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Electronic Structure Model. The electronic structure of the nanor-
ods was described within the real-space screened pseudopoten-
tial method (1, 2). We studied a series of nanorods with varying
aspect ratios (ξ): Cd256SeðSÞ255 ξ ¼ 1, Cd548SeðSÞ547 ξ ¼ 2,
Cd840SeðSÞ839 ξ ¼ 3, Cd1132SeðSÞ1131 ξ ¼ 4, Cd1424SeðSÞ1423 ξ ¼
5, Cd1716SeðSÞ1715 ξ ¼ 6, Cd2008SeðSÞ2007 ξ ¼ 7, Cd2154SeðSÞ2153
ξ ¼ 71∕2, and Cd2300SeðSÞ2299 ξ ¼ 8. In Fig. 1, we showed the
structure of CdSe and CdS nanorods with an aspect ratio ξ ¼ 8.

To obtain the lowest transitions and calculate the absorption
cross-section, we used the filter diagonalization approach (3).
The quasiparticle gaps calculated for the nanorods are summar-
ized in Table S1. Within the accuracy of the calculation, we found
that above ξ ¼ 4 the quasiparticle gap is independent of the
length of the nanorod (L).

Near-Field Absorption.The average rate of energy absorption of an
electronic system subject to a time-dependent external homoge-
neous electric field EzðtÞ is given by:

P ¼ 1

2T

Z
T

−T
_EzðtÞDzðtÞdt; [S1]

where T is an average time andDz is the expectation value of the
electronic dipole, determined by

DzðtÞ ¼ −e
Z

n1ðr; tÞzd3r; [S2]

n1ðr; tÞ ¼ nðr; tÞ − n0ðrÞ is the response density, nðr; tÞ is the elec-
tron density as driven by the field, and n0ðrÞ is the ground state
density. The density is linearly related to the perturbing potential
via the response function χnn

n1ðr; tÞ ¼
Z

∞

0

dτ
Z

χnnðr; r 0; τÞevextðr 0; t − τÞd3r 0; [S3]

where, vextðr; tÞ ¼ EzðtÞz is the potential of the external electro-
magnetic field, and χnnðr; r 0; τÞ is the density-density response
function:

χnnðr; r 0; tÞ ¼ −
i
ℏ
θðtÞhΨ0j½n̂ðr; tÞ; n̂ðr 0Þ�jΨ0i: [S4]

In addition, ℏ is Planck’s constant divided by 2π. In the above, Ψ0

is the many body ground state of the electrons. When the perturb-
ing field is sinusoidal of frequency ω, EzðtÞ ¼ E0eiωt þ c it is nat-
ural to work in frequency domain. In this case, the rate of photon
absorption is the rate of energy absorption by ℏω:

ΓðωÞ ¼ P
ℏω

¼ −
2

ℏ
lm½eE0

Z
n1ðr; ωÞzd3r�: [S5]

In this expression, the Fourier transformed density is:

n1ðr; ωÞ ≡ lim
T→∞

1

2T

Z
T

−T
eiωtn1ðr; tÞdt: [S6]

In frequency domain, the analog of Eq. S3 is

n1ðr; ωÞ ¼
Z

χnnðr; r 0; ωÞevextðr 0; ωÞd3r 0: [S7]

Where, the potential in frequency domain is

vextðr; ω 0Þ ¼ 1

2T

Z
T

−T
e−iω

0tE0zeiωtdt ¼ E0z
�
sinðω − ω 0ÞT
ðω − ω 0ÞT

�

→ zE0δω;ω 0 :

[S8]

In addition, the Fourier transformed density-density response
is

χnnðr; r 0; ωÞ ¼
Z

∞

0

eiωτχnnðr; r 0; τÞdτ: [S9]

One can use the Lehman representation for χ,

χnnðr; r 0; ωÞ ¼ ∑
I>0

�
n0IðrÞnI0ðr 0Þ

ℏω − ðEI −E0Þ þ iη
−

n0IðrÞnI0ðr 0Þ
ℏωþ ðEI − E0Þ þ iη

�
;

[S10]

where, n0IðrÞ ¼ hΨ0jn̂ðrÞjΨIi and E1, ΨI are the many-electron
eigenenergies and eigenstates. For ω > 0

Im½χnnðr; r 0; ωÞ� ¼ −π∑
I>0

n0IðrÞnI0ðr 0Þδ½ℏω − ðE1 − E0Þ�:

[S11]

We will use a shorthand notation for Eq. S7,

n1 ¼ χevext: [S12]

Note that in this equation, χ was viewed as an integral operator
transforming a potential energy evextðr 0Þ to a Fourier-trans-
formed density n1ðr; ωÞ.

