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S.1 Population Dynamics and Extrinsic Variability

Consider a chemical reaction system of m different species in a constant random environment, which
is given by a D-valued random variable Z that is distributed according to the probability measure PZ ,
where D is some set. Denote by X(t) = (X1(t), . . . , Xm(t)) the stochastic process that describes the
time evolution of the number of molecules of the m species and by p(x, t|z) the conditional probability
P (X(t) = x|Z = z), where x = (x1, . . . , xm) ∈ X and X ⊂ N

m is the set of all reachable states. The time
evolution of the conditional probability distribution of this system then follows a conditional chemical
master equation:

d

dt
p(x, t|z) =

K
∑

k=1

−p(x, t|z)ak(x, z) + p(x− νk, t|z)ak(x− νk, z),

where ak(x, z), k = 1, . . . ,K, are the propensity functions and νk, k = 1, . . . ,K, the stoichiometric
transition vectors of the K reactions of the system.

Multiplying both sides of the conditional CME by the i-th component xi of the state vector x, summing
over all states x ∈ X and integrating over all possible values of Z with respect to the probability measure
PZ yields:

∫

D

∑

x∈X

d

dt
p(x, t|z)xidPZ =

∫

D

∑

x∈X

K
∑

k=1

[−p(x, t|z)ak(x, z)xi + p(x− νk, t|z)ak(x− νk, z)xi]dPZ

The left hand side is then the time derivative of the marginal mean of Xi, whereas the right hand side
can be simplified by a change of variables as follows:

d

dt
E[Xi(t)] =

∫

D

K
∑

k=1

∑

x∈X

[−p(x, t|z)ak(x, z)xi + p(x, t|z)ak(x, z)(xi + νki
)]dPZ

=
K
∑

k=1

∫

D

∑

x∈X

p(x, t|z)ak(x, z)(−xi + xi + νki
)dPZ

=

K
∑

k=1

νki

∫

D

∑

x∈X

p(x, t|z)ak(x, z)dPZ

=

K
∑

k=1

νki

∫

D

E[ak(X(t), z)|z]dPZ

=
K
∑

k=1

νki
E[ak(X(t), Z)],

where νki
is the i-th component of νk.
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Multiplying both sides with xixj instead of xi and performing the same calculations yields the time
derivatives of the second order moments:

d

dt
E[Xi(t)Xj(t)] =

∫

D

K
∑

k=1

∑

x∈X

[

−p(x, t|z)ak(x, z)xixj + p(x, t|z)ak(x, z)(xi + νki
)(xj + νkj

)
]

dPZ

=
K
∑

k=1

∫

D

∑

x∈X

p(x, t|z)ak(x, z)(−xixj + xixj + xiνkj
+ xjνki

+ νki
νkj

)dPZ

=
K
∑

k=1

(

νki
E[Xj(t)ak(X(t), Z)] + νkj

E[Xi(t)ak(X(t), Z)] + νki
νkj

E[ak(X(t), Z)]
)

Through the terms E[ak(X(t), Z)] and E[Xi(t)ak(X(t), Z)] cross moments of the species and the ex-
trinsic variable influence the time evolution of the species moments. Even if the extrinsic variable Z is
independent of the species initial conditions, over time it will become correlated with X(t). This requires
computing the time evolution of these correlations along with the species moments.

The time derivatives of the cross moments E[Xi(t)Z] can be obtained with the same calculations as
above by multiplying both sides by xiz:

d

dt
E[Xi(t)Z] =

∫

D

K
∑

k=1

∑

x∈X

[−p(x, t|z)ak(x, z)xiz + p(x, t|z)ak(x, z)(xi + νki
)z]dPZ

=
K
∑

k=1

∫

D

∑

x∈X

p(x, t|z)ak(x, z)(−xiz + xiz + νki
z)dPZ

=
K
∑

k=1

νki
E[Zak(X(t), Z)]

If we close the moment equations and replace all the higher order moments of the species and all the
higher order cross moments of the species and the extrinsic variable by functions of the lower order
moments, we obtain a dynamical system for the moments and cross moments of order up to two that
depends only on some lower order moments of the distribution of the extrinsic variable. If this distribu-
tion is unknown, these moments can be included as unknown parameters in the parameter search. The
specific moment equations and closure functions for the examples considered in this work are given in
Section S.3.1 and Section S.4.1.

S.2 Separating extrinsic from intrinsic noise in a birth-death process with variable

birth rate

To demonstrate that, in principle, the extrinsic statistics can be identified from measurements of species
moments we consider a simple birth-death process, initialized at zero, with death rate b, where the birth
rate Z is a random variable distributed according to some probability measure PZ .

