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SI Materials and Methods

Model Prediction of Heterozygosities of Wild and Domesticated
Horses. This section describes the analytic model predicting
pairwise within- and between-population homozygosities. The
corresponding heterozygosities are calculated as H = 1 — F,
where H is the heterozygosity and F is the homozygosity Let
FpY (t,p) denote the expected homozyg051ty of a pair of alleles
drawn randomly from two wild horses in demes i and j in gen-
eration ¢, under the infinite-alleles model with mutation proba-
bility p per locus and generation (i.e., when each mutation gives
a new allelic variant). Given the migration matrix M} (¢) (the
probability that, in generation #, an individual in deme k£ emi-
grates to deme i) and the population size N}(¢) of deme i in
generation ¢, we can write a recursion for FW ( W,
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where the right-hand side is evaluated in generation ¢, and &, = 1
if K = [ and 0 otherwise.

When comparing two domesticated horses, or one wild and one
domesticated horse, we describe the effect of migration and
colonization in two stages. The homozygosity after migration in

generation ¢ is
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Here N¢ is the effective population size in the domesticated

horse population of deme i, and Mi‘} is the migration rate between

the domesticated populations in demes i and j. The effect of

establishment of newly colonized demes on the homozygosity of

two domesticated horses is described by the following relations:
When i = j and i is being colonized from deme k;,

Fi(t4+1) =

(I-p) ( 1 )
2caKq 24Ky [S3]
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When i is being colonized from deme k;, and j is already colonized,
F(t41) = qFy + (1-q)F;". [S4]

When i # j and both demes are being colonized (from demes k;
and k;j, respectively),
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[S5]

Otherwise, Fdd(t +1) = Fd (t+1).
The correspondmg relation for the homozygosity of a wild and
a domesticated horse is

Fy At 1) = qiilk (1- q)I:";W when deme j is being colonized
Fy otherwise.
[S6]

When the first domestic deme is colonized, we take ¢ = 0, because
in this case all horses must come from the local wild population.
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To calculate the corresponding recursions for the stepwise
mutation model (SMM) of microsatellite loci (1, 2), let #; be the
number of generations to the most recent common ancestor of
a pair of individuals from demes i and j. Under the SMM model
the difference A in repeat count of two alleles is then the sum of
2t; independent identically distributed random variables, each of
which is —1, 0, or 1 with probabilities p/2, 1 — p, and p/2, re-
spectlvely Hence, the characteristic function for the difference
in repeat number, <¢*>, is (1 —p + pcosw)? . It follows that
the homozygosity under the SMM model is

FSMM 1 Zﬁ 21
PMEw =5, | (-t ncoso)™ o, [87]

where the angular brackets denote expectation over gene gene-
alogies (3). Thus, it follows that the SMM homozygosity is re-
lated to the infinite-alleles homozygosity as

1 2n
FMM(¢ ) = — / Fji(t,p(1—-cos w))dw, [S8]
v 2n 0

where Fy; is any of F}*, Fi**, or Fj’. We used the following nu-

merical approx1mat10n to evaluate the integral:

PG

tp)w%ZFij(t,p(l—cosM)) [S9]
k=1

This approximation is very accurate when # is large enough that
the probability of observing a difference of more than n repeat
units can be ignored. Using n = 50 was enough to obtain ma-
chine precision for the parameters used in this study.