Using the shorthand notation, the absorption spectrum is

ΓðωÞ ¼ −
2

ℏ
jeE0j2Im½zχnnz�; [S13]

where now zχz is a double integral.

zχnnz ≡
ZZ

zχðr; r 0; ωÞz 0d3r 0d3r: [S14]

Now, suppose that the system is composed of two spatially
distinct parts: A and B. The interaction between the systems is
weak, and we treated it perturbatively. We assume that both sys-
tems were neutral and has no dipole moment in the ground state,
so that, neglecting van der Waals interaction, they interact only in
the excited states. In our perturbative approach the response den-
sity of each part to an external potential vext is written, as follows:

nA
1 ¼ χAA

nn evext þ χAB
nn evext nB

1 ¼ χBB
nn evext þ χBA

nn evext; [S15]

where, χAA
nn and χBB

nn are the unperturbed density-density
response functions of systems A and B, respectively. These
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responses were corrected by the interaction between the systems
and were denoted as χAB

nn and χBA
nn . The intersystem effect is due

to the long-range electron-electron interaction. We neglect ex-
change-correlation effects between the two systems; thus, only
time-dependent Hartree interaction is included. This Hartree in-
teraction creates a potential in A due to the density perturbation
in B:

vAB
H ðrA;ωÞ ¼

e
4πϵ0

Z
nB
1 ðrB; ωÞ
jrA − rBj

d3rB: [S16]

Alternatively, in compact notation, we use this equation to
define an integral operator CAB, as follows:

evAB
H ¼ CABnB

1 : [S17]

Note that the integral is done over the volume of B, and that it
has results in the volume of A. We also define an operatorCBA in
an analogous manner with the roles of A and B interchanged. The
potential vAB

H in A now creates an additional charge distortion in
A given by χAA

nn evAB
H . Thus, the interaction between the systems is

χAB
nn evext ¼ χAA

nn evAB
H χBA

nn evext ¼ χBB
nn evBAH :

The following relations in our perturbative approach can then
be derived as

nA
1 ¼ χAA

nn evext þ χAA
nn CABnB

1 nB
1 ¼ χBB

nn evext þ χBB
nn CBAnA

1 :

[S18]

Combining these equations and solving for the density pertur-
bations, we obtain an exact adiabatic result for the system

nA
1 ¼ ð1AA − χAA

nn CABχBB
nn CBAÞ−1χAA

nn ð1AA þCABχBB
nn Þevext

nB
1 ¼ ð1BB − χBB

nn CBAχAA
nn CABÞ−1χBB

nn ð1BB þCBAχAA
nn Þevext;

[S19]

where 1AA ¼ δðrA − r 0
AÞ. This relation takes account of the effect

of A on B and B on A. One can then rewrite the result for χnn
based on Eq. S10 in terms of the separate χA

nn and χB
nn

χnn ¼ ð1AA − χAA
nn CABχBB

nn CBAÞ−1χAA
nn ð1AA þCABχBB

nn Þ
þ ð1BB − χBB

nn CBAχAA
nn CABÞ−1χBB

nn ð1BB þCBAχAA
nn Þ:
[S20]

Up to now we did not make an approximation concerning the
strength of the Hartree interaction between A and B. We now
assume a small interaction and expand to second order in C,
obtaining

χnn ¼ χAA
nn þ χBB

nn þ 2χBB
nn CBAχAA

nn þ χBB
nn CBAχAA

nn CABχBB
nn

þ χAA
nn CABχBB

nn CBAχAA
nn :

[S21]

Furthermore, if we assume that A was the sphere with much
larger polarizability than the rod, we can neglect the term
χBB
nn CBAχAA

nn CABχBB
nn and have

zχnnz ¼ zχAA
nn zþ zχBB

nn zþ 2zχBB
nn ζ þ ζχBB

nn ζ

¼ zχAA
nn zþ ðzþ ζÞχBB

nn ðzþ ζÞ: [S22]