∅
Z
−⇀ X

b
−⇀ ∅
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Using the derivation of the previous section the time evolution of the moments of this system can be
computed as

d

dt
E [X] = E [Z]− bE [X] ,

d

dt
E
[

X
2] = E [Z] + 2E [XZ]− 2bE

[

X
2]+ bE [X] ,

d

dt
E [XZ] = E

[

Z
2] − bE [XZ] .

This is a closed linear system and can be solved analytically. Denote by E [X]tr and E [X]ss two obser-
vations of the mean of X, taken at a transient time point ttr and at stationarity, respectively. These two
observations allow to compute the death rate and the mean of PZ as

b = −
1

ttr
log

(

E [X]ss − E [X]tr

E [X]ss

)

and E [Z] = bE [X]ss .

If also an observation E
[

X2
]ss

of the stationary second moment is available, the second moment of PZ

can be computed as

E
[

Z
2
]

= b
2
(

E
[

X
2
]ss

− E [X]ss
)

Therefore, for this process, mean and variance of the extrinsic variable can be computed from measure-
ments of the mean at one transient time point and mean and second moment at stationarity.

S.3 A Simple Model of Transient Gene Activation

The simple mass-action model under consideration is defined by the four reactions

A
c1−⇀ ∅

A+B
c2−⇀↽−
c3

AB

AB
c4−⇀ AB + C,

(1)

and the corresponding stochastic rate constants given in Tab. S.1.

S.3.1 Moment Dynamics

Denote by µ1
A, µ

1
B , µ1

D and µ1
C the means of A, B, AB and C, respectively. Let µ2

A, µ
2
AB , µ2

AD, µ2
AC ,

µ2
B , µ2

BD, µ2
BC , µ2

D, µ2
DC , µ

2
C and µ3

ABD , µ3
A2B , µ3

ABC , µ3
AB2 be the second and third order moments,

respectively. Since we assumed that this system is unaffected by extrinsic variability, the moment
dynamics are not affected by moments of an extrinsic variable. Several tools are available, e.g. [7], that
are able to automatically compute moment dynamics and closure functions from the reaction system
and allow fast implementation of our identification method. For the system in question the moment
equations become

3



d

dt
µ
1
A = c3 · µ

1
D − c2 · µ

2
AB − c1 · µ

1
A

d

dt
µ
1
B = c3 · µ

1
D − c2 · µ

2
AB

d

dt
µ
1
D = c2 · µ

2
AB − c3 · µ

1
D

d

dt
µ
1
C = c4 · µ

1
D

d

dt
µ
2
A = c1 · µ

1
A − 2 · c1 · µ

2
A + c2 · µ

2
AB − 2 · c2 · µ

3
A2B + c3 · µ

1
D + 2 · c3 · µ

2
AD

d

dt
µ
2
AB = c3 · µ

1
D − c2 · µ

3
AB2 − c2 · µ

3
A2B + c3 · µ

2
AD + c3 · µ

2
BD − (c1 − c2) · µ

2
AB

d

dt
µ
2
AD = c2 · µ

3
A2B − c2 · µ

2
AB − c2 · µ

3
ABD − c3 · µ

1
D + c3 · µ

2
D − (c1 + c3) · µ

2
AD

d

dt
µ
2
AC = c3 · µ

2
DC − c2 · µ

3
ABC − c1 · µ

2
AC + c4 · µ

2
AD

d

dt
µ
2
B = c2 · µ

2
AB − 2 · c2 · µ

3
AB2 + c3 · µ

1
D + 2 · c3 · µ

2
BD

d

dt
µ
2
BD = c2 · µ

3
AB2 − c2 · µ

2
AB − c2 · µ

3
ABD − c3 · µ

1
D + c3 · µ

2
D − c3 · µ

2
BD

d

dt
µ
2
BC = c3 · µ

2
DC − c2 · µ

3
ABC + c4 · µ

2
BD

d

dt
µ
2
D = c2 · µ

2
AB + 2 · c2 · µ

3
ABD + c3 · µ

1
D − 2 · c3 · µ

2
D

d

dt
µ
2
DC = c2 · µ

3
ABC − c3 · µ

2
DC + c4 · µ

2
D

d

dt
µ
2
C = c4 · µ

1
D + 2 · c4 · µ

2
DC

A closed system is obtained by replacing the third order cumulants by zero, which is equivalent to
replacing the third order moments by functions of the lower order moments as follows:

