* = 8.0 Hz, 0.5H), 4.48 (t, *J* = 8.0 Hz, 0.5H), 3.79-3.67 (m, 2H), 2.67-2.56 (m, 4H), 2.47-2.40 (m, 1H), 2.26-2.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.3, 172.2, 172.0, 171.71, 171.67, 155.0, 154.4, 136.4, 136.2, 135.5, 135.3, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 73.2, 72.4, 67.6, 67.3, 67.2, 58.1, 57.9, 52.7, 52.3, 36.7, 35.6, 29.0, 28.9, 28.8; MS (ESI): *m*/z 478 (M + Na); HRMS (ESI) calcd for C₂₄H₂₅NO₈Na [M + Na]⁺ = 478.1478, found 478.1458.

Compound 5 (precursor to catalyst 2). PQS^2 (1) (1.9 g, 0.63 mmol) and 4-(((2S,4R)-1,2-bis((benzyloxy)carbo-nyl)pyrrolidin-4-yl)oxy)-4-oxobutanoic acid (4) (0.43 g, 0.94 mmol) were dissolved in CH₂Cl₂ (10 mL) and cooled to 0 °C. 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide (EDC) (0.24 g, 1.25 mmol), and DMAP (0.03 g, 0.24 mmol) were then directly added in succession to

the mixture as solids. Et₃N (0.19 mL, 1.36 mmol) was added through a syringe. The resulting mixture was stirred at 22 °C for 20 h. Water was added to the reaction mixture and extracted with CH₂Cl₂. The combined organic layers were washed with saturated NaHCO3, water, brine, dried and concentrated in vacuo affording a colorless liquid, which was purified by flash column chromatography on silica gel, eluting with EtOAc, followed by CH₂Cl₂ to 8% MeOH/CH₂Cl₂ gradient afforded the compound 5 (1.85 g, 96%) as a white foam. IR (neat): 2954, 2858, 1740, 1714, 1644, 1455, 1417, 1350, 1325, 1291, 1250, 1100, 950, 914, 849, 731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): § 7.36-7.21 (m, 10H), 5.34-5.28 (m, 1H), 5.24 (d, J = 12.0 Hz, 0.5H), 5.18-4.96 (m, 13.5H), 4.55 (t, J = 8.0 Hz, 0.5H), 4.48 (t, J = 8.0 Hz, 0.5H), 4.24-4.22 (m, 2H), 3.85-3.69 (m, 8H), 3.68-3.46 (m, PEG), 3.39 (s, 3H), 3.20-3.16 (m, 2H), 2.94-2.89 (m, 2H), 2.74-2.69 (m, 2H), 2.63-2.55 (m, 4H), 2.45-2.41 (m, 1H), 2.34 (t, J = 7.6 Hz, 2H), 2.22-2.14 (m, 1H), 2.09-1.98 (m, 39H), 1.78-1.68 (m, 8H), 1.63-1.57 (m, 29H), 1.42-1.33 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 173.1, 171.5, 171.3, 171.0, 169.8, 154.2, 153.6, 143.1, 143.0, 142.9, 142.8, 140.4, 140.0, 139.7, 135.9, 135.8, 135.2, 135.1, 134.9, 134.5, 134.3, 130.6, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.4, 124.5, 124.0, 123.9, 123.6, 120.9, 72.6, 71.9, 71.5, 70.2, 69.6, 68.7, 66.8, 66.5, 66.4, 62.9, 60.2, 60.1, 58.6, 57.6, 57.2, 52.1, 51.7, 39.3, 39.2, 36.1, 35.0, 33.7, 33.5, 28.7, 28.6, 28.2, 26.3, 26.2, 25.8, 25.4, 24.6, 24.4, 17.3, 15.9, 15.6, 11.7; MS (ESI): $m/3z \sim 1198 (M + 3Na)^{+3}$.