Validation of the Statistical Method. Because of the need to effi-
ciently generate sample predictions, we could not use a fully
stochastic method. We therefore approximated the stochastic
samples by adding noise to the matrix of expected predicted
homozygosities within and between populations. The noise is
independent between parameter combinations but matrix ele-
ments within the matrix are correlated. We estimated this cor-
relation structure using 10,000 bootstrap samples of the real data
and generated the noise by sampling from the multivariate
Gaussian distribution with these correlations and zero mean.
To validate our approach, we implemented a fully stochastic
version of the part of the model describing the wild progenitors of
domestic horses in our model and generated a synthetic dataset with
the same number of loci, sample sizes, and population locations as in
the real data, for parameter values t = 10,000, » = 0.05, cK = 20,
mK = 100, K = 50,000, and K, = 1,000. We then performed the
same analysis as for the full model: We estimated the correlations
between matrix elements of pairwise homozygosity in the synthetic
dataset, using 10,000 bootstrap iterations; ran a uniform parameter
sweep of the parameter space, generating pairwise homozygosities
from the predlcted expected values (calculated using F;VW values
in the previous section, using the mutation rate p = 1.5 10~ )
and the correlated noise; and finally performed the same rejection
sampling and GLM-ABC analyses using the ABCtoolbox (4) as for
the full model (Materials and Methods in main text). Fig. S5 shows
the resulting marginal distributions of parameter values from the
rejection stage, the posterior distribution estimated by GLM-ABC,
and the true parameter values. Some differences between true and
fitted parameters are expected due to the limited amount of ge-
netic data (26 nuclear microsatellite markers in 12 populations);
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nevertheless, for most parameters the mode of the distribution is range of values are compatible with the generated data, for ex-
quite close to the true value of the parameter (except where a large ample for the carrying capacity K).
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Fig. S1.  Within- and between-population heterozygosity in wild and domestic horses as a function of distance from the origin of the expansion in East Asia.
(A) Between-population heterozygosity in wild horses (off-diagonal elements) corresponds to a pattern of isolation-by-distance (IBD). The decline in within-
population heterozygosity (on-diagonal elements) is relatively weak. (B) The demic component in the spread of horse domestication accentuated the east-to-
west decline in within-population diversity (on diagonal), whereas the extensive incorporation of wild horses into domestic stock means that the original
pattern of IBD (off diagonal) has been preserved in modern domestic horses from the steppes. The dip in within-population heterozygosity around 5,000 km
reflects the strong bottleneck associated with the initial domestication of horses in the western steppe.
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Fig. S2. Partitioning of sample populations into the three areas for calculating the summary statistics for ABC: Western Eurasia (orange circles), Central Eurasia
(blue circles), and Eastern Eurasia (red circles). See Fig. 1 of the main text for definitions of abbreviations.
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Fig. S3. Bayes factors for 12 scenarios describing the origin of the wild progenitor of domestic horses, Equus ferus, and the origin of horse domestication in
Eurasia, for 200-km (A4) and 50-km (B) deme spacing. Bayes factors are relative to the best-supported scenario, which posits an origin of E. ferus in eastern
Eurasia and a domestication origin in western central Eurasia. The scenarios are grouped by domestication origin and colored by the origin of E. ferus.
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Fig. S4. Posterior distributions of the demographic parameters of wild and domestic populations, from ABC analysis, for demes spaced 200 km (Upper) and 50
km (Lower) apart. For both spacings, the parameters are shown in A-F, as follows: (A) timing (t) of the expansion of E. ferus out of eastern Eurasia; (B) effective
founder population sizes of wild horse (cK, red line), the first domestic population (c40Kg4, blue dashed line), and subsequent domestic populations (c4Kqy, blue
solid line); (C) carrying capacity (effective population sizes) of the ancestral (Ko, dashed red line), wild (K, solid red line), and domestic populations (K4, blue
line); (D) growth rate, r, of wild horse populations; (E) migration between populations of wild (mK, red line) and domestic horses (myKy, blue line); and (F) the
proportion of domestic (q) and wild (1 — q) horses in domestic horse founder populations.
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Fig. S5. Rejection sampling and posterior distributions from GLM-ABC. Blue curves are marginal distributions from rejection sampling for the model pa-
rameters from a uniform parameters sweep, red curves are posterior distributions from GLM-ABC, and the dashed black lines show the parameter values used
to produce the synthetic dataset, using the stochastic implementation of the model. (4) Timing, t, of the expansion; (B) growth rate, r; (C) number of colonists,
cK; (D) number of migrants per generation, mK; (E) carrying capacity, K; and (F) ancestral carrying capacity, Ko.
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Table S1. Details of the sampled populations

Country Region ID Latitude Longitude d,, km* H' N*
Mongolia Ovérkhangai MGL 48.0 101.0 1,951 0.791 44
China Xinjiang CHA 48.7 87.0 3,035 0.790 34
Russia Altai ALT 51.6 85.0 3,041 0.776 40
Russia Kalmykia KAL 47.5 453 5,833 0.778 22
Kyrgyzstan Naryn KYR 411 75.7 4,359 0.786 20
Kazakhstan Mangystau KSwW 423 53.2 5,687 0.769 24
Kazakhstan Kyzylorda KAR 46.0 61.3 4,997 0.769 35
Kazakhstan Karagandy KKA 50.0 73.0 3,981 0.775 25
Ukraine Lviv UKL 50.3 30.9 6,359 0.782 21
Ukraine Zakarpattia UKZ 49.2 23.6 6,739 0.772 18
Lithuania Vilnius LTA 56.9 25.4 6,223 0.756 21
Georgia Samegrelo GGA 42.3 423 6,361 0.777 24

See Fig. 1 for definitions of abbreviations.
*Distance to the easternmost deme (deme 0), in kilometers.
TExpected within-population heterozygosity.
*sample size.