µ
3
ABD = µ

1
A · µ2

BD + µ
1
B · µ2

AD + µ
1
D · µ2

AB − 2 · µ1
A · µ1

B · µ1
D,

µ
3
A2B = −2 · µ1

B · µ1
A

2
+ 2 · µ2

AB · µ1
A + µ

1
B · µ2

A,

µ
3
ABC = µ

1
A · µ2

BC + µ
1
B · µ2

AC + µ
1
C · µ2

AB − 2 · µ1
A · µ1

B · µ1
C ,

µ
3
AB2 = −2 · µ1

A · µ1
B

2
+ 2 · µ2

AB · µ1
B + µ

1
A · µ2

B

Note that the accuracy of moment closure methods depends not only on the network structure, but
also on the unknown parameters. Therefore, it is a priori unclear if a certain closure method leads to
accurate approximations of the moments. However, for a given set of parameters accuracy of a moment
closure method can be checked by comparing the approximations with estimates computed from a large
number of stochastic simulations. Therefore we arbitrarily picked a moment closure method, performed
the parameter search with it and checked the accuracy of the approximations locally for the found pa-
rameters. Second order zero cumulant moment closure led to good agreement of the approximations
with estimates obtained from stochastically simulating the system with the estimated parameters and
was therefore sufficient for our model.
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S.3.2 Model Calibration

We first validated the normality assumption of the empirical moment estimates as described in the
Materials and Methods section in the main text. As graphical method we applied standard probability-
probability (P − P ) and quantile-quantile (Q−Q) plots, whereas to quantitatively assess normality we
performed the Kolmogorov-Smirnov-Lilliefors test [4]. Results and p-values for the tests are demonstrated
for the protein distribution at 10000s in Fig. S.1.

Protein Mean Protein Variance

0 0.5 1
0

0.5

1

400 410 420 430
400

410

420

430

0 0.5 1
0

0.5

1

1.6 1.7 1.8 1.9 2

x 10
5

1.6

1.7

1.8

1.9

2
x 10

5

Figure S.1: Normality of empirical moments. Distributions of empirical moments were computed using
bootstrapping. In particular, we randomly subsampled 10000 abundance values from the
simulated target distribution and computed the sample mean and variance. This was re-
peated 50000 times to obtain approximations of the distributions of the moment estimates.
For comparison, analytical normal distributions were fitted to the bootstrapped data and
compared against each other using standard probability-probability (P − P ) and quantile-
quantile (Q− Q) plots [4]. In all four plots, the x-axes correspond to the analytical normal
distributions, whereas the y-axes correspond to the bootstrapped empirical distributions.
The low Kolmogorov-Smirnov test statistics DK in conjunction with the large p-values indi-
cate that the distribution of the empirical moment estimates can be well approximated by a
normal distribution.

In order to calibrate the model to the reference data, we estimated the kinetic parameters from Tab. S.1.
For simplicity, we assumed that the initial conditions of the species are known. If in some application
the initial conditions are unknown, they can be included as unknown parameters in the parameter search
and estimated along with the other parameters. For species A we set the initial amount to 50 molecules,
B was initialized at 1 (corresponding to the gene being initially in the inactive state), whereas all other
species were initialized at 0 molecules. The reference data was generated by stochastic simulation using
M = 20000 sample paths of length T = 10000s. We computed first and second order moments of species
C and their corresponding uncertainties (see main text, Materials and Methods) each 2000s.

The obtained data was treated as measurements and used to calibrate the model by computing MAP
estimates using a standard Metropolis-Hastings (M-H) sampler (see main text, Materials and Methods).
The scaling parameters of the log-normal proposal densities were set to vj = 0.01. After burn-in we
recorded around 10000 samples of the M-H algorithm and determined MAP values. This inference was
performed multiple times using random initial parameter values, drawn from a log-normal distribution
LN (ln 0.002, 22). Each time, the inference scheme ended up with equivalent MAP estimates (up to small
random deviations, introduced by the randomized parameter search).

The inferred parameter set used for further analysis is given in Tab. S.1. The calibrated model was
validated by comparing the distributions of species C to the distributions obtained from the reference
model at the measurement time points (for better accuracy the comparison was based on 50000 sample
paths for both models), as shown in Fig. S.2.
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Table S.1: Inferred model parameters and Metropolis-Hastings setup. The reference and inferred MAP
estimates are denoted as γj and γj,MAP , respectively.