Catalyst 2. A well-stirred suspension of compound **5** (1.61 g) and Pd/C (10% w/w, 160 mg) in dry MeOH (20 mL) was fitted to a source of hydrogen (1 atm) and stirred at 22 °C for 12 h. The mixture was filtered through a pad of celite and washed with MeOH. The combined filtrates were concentrated *in vacuo* afforded the compound **2** (1.47 g, 98%) as a white waxy solid. IR

(neat): 3532, 2871, 1759, 1737, 1601, 1466, 1376, 1345, 1280, 1243, 1112, 1062, 949, 843 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.32 (br s, 1H), 4.23-4.21 (m, 2H), 3.84-3.69 (m, 8H), 3.68-3.45 (m, PEG), 3.38 (s, 3H), 2.94-2.72 (m, 4H), 2.60-2.54 (m, 2H), 2.48-2.38 (m, 2H), 2.33 (t, *J* = 7.6 Hz, 2H), 2.05 (br s, 3H),

1.79-1.72 (m, 2H), 1.65-1.59 (m, 2H), 1.55-1.49 (m, 2H), 1.38-1.04 (m, 74H), 0.96-0.83 (m, 33H); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 171.15, 171.1, 170.9, 170.0, 142.7, 140.4, 139.9, 139.6, 129.2, 123.8, 71.5, 70.1, 69.7, 68.7, 62.8, 60.1, 58.5, 38.9, 37.0, 36.92, 36.89, 36.8, 36.6, 33.6, 32.3, 32.2, 28.6, 27.5, 24.6, 24.4, 24.3, 24.0, 22.3, 22.2, 19.44, 19.37, 19.31, 11.5; MS (ESI): m/3z ~ 1124 (M + 3Na)⁺³.

(2S,4R)-dibenzyl 4-((4-oxo-4-phenoxybutanoyl)oxy)pyrrol-idine-1,2-dicarboxylate(precursor to catalyst 6).(9.4 mg, 0.10 mmol)and 4-((((2S,4R))-1,2-bis((benzyloxy)carbonyl)pyrrolidin-4-yl)oxy)-4-oxobutanoic

acid (4) (55 mg, 0.12 mmol) were dissolved in CH₂Cl₂ (1.5 mL) and cooled to 0 °C. 1-(3dimethylaminopropyl)-3-ethyl carbodiimide (EDC) (38 mg, 0.2 mmol), and DMAP (5.5 mg, 0.045 mmol) were then directly added in succession to the mixture as solids. Et₃N (31 μ L, 0.22 mmol) was added through a syringe. The resulting mixture was stirred at 22 °C for 12 h. Water was added to the reaction mixture and extracted with CH₂Cl₂. The combined organic layers were washed with saturated NaHCO₃, water, brine, dried and concentrated in vacuo affording a colorless liquid, which was purified by flash column chromatography on silica gel, eluting with 15% EtOAC/hexane afforded the title compound (52 mg, 98%) as a colorless liquid. $[\alpha]_{D}^{20} = -38.2$ (c = 1.60, CHCl₃); IR (neat): 3064, 3033, 2950, 2887, 1736, 1708, 1592, 1493, 1420, 1354, 1263, 1164, 1069, 1005, 918, 882, 816, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): § 7.39-7.28 (m, 11H), 7.23 (td, J = 7.6, 1.2 Hz, 2H), 7.10 (dt, J = 7.6, 1.2 Hz, 2H), 5.38-5.33 (m, 1H), 5.26 (d, J = 12.4 Hz, 0.5H), 5.18 (d, J = 12.4 Hz, 0.5H), 5.16 (s, 1H), 5.07 (s, 1H), 5.01 (s, 1H), 5.58 (t, J = 8.0 Hz, 0.5H), 4.50 (t, J = 8.0 Hz, 0.5H), 3.83-3.78 (m, 1.5H), 3.71 (d, J = 12.4 Hz, 0.5H), 2.94-2.86 (m, 2H), 2.75-2.70 (m, 2H), 2.50-2.42 (m, 1H), 2.28-2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 171.6, 171.5, 170.8, 154.9, 154.3, 150.7, 136.5, 136.4, 135.6, 135.4, 129.6, 128.7, 128.65, 128.6, 128.5, 128.3, 128.25, 128.2, 128.0, 126.0, 121.5, 73.2, 72.5, 67.5, 67.2, 67.1, 58.2, 57.9, 52.7, 52.3, 36.8, 35.7, 29.3, 29.26; MS (ESI): m/z 554 (M + Na), 570 (M + K); HRMS (ESI) calcd for C₃₀H₂₉NO₈Na [M + $Na]^+ = 554.1791$, found 554.1778.