Table S2. Summary statistics for the posterior distributions of each estimated model parameter

95% CI* 95% HPD'

Parameter Mode Median Lower Upper Lower Upper
T, kya 160 150 51 180 79 180
r 0.052 0.063 0.0076 0.72 0.0078 0.69
cK 7.7 28 1.2 4,000 1.0 2,300
mK 1.0 1.1 0.012 59 0.02 79
K 54,000 39,000 7,900 94,000 11,000 100,000
Ko 950 360 1.6 42,000 1.4 31,000
Ky 340 180 8 900 15 1,000
Cq0Kd 6.6 19 1.2 640 1.0 430
mgKy 72 72 21 260 21 260
Ky 6,400 4,700 1,100 9,600 1,500 10,000
q 0.47 0.46 0.04 0.91 0.01 0.88

*Credibility Intervals.
THighest posterior density intervals, the shortest continuous intervals with an integrated posterior density of
a certain value.

Warmuth et al. www.pnas.org/cgi/content/short/1111122109

6 of 8


www.pnas.org/cgi/content/short/1111122109

L T

/

1\

BN AS  PNAS D)

Table S3. List of microsatellite loci amplified in two multiplex PCR reactions
Size

Locus ECA* Primer 5'-3’ Reference range Multiplex

VHL20 30 CAAGTCCTCTTACTTGAAGACTAG (1) 82-102 1
AACTCAGGGAGAATCTTCCTCA

HTG4 9 CTATCTCAGTCTTGATTGCAGGAC (2) 123-137 1
GCTCCCTCCCTCCCTCTGTTCTC

AHT4 24 AACCGCCTGAGCAAGGAAGT (3) 151-169 1
GCTCCCAGAGAGTTTACCCT

HMS7 1 CAGGAAACTCTCATGTTGATACCATC 4) 172-186 1
GTGTTGTTGAAACATACCTTGACTGT

COR18 25 AGTCTGGCAATATTGAGGATGT (5) 263-277 1
AGCAGCTACCCTTTGAATACTG

AHT5 8 ACGGACACATCCCTGCCTGC (3) 125-141 1
GCAGGCTAAGGAGGCTCAGC

HMS6 4 CTCCATCTTGTGAAGTGTAACTCA (4) 159-171 1
GAAGCTGCCAGTATTCAACCATTG

ASB23 3 ACATCCTGGTCAAATCACAGTCC (6) 183-215 1
GAGGGCAGCAGGTTGGGAAGG

TKY312 6 AACCTGGGTTTCTGTTGTTG (7) 100-126 1
GATCCTTCTTTTTATGGCTG

TKY343 11 TAGTCCCTATTTCTCCTGAG (8) 143-173 1
AAACCCACAGATACTCTAGA

LEX33 4 TTTAATCAAAGGATTCAGTTG 9) 191-217 1
GGGACACTTTCTTTACTTTC

HMS3 9 CCAACTCTTTGTCACATAACAAGA (10) 151-171 1
GCCATCCTCACTTTTTCACTTTGTT

COR58 12 CACCAGGCTAAGTAGCCAAG (10) 210-234 1
GGGAAGGACGATGAGTGAC

HMS5 5 TAGTGTATCCGTCAGAGTTCAAGG (4) 98-104 2
GCAAGGAAGTCAGACTCCTGGA

EB2E8 26 TTCTGTGTTAGGGGTTGTG 1) 125-139 2
GTATGAGCCAGTTCTTGAT

TKY321 20 TTGTTGGGTTTAGGTATGAAGG (7) 182-208 2
GTGTCAATGTGACTTCAAGAAC

ASB2 15 CACTAAGTGTCGTTTCAGAAGG (6) 216-248 2
GCACAACTGAGTTCTCTGATAGG

TKY301 23 AATGGTGGCTAATCAATGGG (7) 149-169 2
GTGTATGATGCCCTCATCTC

TKY337 4 AGCAGGGTTTAATTACCGAG (8) 169-189 2
TAGATGCTAATGCAGCACAG

TKY374 1 CTGGTCCCTCTGGATGGAAG (7) 197-225 2
TCCCAAGAGGGAGTACAATC

HTG7 4 CCTGAAGCAGAACATCCCTCCTTG (12) 113-123 2
ATAAAGTGTCTGGGCAGAGCTGCT

UM11 20 TGAAAGTAGAAAGGGATGTGG (13) 162-184 2
GTCTCAGAGCAGAAGTCCCTG

TKY394 24 GCATCATCGCCTTGAAGTTG (8) 232-258 2
CCTTTCTGGTTGGTATCCTG

Um32 14 AAATGGTCAGCCTCTCCTC (14) 140-150 2
TGTCTCTCTAGTCCCACTCCTC

HMS1 15 CATCACTCTTCATGTCTGCTTGG 4) 170-182 2
TTGACATAAATGCTTATCCTATGGC

TKY294 27 GATCTATGTGCTAGCAAACAC (7) 216-230 2

CTAGTGTTTCAGATAGCCTC

*Equus caballus chromosome number.
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