Parameter c1 c2 c3 c4
γj 1.500 · 10−2 8.000 · 10−4 1.000 · 10−3 4.000 · 10−1

γj,MAP 1.380 · 10−2 7.050 · 10−4 9.865 · 10−4 3.988 · 10−1
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Figure S.2: Protein distributions for each measurement time point. Red: Calibrated model; Black:
Reference model.
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S.3.3 Second Order Moment Resolves Non-Identifiability

For the simple model of transient gene activation, the population mean alone does not provide enough
information to uniquely determine the four model parameters. This is demonstrated in Fig. S.3, where we
compared two different model configurations, each of them found by running the same MCMC algorithm
with different initial conditions. In both cases, the estimated means fit well the reference mean. In
contrast, the variances significantly differ from each other. Neither parameter set can reproduce the
underlying distribution. For the second parameter configuration, the distribution is even unimodal (see
Fig S.4).
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Figure S.3: The plot shows results for two parameter configurations that achieved almost equivalent mean
values but strongly differ in the variance. Red, Blue: Calibrated models; Black: Reference
model

S.4 Osmo-Stress induced MAPK Hog1 Activity and pSTL1-qV Protein Expression

To keep the notation simple, we use the following acronyms for the model species:

Table S.2: Acronyms for the chemical species.

Species pSTL1off pSTL1on CR pSTL1on · CR RIB mRNA pSTL1− qV

Acronym A B C D E F G

The Hog1 induced gene expression model is given by the reaction network

A
c1(t)−−−⇀↽−−−
c2

B

B + C
c3−⇀↽−
c4

D

D
c5−⇀ D + F

F + E
c6−⇀ F + E +G

G
c7−⇀ ∅

F
c8−⇀ ∅.

(2)
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Figure S.4: Protein distributions for two parameter configurations. As the blue distribution is unimodal
for all time points, it follows that the multi-modality cannot be predicted from the protein
mean alone. Red, Blue: Calibrated models; Black: Reference model.

Note that c1(t) denotes a time-varying kinetic parameter as described in Section S.4.2. Note that
the synthesis reaction for protein G can equivalently be written as the standard first-order reaction

F
c6E−−⇀ F +G.

S.4.1 Moment Dynamics

Denote by µ1
A, µ1

B , µ1
C , µ1

D, µ1
E , µ1

F , and µ1
G the means of A, B, C, D, E, F and G, respectively. Let

µ2
A, µ

2
AB , µ2

AC , µ
2
AD, µ2

AE , µ
2
AF , µ

2
AG, µ

2
B , µ2

BC , µ
2
BD , µ2

BE , µ
2
BF , µ

2
BG, µ2

C , µ
2
CD, µ2

CE , µ2
CF , µ

2
CG, µ

2
D,

µ2
DE, µ

2
DF , µ

2
DG, µ

2
E , µ

2
EF , µ

2
EG, µ

2
F , µ

2
FG, µ

2
G and µ3

ABC , µ
3
AEF , µ

3
B2C , µ

3
BCD , µ3

BCE , µ3
BC2, µ

3
BCF ,

µ3
BCG, µ3

E2F , µ3
DEF , µ3

EFG, µ3
EF2, µ3

CEF , µ3
BEF be the second and third order moments, respectively.

Then the moment equations for this system are given by:
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d