Catalyst 6. A well-stirred suspension of (2S,4R)-dibenzyl 4-((4-oxo-4-phenoxybutanoyl)oxy)pyrrol- idine-1,2-dicarboxylate (45 mg) and Pd/C (10% w/w, 5 mg) in dry MeOH (1 mL) was fitted to a source of hydrogen (1 atm) and stirred at 22 °C for 12

h. The mixture was filtered through a pad of celite and washed with MeOH. The combined filtrates were concentrated *in vacuo* afforded the compound **6** (26 mg, 99%) as a colorless liquid. IR (neat): 3536, 2852, 1758, 1739, 1600, 1458, 1353, 1300, 1256, 1104, 954, 849 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (t, *J*

= 7.2 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 2H), 5.29 (br s, 1H), 4.02 (br s, 1H), 3.60 (br s, 1H), 3.15 (br s, 1H), 2.82 (br s, 2H), 2.67 (br s, 2H), 2.28 (br s, 2H); MS (ESI): m/z 330 (M + Na); HRMS (ESI) calcd for C₁₅H₁₇NO₆Na [M + Na]⁺ = 330.0954, found 330.0952.

General procedure for the asymmetric direct aldol reaction using the catalyst 2 in water. Aromatic aldehyde 7 (0.10 mmol), ketone 8 (0.50 mmol) and catalyst 2 (33 mg, 0.01 mmol) were sequentially added into a Teflon-coated-stir-bar-containing glass vial at room temperature. H₂O (0.25 mL) was added and the resulting solution was allowed to stir at room temperature for 18-48 hours. The homogeneous reaction mixture was then diluted with EtOAc (1 mL), filtered through a bed of silica gel layered over Celite, and the bed further washed (3 x 4 mL) with EtOAc to collect all of the aldol product material. The volatiles were removed *in vacuo* to afford the crude product which was subsequently purified by flash chromatography on silica gel (sovent noted) to afford the title compounds.

Of (2S,1'R)-2-[1'-Hydroxy-1'-(4-nitrophenyl)methyl]cyclohexanone [(2S,1'R)-O₂N [],³ The representative procedure was followed using 4-nitrobenzaldehyde (15 mg, 0.10 mmol), cyclohexanone (52 µL, 0.50 mmol) and catalyst **2** (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a white solid (23 mg, 93%). Enantiomeric excess: 96%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 20:80), λ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 24.172 min, t_{Rmajor} = 31.140 min; Data for the *anti* isomer (2S,1'R): ¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 4.90 (dd, *J* = 8.4, 3.2 Hz, 1H), 4.09 (d, *J* = 3.2 Hz, 1H), 2.63-2.56 (m, 1H), 2.54-2.48 (m, 1H), 2.42-2.33 (m, 1H), 2.16-2.10 (m, 1H), 1.86-1.82 (m, 1H), 1.73-1.66 (m, 1H), 1.64-1.52 (m, 2H), 1.44-1.37 (m, 1H).