Where, by ζ ¼ CBAχAA
nn z we have

ζðr; ωÞ ¼
ZZ

e2

4πϵ0jr − r 0j χ
AA
nn ðr 0; r 0 0; ωÞz 0 0d3r 0 0d3r 0

and vHðr; ωÞ ¼ E0ζðr; ωÞ is the Hartree potential in B due to a
dipole potential perturbation E0z in A. Inserting this expression
into Eq. S11 leads to the following absorption rate:

ΓðωÞ ¼ ΓAðωÞ −
2

ℏ
jeE0j2Imf½zþ ζðωÞ�χBB

nn ðωÞ½zþ ζðωÞ�g:
[S23]

Or, using Eq. S9:

ΓðωÞ ¼ ΓAðωÞ þ
2π
ℏ ∑

I>0

jeE0½zBI0 þ ζBI0ðωÞ�j2δ½ℏω − ðEB
1 −EB

0 Þ�;

[S24]

where zBI0 ¼ hΨB
I j∑nẑnjΨB

0 i and ζBI0ðωÞ ¼ hΨB
1 j∑nζðr̂n; ωÞjΨB

0 i,
ΨB

I is the Ith many-electron eigenstate of system B, and n sums
over all electrons in B. For noninteracting electrons, these transi-
tion moments are nonzero only for single electron excitations
from the ground state determinantal wave function, and the
sum over excited states can be written as a sum over electron-hole
pairs, as follows:

ΓðωÞ ¼ ΓAðωÞ þ
2π
ℏ ∑

aj

jhψajeϕ̂ðωÞjψjij2δ½ℏω − ðεa − εjÞ�;

[S25]

where

ϕ̈ ≡ ϕðr̂Þ ¼ −E�
0 ½ẑþ ζðr̂; ωÞ�: [S26]

Eq. S22 is the expression used in the manuscript.

Near-Field Calculations. To obtain the near-field generated by the
metal tip, we followed standard procedures based on solving the
relevant Maxwell equations

∇ · Dðr; ωÞ ¼ ρðr; ωÞ; [S27]

where ρðr; ωÞ was the spatial electric density at frequency ω and
Dðr; ωÞ ¼ ϵðr; ωÞEðr; ωÞ was the electric displacement related
linearly to the electric fieldEðr; ωÞ through the dielectric medium
with constant ϵðr; ωÞ. In typical cases, the transverse component
of the electric field is negligible, so Eðr; ωÞ ≈ −∇ϕðr; ωÞ, where
ϕðr; ωÞ was the electric potential, thus

−∇ · ½ϵðr; ωÞ∇ϕðr; ωÞ� ¼ ρðr; ωÞ: [S28]

When the external field E0ðωÞ is homogeneous the potential is
given by ϕðr; ωÞ ¼ −E0ðωÞ · r þ φðr; ωÞ, where φðr; ωÞ → 0 as
r → ∞

−∇ · ½ϵðr; ωÞ∇φðr; ωÞ� ¼ ρðr; ωÞ: [S29]

For a sphere of radius a and dielectric constant ϵ1ðωÞ em-
bedded in an infinite medium of dielectric constant ϵmðωÞ and
an external field E0ðωÞ in the z direction, this equation has a sim-
ple solution outside the sphere

ϕþðr; ωÞ ¼ −E0ðωÞz
�
1 − sðωÞ

�
a
r

�
3
�
; [S30]
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and, inside the sphere

ϕ−ðr; ωÞ ¼ −E0ðωÞz½1 − sðωÞ�; [S31]

with

sðωÞ ¼ ϵ1ðωÞ − ϵmðωÞ
ϵ1ðωÞ þ 2ϵmðωÞ

: [S32]

In Fig. S2, we plotted ϵ1ðωÞ and for sðωÞ gold and silver, as-
suming the surrounding medium had a refractive index of 1.45.

Comparing Eq. S29 to Eq. S26 we saw that in the present case,
the induced potential in the rod resulting from the sphere
was E0ζðr; ωÞ ¼ −E0zsðωÞðarÞ3.