dt
µ
1

A
= c2 · µ

1
B − c1 · µ

1
A

d

dt
µ
1

B
= c1 · µ

1
A − c2 · µ

1
B − c3 · µ

2
BC + c4 · µ

1
D

d

dt
µ
1

C
= c4 · µ

1
D − c3 · µ

2
BC

d

dt
µ
1

D
= c3 · µ

2
BC − c4 · µ

1
D

d

dt
µ
1

E
= 0

d

dt
µ
1

F
= c5 · µ

1
D − c8 · µ

1
F

d

dt
µ
1

G
= c6 · µ

2
EF − c7 · µ

1
G

d

dt
µ
2

A
= c1 · µ

1
A − 2 · c1 · µ

2
A + c2 · µ

1
B + 2 · c2 · µ

2
AB

d

dt
µ
2

AB
= c1 · µ

2
A − c1 · µ

1
A − c2 · µ

1
B + c2 · µ

2
B − c3 · µ

3
ABC + c4 · µ

2
AD − (c1 + c2) · µ

2
AB

d

dt
µ
2

AC
= c2 · µ

2
BC − c1 · µ

2
AC − c3 · µ

3
ABC + c4 · µ

2
AD

d

dt
µ
2

AD
= c2 · µ

2
BD + c3 · µ

3
ABC − (c1 + c4) · µ

2
AD

d

dt
µ
2

AE
= c2 · µ

2
BE − c1 · µ

2
AE

d

dt
µ
2

AF
= c2 · µ

2
BF + c5 · µ

2
AD − (c1 + c8) · µ

2
AF

d

dt
µ
2

AG
= c2 · µ

2
BG + c6 · µ

3
AEF − (c1 + c7) · µ

2
AG

d

dt
µ
2

B
= c1 · µ

1
A + 2 · c1 · µ

2
AB + c2 · µ

1
B − 2 · c2 · µ

2
B + c3 · µ

2
BC − 2 · c3 · µ

3
B2C + c4 · µ

1
D + 2 · c4 · µ

2
BD

d

dt
µ
2

BC
= c1 · µ

2
AC − c3 · µ

3
B2C − c3 · µ

3
BC2 + c4 · µ

1
D + c4 · µ

2
CD + c4 · µ

2
BD − (c2 − c3) · µ

2
BC

d

dt
µ
2

BD
= c1 · µ

2
AD − c3 · µ

2
BC + c3 · µ

3
B2C − c3 · µ

3
BCD − c4 · µ

1
D + c4 · µ

2
D − (c2 + c4) · µ

2
BD

d

dt
µ
2

BE
= c1 · µ

2
AE − c2 · µ

2
BE − c3 · µ

3
BCE + c4 · µ

2
DE

d

dt
µ
2

BF
= c1 · µ

2
AF − c3 · µ

3
BCF + c4 · µ

2
DF + c5 · µ

2
BD − (c2 + c8) · µ

2
BF

d

dt
µ
2

BG
= c1 · µ

2
AG − c3 · µ

3
BCG + c4 · µ

2
DG + c6 · µ

3
BEF − (c2 + c7) · µ

2
BG

d

dt
µ
2

C
= c3 · µ

2
BC − 2 · c3 · µ

3
BC2 + c4 · µ

1
D + 2 · c4 · µ

2
CD

9



d

dt
µ
2

CD
= c3 · µ

3
BC2 − c3 · µ

2
BC − c3 · µ

3
BCD − c4 · µ

1
D + c4 · µ

2
D − c4 · µ

2
CD

d

dt
µ
2

CE
= c4 · µ

2
DE − c3 · µ

3
BCE

d

dt
µ
2

CF
= c4 · µ

2
DF − c3 · µ

3
BCF + c5 · µ

2
CD − c8 · µ

2
CF

d

dt
µ
2

CG
= c4 · µ

2
DG − c3 · µ

3
BCG + c6 · µ

3
CEF − c7 · µ

2
CG

d

dt
µ
2

D
= c3 · µ

2
BC + 2 · c3 · µ

3
BCD + c4 · µ

1
D − 2 · c4 · µ

2
D

d

dt
µ
2

DE
= c3 · µ

3
BCE − c4 · µ

2
DE

d

dt
µ
2

DF
= c3 · µ

3
BCF + c5 · µ

2
D − (c4 + c8) · µ

2
DF

d

dt
µ
2

DG
= c3 · µ

3
BCG + c6 · µ

3
DEF − (c4 + c7) · µ

2
DG

d

dt
µ
2

E
= 0

d

dt
µ
2

EF
= c5 · µ

2
DE − c8 · µ

2
EF

d

dt
µ
2

EG
= c6 · µ

3
E2F − c7 · µ

2
EG

d

dt
µ
2

F
= c5 · µ

1
D + 2 · c5 · µ

2
DF + c8 · µ

1
F − 2 · c8 · µ

2
F

d

dt
µ
2

FG
= c5 · µ

2
DG − (c8 + c7) · µ

2
FG + c6 · µ

3
EF2

d

dt
µ
2

G
= c6 · µ

2
EF + 2 · c6 · µ

3
EFG + c7 · µ

1
G − 2 · c7 · µ

2
G

A closed system is then obtained by replacing the third order cumulants by zero, which is equivalent to
replacing the third order moments by functions of the lower order moments as follows:
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µ
3
ABC = µ