OH O (2S,1'R)-2-[1'-Hydroxy-1'-(4-chlorophenyl)methyl]cyclohexanone [(2S,1'R)-9a].³ The representative procedure was followed using 4-chlorobenzaldehyde (14 mg, 0.10 mmol), cyclohexanone (52 µL, 0.50 mmol) and catalyst**2**(33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a colorless oil (21 mg, 88%). Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AD,*i* $PrOH/hexane = 10:90), <math>\lambda$ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 27.468 min, t_{Rmajor} = 32.012 min; Data for the *anti* isomer (2S,1'R)-**9a**: ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 4.74 (dd, *J* = 8.8, 2.4 Hz, 1H), 3.97 (d, *J* = 2.4 Hz, 1H), 2.58-2.44 (m, 2H), 2.38-2.28 (m, 1H), 2.09-2.05 (m, 1H), 1.80-1.76 (m, 1H), 1.66-1.50 (m, 3H), 1.29-1.25 (m, 1H). (2*S*,1'*R*)-2-[1'-Hydroxy-1'-(4-pyridyl)methyl]cyclohexanone [(2*S*,1'*R*)-9b].⁴ The representative procedure was followed using 4-pyridinecarboxaldehyde (9.4 μ L, 0.10 mmol), cyclohexanone (52 μ L, 0.50 mmol) and catalyst **2** (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 75% EtOAc/hexanes) afforded the product as a white solid (18 mg, 90%). Enantiomeric excess: 90%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 10:90), λ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 52.096 min, t_{Rmajor} = 54.132 min; Data for the *anti* isomer (2*S*,1'*R*)-**9b**: ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J* = 6.0 Hz, 2H), 7.26 (d, *J* = 6.0 Hz, 2H), 4.78 (dd, *J* = 8.4, 3.2 Hz, 1H), 4.02 (d, *J* = 3.2 Hz, 1H), 2.63-2.56 (m, 1H), 2.52-2.47 (m, 1H), 2.37 (tdd, *J* = 13.2, 6.0, 1.2 Hz, 1H), 2.16-2.09 (m,1H), 1.87-1.82 (m, 1H), 1.74-1.52 (m, 3H), 1.46-1.35 (m, 1H).

(2*S*,1*'R*)-2-[1'-Hydroxy-1'-(2-naphthyl)methyl]cyclohexanone [(2*S*,1*'R*)-9c].⁴ The representative procedure was followed using 2-naphthaldehyde (15.6 mg, 0.10 mmol), cyclohexanone (52 μL, 0.50 mmol) and catalyst **2** (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a white solid (19 mg, 74%). Enantiomeric excess: 92%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 5:95), λ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 93.228 min, t_{Rmajor} = 96.688 min; Data for the *anti* isomer (2*S*,1*'R*)-**9c**: ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.83 (m, 3H), 7.76 (s, 1H), 7.50-7.47 (m, 3H), 4.98 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.07 (d, *J* = 2.4 Hz, 1H), 2.76-2.69 (m, 1H), 2.55-2.49 (m, 1H), 2.40 (tdd, *J* = 13.2, 6.0, 1.2 Hz, 1H), 2.14-2.06 (m, 1H), 1.80-1.73 (m, 1H), 1.71-1.48 (m, 3H), 1.40-1.30 (m, 1H).

(2S,4S,1'R)-4-tert-Butyl-2-[1'-Hydroxy-1'-(3-bromophenyl)methyl]cyclohexanone

[(2*S*,4*S*,1'*R*)-9d]. The representative procedure was followed using 3bromobenzaldehyde (18.5 mg, 0.10 mmol), 4-*tert*-butylcyclohexanone (77 mg, 0.50

 \dot{B}_{r} \dot{B}_{u} mmol) and catalyst **2** (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a white solid (27 mg, 80%). Enantiomeric excess: 91%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 10:90), λ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 15.520 min, t_{Rmajor} = 71.464 min; Data for the *anti* isomer (2*S*,4*S*,1′*R*)-**9d**: [α]²⁰_D = -61.6 (c = 1.00, CHCl₃); m.p.: 119-123 °C; IR (thin film): 3375, 2955, 2868, 1694, 1595, 1571, 1469, 1434, 1365, 1334, 1226, 1155,1097, 1071, 1052, 793 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (t, *J* = 1.6 Hz, 1H), 7.46 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.29 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 4.86 (d, *J* = 9.6 Hz, 1H), 2.63 (dt, *J* = 9.2, 6.8 Hz, 1H), 2.54-2.42 (m, 2H), 2.03-1.99 (m, 1H), 1.63-1.50 (m, 2H), 1.49-1.36 (m, 2H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 215.9, 143.9, 131.5, 130.3, 130.2, 125.7, 122.9, 74.4, 55.4, 42.4, 39.4, 33.0, 27.8, 27.3, 25.4; MS (ESI): m/z 361 (M + Na), 363 (M + 2 + Na); HRMS (ESI) calcd for $C_{17}H_{23}O_2BrNa [M + Na]^+ = 361.0779$, found 361.0776.