Selection Rules Based on an Effective Mass Model for a Cylinder.
Whereas the single band effective mass model is a crude approx-
imation to the electronic structure of the nanorod, it provides
means to analyze the results based on the atomistic calculations
in simple terms. Within the single band effective mass model, one
assumes that the electron (hole) wave functions were given by a
product of and envelop function and a Bloch function

ψeðrÞ ¼ φeðrÞucðrÞ ψhðrÞ ¼ φhðrÞuvðrÞ; [S33]

where φe;hðrÞ is the envelop function and uc;vðrÞ is the Bloch func-
tion for the valance (v) and conduction (c) bands. The matrix ele-
ment determining the selection rules is given by

A ¼ hψejeϕ̂ðωÞjψhi

¼ eΩcell∑
L

Z
0

φhðr þ LÞuvðrÞϕðr þ L; ωÞucðrÞφeðr þ LÞd3r

¼ eΩcell∑
L

φhðLÞφeðLÞ
Z
0

uvðrÞϕðr þ LÞucðrÞd3r: [S34]

Where, e is the electron charge, ϕðr; ωÞ ¼ −E0ðωÞz½1−
sðωÞðarÞ3� ≡ −E0ðωÞzþ δϕðr; ωÞ, the sum is over all unit cells,
and the remaining integral is over a unit cell. Using the conven-
tional assumptions of the effective mass model and defining
δA ¼ hψejeϕ̂ðωÞjψhi þ hψejeE0ðωÞzjψhi, we found

δA ¼ esðωÞE0ðωÞa3Ωcell∑
L

φhðLÞφeðLÞ
1

jLþ aẑj3

×
Z
0

uvðrÞðzþ LzÞ
�
1 − 3r ·

ðLþ aẑÞ
jLþ aẑj2

�
ucðrÞd3r; [S35]

where we used the approximation

ðzþ LzÞ
jr þ Lþ aẑj3 ≈

ðzþ LzÞ
jLþ aẑj3 − 3r · ðLþ aẑÞ ðzþ LzÞ

jLþ aẑj5 : [S36]

The integration over the unit cell was simplified to yield:

e
Z
0

uvðrÞðzþLzÞ
�
1− 3r ·

ðL− aẑÞ
jL− aẑj2

�
ucðrÞd3r

≈ e
Z
0

uvðrÞzucðrÞd3r −
3eLz

jLþ aẑj2
Z
0

uvðrÞ½r · ðL− aẑÞ�ucðrÞd3r

¼ db −
3Lz½db · ðLþ ẑaÞ�

jLþ aẑj2 : [S37]

Inserting this expression into the expression for δA, we found

δA ¼ sðωÞE0ðωÞa3Ωcell∑
L

φhðLÞφeðLÞ
1

jLþ aẑj3

×
�
db −

3Lz½db · ðLþ aẑÞ�
jLþ aẑj2

�

¼ esðωÞE0ðωÞa3

Z
d3rφhðrÞφeðrÞ

1

jr þ aẑj3

×
�
db −

3z½db · ðr þ aẑÞ�
jr þ aẑj2

�
[S38]

and

A ¼ Adip þ sðωÞE0ðωÞa3Ωcell∑
L

φhðLÞφeðLÞ
1

jLþ aẑj3

×
�
db −

3Lz½db · ðLþ aẑÞ�
jLþ aẑj2

�

¼ Adip þ esðωÞE0ðωÞa3

Z
d3rφhðrÞφeðrÞ

1

jr þ aẑj3

×
�
db −

3z½db · ðr þ aẑÞ�
jLþ aẑj2

�
; [S39]

where (4)

Adip ¼ db

Z
d3rφhðrÞφeðrÞ: [S40]

The dipolar term (Adip) leads to strict selection rules where the
quantum numbers of the electron and hole were preserved upon
excitation resulting from the above overlap integral. That is no
longer the case in the presence of a near-field, where the leading
term

sðωÞE0ðωÞa3db

Z
d3rφhðrÞφeðrÞ

1

jr þ aẑj3

does not vanish even when the electron and hole quantum num-
bers in the longitudinal direction differ.

Convergence Tests.A typical spectrum of a CdSe nanorod with as-
pect ratio of ξ ¼ 71∕2 is shown in Fig. S3 for a near-field gener-
ated from a gold nanoparticle of diameter D ¼ 10 nm. The
calculation show that the first peak in the absorption spectrum
is converged with approximately 300 filtered states.