1
A · µ2

BC + µ
1
B · µ2

AC + µ
1
C · µ2

AB − 2 · µ1
A · µ1

B · µ1
C ,

µ
3
AEF = µ

1
A · µ2

EF + µ
1
E · µ2

AF + µ
1
F · µ2

AE − 2 · µ1
A · µ1

E · µ1
F ,

µ
3
B2C = −2 · µ1

C · µ1
B

2
+ 2 · µ2

BC · µ1
B + µ

1
C · µ2

B ,

µ
3
BCD = µ

1
B · µ2

CD + µ
1
C · µ2

BD + µ
1
D · µ2

BC − 2 · µ1
B · µ1

C · µ1
D,

µ
3
BCE = µ

1
B · µ2

CE + µ
1
C · µ2

BE + µ
1
E · µ2

BC − 2 · µ1
B · µ1

C · µ1
E ,

µ
3
BC2 = −2 · µ1

B · µ1
C

2
+ 2 · µ2

BC · µ1
C + µ

1
B · µ2

C ,

µ
3
BCF = µ

1
B · µ2

CF + µ
1
C · µ2

BF + µ
1
F · µ2

BC − 2 · µ1
B · µ1

C · µ1
F ,

µ
3
BCG = µ

1
B · µ2

CG + µ
1
C · µ2

BG + µ
1
G · µ2

BC − 2 · µ1
B · µ1

C · µ1
G,

µ
3
E2F = −2 · µ1

F · µ1
E

2
+ 2 · µ2

EF · µ1
E + µ

1
F · µ2

E ,

µ
3
DEF = µ

1
D · µ2

EF + µ
1
E · µ2

DF + µ
1
F · µ2

DE − 2 · µ1
D · µ1

E · µ1
F ,

µ
3
EFG = µ

1
E · µ2

FG + µ
1
F · µ2

EG + µ
1
G · µ2

EF − 2 · µ1
E · µ1

F · µ1
G,

µ
3
EF2 = −2 · µ1

E · µ1
F

2
+ 2 · µ2

EF · µ1
F + µ

1
E · µ2

F ,

µ
3
CEF = µ

1
C · µ2

EF + µ
1
E · µ2

CF + µ
1
F · µ2

CE − 2 · µ1
C · µ1

E · µ1
F ,

µ
3
BEF = µ

1
B · µ2

EF + µ
1
E · µ2

BF + µ
1
F · µ2

BE − 2 · µ1
B · µ1

E · µ1
F .

As in the example of Section S.3, second order zero cumulant moment closure led to good agreement of
the approximations with estimates obtained from stochastically simulating the system with the found
parameters and was therefore sufficient for this model.

S.4.2 Nuclear Hog1 Activity as Model Input

We used fluorescence microscopy to measure nuclear enrichment of MAPK Hog1. The data set was
recorded by co-authors, originally published in [9]. To extract the time evolution from the single-cell
measurements (around 50-120 cells), we first removed outliers manually and normalized the data. In
particular, we divided nuclear Hog1 (obtained by image segmentation) by the total Hog1 in the cell to
reduce photo-bleaching artifacts. Note that the relocation data measures active and also inactive Hog1,
whereas the latter cannot bind to the target gene. Thus, we also subtracted the mean basal levels,
calculated from time-points before osmotic stress. The basal active Hog1 level - denoted u0 is then
inferred during model calibration, together with the other parameters. Note that this procedure is based
on the assumption that export of nuclear Hog1 is fast once it has been deactivated. The resulting data
was then used to perform a linear regression with radial basis functions (RBFs). The base functions were
centered around the measurement time points and the width parameter was adjusted according to the
increasing measurement intervals. This procedure was repeated for each salt concentration. Note that to
properly capture the stress-dependent protein expression, we additionally measured the STL1 reporter
for intermediate salt concentrations in the flow cytometry experiments. The corresponding deterministic
Hog1 functions were obtained by performing a linear interpolation along the NaCl-time plane (see Fig
S.5).

In the following, the extracted nuclear Hog1 function for a given salt concentration is denoted as u(t).
To obtain the corresponding time-varying gene activation intensity, we transformed the Hog1 abundance
using a Hill-function, i.e.,

c1(t) =
Vmax(u(t) + u0)

nH

K
nH

d + (u(t) + u0)nH
, (3)

with u0, nH , Vmax and Kd as unknown parameters, estimated during model calibration.
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Figure S.5: Extracted nuclear Hog1 enrichment over time. Black: Fitted using linear RBF regression;
blue: interpolated; red: mean abundance obtained from microscopy.

S.4.3 Extrinsic Variability

We model extrinsic variability at two different stages of the proposed model. First, we assume variability
in chromatin remodeling, because it depends on a variety of different complexes which might be subject
to cell-to-cell variations (such as RSC or the SAGA complex, [8]). Chromatin remodeling is modeled by
recruitment of species C by the active gene B. Thus, variability in the total number of CR (Z1 = [C]+[D])
leads to variability in the remodeling efficiency. Furthermore, we assume heterogeneity in the translation
efficiency, which is reflected by a variability in the proxy species Z2 = [E]. Mean and covariance matrix
of the random vector Z = [Z1, Z2]

T are defined as

E [Z] =

(

α1
1

α1
2

)

(4)

and

E

[

(Z − E [Z])(Z − E [Z])T
]

=

(

α2
11 α2

12

α2
12 α2

22

)

(5)

The extrinsic statistics then enter the moment equations in terms of the initial conditions for the means
E [C +D] (0) = E [C] (0) = α1

1 (as initially all CR is unbound), E [E] (0) = α1
2, the variances V ar(C +

D)(0) = V ar(C)(0) = α2
11, V ar(E)(0) = α2

22 and the covariance Cov(C+D,E)(0) = Cov(C,E)(0) = α2
12

and remain constant for all times, since [C] + [D] and [E] are conserved. The extrinsic statistics were
assumed to be unknown and inferred from the measurements as explained in Section S.4.5. Note that
within a moment-based approach, no assumptions on the distribution PZ are required. However, once
a comparison between the protein distributions is desired, realizations z have to be drawn from PZ for
each SSA run. As PZ is not fully characterized by mean and variance only, further assumptions need to
be made. Here, we restrict the shape of PZ to be log-normal [3] and compute it’s parameters from the
inferred extrinsic statistics (i.e., first and second order moments).