он о

NC

(2*S*,4*S*,1*'R*)-4-*tert*-Butyl-2-[1'-Hydroxy-1'-(4-nitrophenyl)methyl]cyclohexanone [(2*S*,4*S*,1*'R*)-9e].⁵ The representative procedure was followed using 4nitrobenzaldehyde (15 mg, 0.10 mmol), 4-*tert*-butylcyclohexanone (77 mg, 0.50 mmol) and catalyst 2 (33 mg, 0.01 mmol). Column chromatography on silica

gel (eluting with 30% EtOAc/hexanes) afforded the product as a white solid (26 mg, 85%). Enantiomeric excess: 79%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 20:80), λ = 254 nm, flow rate 0.5 mL/min, t_{Rminor} = 16.896 min, t_{Rmajor} = 30.708 min; Data for the *anti* isomer (2*S*,4*S*,1′*R*)-**9e**: ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 4.97 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.63 (d, *J* = 2.8 Hz, 1H), 2.67 (dt, *J* = 8.8, 7.2 Hz, 1H), 2.57-2.51 (m, 1H), 2.47-2.38 (m, 1H), 1.99-1.96 (m, 1H), 1.62-1.38 (m, 4H), 0.79 (s, 9H).

(2*S*,1'*R*)-2-[1'-Hydroxy-1'-(3-cyanophenyl)methyl]cyclohexanone [(2*S*,1'*R*)-9f]. The representative procedure was followed using 3-cyanobenzaldehyde (13 mg, 0.10 mmol), cyclohexanone (52 μ L, 0.50 mmol) and catalyst **2** (33 mg, 0.01

mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a white solid (18 mg, 80%). Enantiomeric excess: 97%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 10:90), λ = 273 nm, flow rate 0.5 mL/min, t_{Rmajor} = 46.924 min, t_{Rminor} = 60.276 min; Data for the *anti* isomer (2*S*,1′*R*)-**9f**: $[\alpha]^{20}{}_{D}$ = +28.0 (c = 0.30, CHCl₃); m.p.: 69-72 °C; IR (thin film): 3498, 2941, 2864, 2229, 1704, 1483, 1449, 1434, 1311, 1229, 1130, 1042, 805 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (t, *J* = 1.2 Hz, 1H), 7.60 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.57 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 4.82 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.08 (d, *J* = 2.8 Hz, 1H), 2.61-2.54 (m, 1H), 2.53-2.48 (m, 1H), 2.41-2.33 (m, 1H), 2.15-2.09 (m, 1H), 1.85-1.80 (m, 1H), 1.67 (qt, *J* = 12.8, 4.0 Hz, 1H), 1.59-1.51 (m, 2H), 1.35 (qd, *J* = 12.8, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 215.1, 142.8, 131.7, 130.9, 129.4, 118.9, 112.7, 74.2, 57.3, 42.8, 30.9, 27.8, 24.9; MS (ESI): *m/z* 252 (M + Na); HRMS (ESI) calcd for C₁₄H₁₅NO₂Na [M + Na]⁺ = 252.1000, found 252.0993.

(2S,4S,1'R)-4-Phenyl-2-[1'-Hydroxy-1'-(3-bromophenyl)methyl]cyclohexanone (2S,4S,1'R)-9g]. The representative procedure was followed using 3bromobenzaldehyde (18.5 mg, 0.10 mmol), 4-phenylcyclohexanone (87 mg, 0.50 mmol) and catalyst 2 (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the product as a white solid (29.5 mg, 82%). Enantiomeric excess: 86%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 20:80), $\lambda = 218$ nm, flow rate 1.0 mL/min, $t_{Rminor} = 16.316$ min, $t_{Rmajor} = 86.196$ min; Data for the *anti* isomer (2*S*,4*S*,1*'R*)-**9g**: $[\alpha]^{20}_{D} = -6.0$ (c = 0.85, CHCl₃); m.p.: 109-112 °C; IR (thin film): 3417, 3060, 3028, 2931, 1710, 1596, 1571, 1496, 1456, 1429, 1326, 1197, 1155, 1071, 1040, 908, 790 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (t, *J* = 1.6 Hz, 1H), 7.47 (dt, *J* = 7.2, 1.6 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.29 -7.22 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 2H), 4.93 (d, *J* = 9.6 Hz, 1H), 3.38 (br s, 1H), 3.19-3.13 (m, 1H), 2.78 (dt, *J* = 9.6, 6.0 Hz, 1H), 2.63-2.50 (m, 2H), 2.41-2.33 (m, 1H), 2.23-2.15 (m, 1H), 2.01-1.94 (m, 1H), 1.79-1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 214.1, 143.6, 142.9, 131.6, 130.4, 130.3, 129.0, 126.8, 126.7, 125.9, 123.0, 74.3, 54.9, 39.2, 37.2, 34.6, 31.8; MS (ESI): *m/z* 381 (M + Na), 383 (M + 2 + Na); HRMS (ESI) calcd for C₁₉H₁₉O₂BrNa [M + Na]⁺ = 381.0466, found 381.0467.