Dielectric Function for CdSe Nanocrystals.The dielectric function for
the semiconductor was generated from the real-space pseudopo-
tential model taking into account quantum confinement effects.
The complex dielectric function is given by

ϵðωÞ ¼ 1 −
4π
V

e2ℏ2

me4πϵ0 ∑ja

f aj
ðℏωÞ2 − ε2aj þ 2iEΓpp

; [S41]

where V is the volume of the nanoparticle,me and e are the elec-
tron’s mass and charge, respectively, and ϵ0 is the vacuum per-
mittivity. In the results shown below, Γpp ¼ 0.1 eV is the
broadening parameter, εaj ¼ εa − εj is the energy difference be-
tween an electron in state a (conduction electron) and an elec-
tron in state j (valance electron), and f aj is the oscillator strength
given by
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f aj ¼ 2
2meεaj
3ℏ2e2

�
jhϕajuxjϕjij2 þ jhϕajμyjϕjij2 þ jhϕajμzjϕjij2

�
;

[S42]

where, as before, μx;y;z was the dipole operator, hrjϕai and hrjϕji
were the conduction and valance single particle wave functions,
respectively, which were the solution of real-space pseudopoten-
tial model.

For convergence purposes, we subtracted the zero frequency
dielectric const function from the above equation and added
the experimental value ϵð0Þ:

ϵðℏωÞ ¼ ϵð0Þ − 4π
V

e2ℏ2

me4πϵ0 ∑ja
f aj

�
1

ðℏωÞ2 − ε2aj þ 2iEΓpp
þ 1

ε2aj

�
:

[S43]

The results for CdSe nanocrystals of varying diameters are
shown in Fig. S4. These are in good agreement with other calcu-
lations for CdSe nanocrystals (5) and seem to converge to the
results known for bulk CdSe (6).

Band Bending.An alternative source that may lead to the observed
spectral shifts was due to band bending. To equilibrate the che-
mical potentials of the metal and semiconductors, charges would

move from the semiconductor to the metal if its Fermi energy was
above that of the metal and vice versa. The migration of charges
led to a field across the interface that caused the bands of the
semiconductor to bend (7). This bending could also lead to spec-
tral shifts.

In Fig. 5, we plotted the absorption spectrum of a CdSe nanor-
od for two aspect ratio ξ ¼ 4 and ξ ¼ 8. Two limiting cases of
bending were shown, positive and negative. Bending is modeled
by adding a constant energy (�2 eV) to the ligand potentials on
one size of the nanorod. This procedure leads to an addition field
at the nanorod’s edge of ≈5 V∕nm used to represent the field
generated at the metal-semiconductors junction. As could be
seen, band bending led to a red shift in the optical spectrum
in contrast to the blue shift observed experimentally. Moreover,
the shift was quite small, approximately 1 nm for the fields de-
scribed above.

If bending was a source of spectral shifts, and if it would lead to
blue shifts (which it does not), then one would expect the mag-
nitude of the shift to saturate when the Fermi energy of the metal
nanoparticle approaches the bulk value. This effect typically oc-
curs at nanoparticle size below 200 atoms; however, the fact that
the spectral shift continued to grow with the plasmon intensity
was another indication that band bending was not a significant
source of spectral shifts.
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Fig. S1. Images of CdS (Upper) and CdSe (Lower) nanorods used in the atomistic calculations with an aspect ratio of ξ ¼ 8.

Jain et al. www.pnas.org/cgi/doi/10.1073/pnas.1121319109 4 of 6

http://www.pnas.org/cgi/doi/10.1073/pnas.1121319109


Fig. S2. Real and imaginary parts of the dielectric constant ϵ1ðωÞ ¼ ϵ 0
1ðωÞ þ iϵ 0 0

1 ðωÞ and sðωÞ ¼ s 0ðωÞ þ is 0 0ðωÞ for silver (black curves) and gold (red curves).

Fig. S3. Absorption cross-section of a CdSe nanorod with an aspect ratio of ξ ¼ 71∕2 for different number of filtered states near the band edge.
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Fig. S4. Real and imaginary part of the dielectric function calculated from the real-space pseudopotential model for CdSe nanocrystals of varying diameters.
The value of ϵð0Þ is subtracted from the real part.

Fig. S5. Absorption cross-section of CdSe nanorods with an aspect ratio of ξ ¼ 4 (Left) and ξ ¼ 8 (Right).

Table S1. The quasiparticle gaps

ξ CdSe (eV) CdS (eV)

1 2.44 3.27
2 2.30 3.13
3 2.28 3.11
4 2.27 3.10
5 2.26 3.10
6 2.26 3.10
7 2.26 3.09
8 2.26 3.09
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