S.4.4 Flow Cytometry Data for pSTL1-qV Reporter

The time-lapse pSTL1-qV distribution dataset (FC;TL) was measured using flow cytometry at different
time points between zero and 48 minutes in six-minute intervals. Salt was added to the media straight
after time t = 0min by hand, which yielded a slightly delayed rather than an immediate exposition
to the desired salt level. We accounted for this by correcting the later time points by −3min, and
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consequently, we obtained the modified measurement time points 0min, 3min, 9min,...,45min. We
observed a strong bimodality in the logarithmic forward scatter (FSC) and side scatter (SSC) plots,
indicating the presence of two phenotypic subpopulations. Consequently, we applied a weak cell gate
on the FSC and SSC channel to exclude one of the two subpopulations. In analogy, this procedure was
performed on the additional snapshot dataset (FC;SN).

S.4.5 Model Calibration

Analogous to Section S.3.2, we first validated the normality assumption of the empirical moment as de-
scribed in the Materials and Methods section in the main text. As graphical method we applied standard
probability-probability (P −P ) and quantile-quantile (Q−Q) plots whereas to quantitatively assess nor-
mality we performed the Kolmogorov-Smirnov-Lilliefors test. The results and the corresponding p-values
of the normality tests are shown in Fig. S.6. The described analysis was performed on the pSTL1-qV
distribution for 0.1M NaCl at time 45min, where the measured distribution is bimodal.
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Figure S.6: Normality of empirical moments. Distributions of empirical moments were computed using
bootstrapping. In particular, we randomly subsampled 10000 abundance values from the
pSTL1-qV distribution and computed the sample mean and variance. This was repeated
50000 times to obtain approximations of the distributions of the moment estimates. For
comparison, analytical normal distributions were fitted to the bootstrapped data and com-
pared against each other using standard probability-probability (P−P ) and quantile-quantile
(Q − Q) plots. In all four plots, the x-axes correspond to the analytical normal distribu-
tions, whereas the y-axes correspond to the bootstrapped empirical distributions. The low
Kolmogorov-Smirnov test statistics DK in conjunction with the large p-values indicate that
the distribution of the empirical moment estimates can be well approximated by a normal
distribution.

The model comprises the parameters u0, nH , Kd, Vmax, c2 ,c3, c4, c5, c6, c7 , c8, α
1
1, α

1
2, α

2
11, α

2
22 and

α2
12. Note that the propensity of a translation event is proportional to the product c6 · [E]. Thus, the

parameters c6, α
1
2 and α2

22 are structurally unidentifiable [1, 6]; hence we estimated the products c6α
1
2

and c26α
2
22. Given those products, statistics of the number of ribosomes could for instance be estimated

by setting c6 to values from literature and quantifying the remaining part.

Due to the high-dimensional state and parameter space and the fact that our flow cytometry experiments
only captured distributions of a single protein, we expected the inference problem to be non-convex (i.e.,
characterized by a multi-modal posterior distribution). For this reason, a M-H scheme analogous to
Section S.3.2 was performed 50 times, each time with randomly drawn initial parameter configurations.
Note that in general, this is likely to give parameter configurations for which the nonlinear moment
system is numerically unstable and thus, we first selected a stable parameter configuration γs (see
Tab. S.3). Then, each parameter value was randomly initialized around those initial parameter values,
i.e., γ0

j ∼ LN (ln γj,s, 0.5
2). The scaling parameters vj of the log-normal proposal densities are given in

Tab. S.3. We then sorted the 50 parameter sets according to their maximum a-posteriori probabilities
and selected the best five parameter sets for further inspection.
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To quantitively assess the goodness-of-fit we made use of a distance measure between probability distri-
butions. Among the various metrics proposed in literature (see [5] for an overview) we chose the uniform
or Kolmogorov metric (measuring the maximum deviation between the cumulative distributions). As it
is scale-invariant and bounded by one it appears more amenable to interpretation than others distance
measures. Moreover, it was already used in the context of stochastic simulations of chemical kinetics
[2]. Thus, for each of the above parameter sets we computed the Kolmogorov distance for all NaCl
concentrations and time-points between the empirical and the predicted pSTL1-qV distributions. The
final parameter set was selected such as to minimize the total distance, i.e., the sum of individual Kol-
mogorov distances over all time-points and the three concentrations used for fitting (i.e., 0M, 0.12M and
0.2M of NaCl). Fig. S.7 depicts the Kolmogorov distance for the best performing parameter set which
is given in Tab. S.3. The results suggest that the model provides a reasonable approximation of the
experimental data; indeed we are not aware of any study in the literature reporting comparable accuracy
in predicting time lapsed distribution data. We believe that a further decrease in distance DK may be
achievable by adding complexity to the transcriptional and translational steps. However, in the absence
of any further experimental readout, such extensions are likely to introduce new structural identifiability
problems.
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Figure S.7: Distance in distribution between model predictions and data. The Kolmogorov distance DK