(2*S*,4*S*,1'*R*)-4-*tert*-Butyl-2-[1'-Hydroxy-1'-(4-pyridyl)methyl]cyclohexanone [(2*S*, 4*S*,1'*R*)-9h]. The representative procedure was followed using 4-pyridinecarboxaldehyde (9.4 μ L, 0.10 mmol), 4-*tert*-butylcyclohexanone (77 mg, 0.50 mmol) and catalyst 2 (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with

ŌН

(2*S*,1'*R*)-2-[1'-Hydroxy-1'-(3-bromophenyl)methyl]cyclohexanone [(2*S*,1'*R*)-9i].⁶ The representative procedure was followed using 3-bromobenzaldehyde (18.5 mg, 0.10 mmol), cyclohexanone (52 μ L, 0.50 mmol) and catalyst 2 (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the

product as a colorless oil (23 mg, 82%). Enantiomeric excess: 86%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 10:90), $\lambda = 254$ nm, flow rate 0.5 mL/min, t_{Rmajor} = 25.464 min, t_{Rminor} = 27.408 min; Data for the *anti* isomer (2*S*,1'*R*)-**9i**: ¹H NMR (400 MHz, CDCl₃): δ 7.50 (t, *J* = 2.0 Hz, 1H), 7.43 (dt, *J* = 7.2, 2.0 Hz, 1H), 7.24-7.20 (m, 2H), 4.75 (d, *J* = 8.8 Hz, 1H), 2.58-2.51 (m, 1H), 2.49-2.46 (m, 1H), 2.41-2.33 (m, 1H), 2.13-2.08 (m, 1H), 1.84-1.79 (m, 1H), 1.69-1.55 (m, 3H), 1.38-1.27 (m, 1H).

(2S,1'R)-2-[1'-Hydroxy-1'-(3-nitrophenyl)methyl]cyclohexanone [(2S,1'R)-9j].³

The representative procedure was followed using 3-nitrobenzaldehyde (15 mg, 0.10 mmol), cyclohexanone (52 μ L, 0.50 mmol) and catalyst **2** (33 mg, 0.01 mmol). Column chromatography on silica gel (eluting with 20% EtOAc/hexanes) afforded the

product as a white solid (22 mg, 91%). Enantiomeric excess: 91%, determined by HPLC (Daicel Chiralpak AD, *i*PrOH/hexane = 10:90), $\lambda = 254$ nm, flow rate 0.5 mL/min, $t_{Rmajor} = 44.864$ min, $t_{Rminor} = 58.564$ min; Data for the *anti* isomer (2*S*,1′*R*)-**9j**: ¹H NMR (400 MHz, CDCl₃): δ 8.22 (t, *J* = 1.2 Hz, 1H), 8.17 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.68 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 4.90 (dd, *J* = 8.4, 3.2 Hz, 1H), 4.13 (d, *J* = 3.2 Hz, 1H), 2.65-2.60 (m, 1H), 2.54-2.49 (m, 1H), 2.42-2.33 (m, 1H), 2.15-2.11 (m, 1H), 1.86-1.80 (m, 1H), 1.70-1.55 (m, 3H), 1.42-1.38 (m, 1H).

General procedure for catalyst recycling (Table 3). 4-nitrobenzaldehyde (60 mg, 0.40 mmol), cyclohexanone (208 μ L, 2.00 mmol) and catalyst 2 (132 mg, 0.04 mmol) were sequentially added into a Teflon-coated-stir-bar-containing glass vial at room temperature. H₂O (1.0 mL) was added and the resulting solution was allowed to stir at room temperature for 24 hours. Then EtOAc (3 mL) was added to the reaction mixture and stirred for 10 sec. The reaction mixture was then allowed to separate and the upper (EtOAc) layer was removed by pippet. The aqueous layer was successively washed with EtOAc (3 x 3 mL). The combined EtOAc extracts layers were evaporated to afford the crude product, which was purified by flash column chromatography on silica gel eluting with 20% EtOAC/hexane afforded the aldol product. Then for the second run, above 4-nitrobenzaldehyde (60 mg, 0.40 mmol), cyclohexanone (208 μ L, 2.00 mmol) were added again to the same reaction vessel and stirred at room temperature for another 24 hours. The work up was conducted in exactly the same way as described for the first cycle. This reaction was repeated two more times, each using the above substrates.

	C R		cata (10	$\frac{\text{alyst 2}}{\text{mol\%}} \qquad $	
	• • •	- Γ R ₂ R ₃ 7 8	3	20, 11	R₂ R₃ 9
entry	R.	R. R.	product	¹ H NMR	(-С <u>Н</u> ОН)
entry	ι ν ₁	112 113	product	syn	anti
_	4-0 ₂ NC ₆ H ₄ -	(CH ₂) ₃	-	5.48 (d, <i>J</i> = 1.6 Hz)	4.90 (dd, <i>J</i> = 8.4, 3.2 Hz)
1	4-CIC ₆ H ₄ -	(CH ₂) ₃	9a	5.34 (d, <i>J</i> = 2.0 Hz)	4.74 (dd, <i>J</i> = 8.8, 2.4 Hz)
2	4-pyridinyl-	(CH ₂) ₃	9b	5.39 (br s)	4.78 (dd, <i>J</i> = 8.4, 3.2 Hz)
3	2-naphthyl-	(CH ₂) ₃	9с	5.58 (d, <i>J</i> = 2.8 Hz)	4.98 (dd, <i>J</i> = 8.8, 2.4 Hz)
4	3-BrC ₆ H ₄ -	(CH ₂ CH ^t BuCH ₂)	9d	5.34 (d, <i>J</i> = 1.6 Hz)	4.86 (d, <i>J</i> = 8.6 Hz)
5	4-0 ₂ NC ₆ H ₄ -	—(CH ₂ CH ^t BuCH ₂)—	9e	5.48 (d, <i>J</i> = 1.6 Hz)	4.97 (dd, <i>J</i> = 8.8, 2.8 Hz)
6	3-CNC ₆ H ₄ -	(CH ₂) ₃	9f	5.42 (br s)	4.82 (dd, <i>J</i> = 8.4, 2.8 Hz)
7	3-BrC ₆ H ₄ -	$-(CH_2CHPhCH_2)$	9g	5.41 (d, <i>J</i> = 1.6 Hz)	4.93 (d, <i>J</i> = 9.6 Hz)
8	4-pyridinyl-	(CH ₂ CH ^t BuCH ₂)	9h	5.33 (d, <i>J</i> = 1.6 Hz)	4.85 (dd, <i>J</i> = 9.2, 3.2 Hz)
9	3-BrC ₆ H ₄ -	(CH ₂) ₃	9i	5.36 (d, <i>J</i> = 1.6 Hz)	4.75 (d, <i>J</i> = 8.8 Hz)
10	3-0 ₂ NC ₆ H ₄ -	(CH ₂) ₃	9j	5.48 (d, <i>J</i> = 2.0 Hz)	4.90 (dd, <i>J</i> = 8.4, 3.2 Hz)

List of obvious difference between *syn-9* and *anti-9* on ¹H NMR

References

- 1. Barrett, A. G. M.; Pilipauskas, D. J. Org. Chem. 1991, 56, 2787-2800.
- 2. Lipshutz, B. H.; Ghorai, S. Org. Lett. 2009, 11, 705-708.
- Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 734-735.
- 4. Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew. Chem. Int. Ed. 2006, 45, 958-961.
- 5. Jiang, J.; He, L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. Chem. Commun. 2007, 736-738.
- Fu, Y.-Q.; Li, Z.-C.; Ding, L.-N.; Tao, J.-C.; Zhang, S.-H.; Tang, M.-S. *Tetrahedron: Asymmetry* 2006, 17, 3351-3357.