was computed between the empirical and the predicted pSTL1-qV distribution for each time
point and concentration. Note that the distance DK is bounded by one.

S.4.6 Model Validation

Besides validating the predicted distributions with the time-lapsed dataset (FC;TL) for an intermediate
NaCl concentration (i.e., 0.1M), we further validated the inferred model using the additional snapshot
dataset (FC;SN). In particular, we computed the coefficient of variation and the percentage of protein
producing cells at t = 45min for different salt concentrations between 0M and 0.3M . The former was
computed as

CV =
σ̂F

µ̂F

, (6)

where µ̂F and σ̂F are the empirical means and standard deviations obtained from the protein distribu-
tions. For comparison with the experimental data, we added the estimated mean and variance of the
autofluorescence intensity to the means and variances of the simulated distributions. To estimate the
number of responding cells for the different concentrations (dose-response) from the experimental data,
we removed the autofluorescence by performing a deconvolution between the measured flow cytometry
distributions and the autofluorescence distribution (obtained by flow cytometry for 0M NaCl, see main
text, Materials and Methods). Subsequently, the percentage of non-expressing cells was given by the
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Table S.3: Inferred model parameters and Metropolis-Hastings setup. The γj,s denote the initial param-
eter values, chosen such as to obtain stable moment dynamics. The inferred MAP estimates
are denoted as γj,MAP . The scaling parameters of the log-normal proposal distributions used
in the Metropolis-Hastings algorithm are denoted as vj .

Parameter γj,s γj,MAP Unit vj
u0 3.000 · 10−2 1.581 · 10−2 a.U. 0.01
nH 3.000 6.130 1 0.01
Kd 2 · 10−1 1.418 · 10−1 a.U. 0.01
Vmax 1.000 1.025 s−1 0.01
c2 1.000 1.384 s−1 0.02
c3 4.000 · 10−4 6.669 · 10−4 s−1 0.02
c4 1.000 · 10−3 1.469 · 10−2 s−1 0.02
c5 1.000 2.825 · 10−1 s−1 0.02
c7 1.000 · 10−3 5.476 · 10−4 s−1 0.02
c8 1.000 · 10−4 1.283 · 10−4 s−1 0.02
α1
1 3.300 · 101 2.250 · 102 1 0.01

c6α
1
2 3.300 · 10−2 5.663 · 10−3 s−1 0.01

α2
11 1.900 · 103 7.809 · 103 1 0.02

c26α
2
22 1.900 · 10−3 3.098 · 10−6 s−2 0.02

c6α
2
12 1.100 · 10−1 8.935 · 10−2 s−1 0.01

histogram value at bin zero. To interpolate between the measurement time points we fitted curves for
the CV and the dose-response using polynomial base functions and a Hill-function, respectively. In both
cases, the parameters were found by minimizing the L2 - norm between the parametric model output
and the CV and dose-response values.

S.4.7 Slow Transcriptional Activation Causes Transient Bimodality

The authors of [9] hypothesize that the induced pSTL1-qV bimodality originates from slow stochastic
events in the transcriptional activation (i.e., interaction of the active gene with the chromatin remodel-
ing complex, mRNA Polymerase II binding, etc.). Depending on the kinetic parameters, our model can
induce bimodality either in the gene activation - or the subsequent CR binding step. To computationally
verify the hypothesis from [9], we performed a statistical analysis of those events using stochastic simu-
lation with the inferred model parameters from Tab.S.3. In particular, we found that for intermediate
salt concentrations, all cells have active Hog1 bound to the promoter, whereas CR binding occurs in only
a fraction of the cells (see Fig. S.8). This observation provides strong computational support for the
hypothesis that chromatin remodeling is the key factor in bimodal pSTL1-qV induction and furthermore
that the induction is governed by intrinsic stochasticity.
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Figure S.8: Statistical analysis of the transcriptional activation in pSTL1-qV expression. Bars indicate
the percentage of cells that never activated the gene (-), that activated the gene at least once
(+) and cells that initiated transcription (++). Statistics were computed from 1000 traces
obtained using stochastic simulation with the inferred parameters.
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