. . .

jé

с.

Daicel Chiralpak AD Column iPrOH/hexane = 20:80, λ = 254 nm, flow rate = 0.5 mL/min.

S21

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

Totals	· ·	
	·	100.00
	5462145	100.00
استخب مستعدي فيشته فيستعد ومشير الشريب فيستعد		

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

2: 254 nm, 4 nm Results		
Retention Time	Area	Area %
52.096	747289	5.18
54.132	13685708	94.82
Totals	14422007	100.00
	1443237/	100.00

Daicel Chiralpak AD Column iPrOH/hexane = 5:95, λ = 254 nm, flow rate = 0.5 mL/min.

Area	Area %
5412304	4.10
126657472	95.90
132069776	100.00
	Area 5412304 126657472 132069776

S29

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

2: 254 nm, 4 nm Results Retention Time	Area	Area %
15.520	452150	4.39
71.464	9858024	95.61
Totals		
	10310174	100.00

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

2: 254 nm, 4 nm Results		
Retention Time	Area	Area %
15.476	3653099	50.93
73.508	3519557	49.07
Totals		
	7172656	100.00

Daicel Chiralpak AD Column iPrOH/hexane = 20:80, λ = 254 nm, flow rate = 0.5 mL/min.

2: 254 nm, 4 nm Results Retention Time	Area	Area %
16.896 30.708	1905920 16062137	10.61 89.39
Totals	17968057	100.00

Daicel Chiralpak AD Column iPrOH/hexane = 20:80, λ = 254 nm, flow rate = 0.5 mL/min.

28.740	30833762	51.00	775981	38.91
Totals				·
	60464239	100.00	1994401	100.00

.

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 273 nm, flow rate = 0.5 mL/min.

Retention Time	Area	Area %
46.924 60.276	40893966 555135	98.66 1.34
Totals	41449101	100.00

9f (racemic)

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 273 nm, flow rate = 0.5 mL/min.

3: 2/3 nm, 4 nm Results Retention Time	Area	Area %
45.924	9138351	50.93
59.680	8805542	49.07
Totals		
	17943893	100.00

S39

ъ.,

1.

Daicel Chiralpak AD Column iPrOH/hexane = 20:80, λ = 218 nm, flow rate = 1.0 mL/min.

Daicel Chiralpak AD Column iPrOH/hexane = 20:80, λ = 218 nm, flow rate = 1.0 mL/min.

3: 210 nm, 4 nm Results		
Retention Time	Area	Area %
16.356	7378329	35.69
88.008	13294555	64.31
Totals		
	20672884	100.00

S42

3 ÷,

÷

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 1.0 mL/min.

2: 254 nm, 4 nm Results

Retention Time	Агеа	Area %
14.548	943187	12.53
19.412	6582252	87.47
Totals	<u> </u>	
	7525439	100.00

uuu "如果是我们就是你的你,你们们就是你们的问题。""你说是你是我们的你?""你说,你你不是我们的你们,你们就是我们的你能了,你们不是你……""你……""你……"

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

e en en fan en de Bankarden Bankarden en en en en de beske en de beske en de beske en de en en en en en en en e

Daicel Chiralpak AD Column iPrOH/hexane = 10:90, λ = 254 nm, flow rate = 0.5 mL/min.

2: 254 nm, 4 nm Results		
Retention Time	Area	Area %
44.864 58.564	72903283 3392696	95.55 4.45
•		
Totals	76295979	100.00

And and a part (1) 新聞 東京教会についた。 あいあい シルボ さい なんかい かくかみ (1) a contract a contract a contract a contract a contract