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Filament Shape Parametrization. For each atomic force microscopy
(AFM) image, the height of every pixel (z) was read and the aver-
age ({z)) and standard deviation (o,) calculated, discarding all
pixels below the threshold level Ay eqnoiq = (2) + 26,. The se-
lected pixels were then grouped in clusters larger than 25 pixels.
Smaller clusters were discarded because they often corresponded
to static blobs of protein. The clusters selected described the pro-
tein strands. Once these filaments were identified, the center of
mass of the clusters was calculated and used as center for the po-
lar coordinate expressed by the pairs {(r;, 6;)}Y,, being N the
number of clusters. In this coordinate system, we can describe
the filament with a harmonics series

5
r(0) = %ao + Z[an cos(n0) + b, sin(no)]. [S1]

n=1

The series is truncated at the fifth term in order to have enough
flexibility to adjust any filament. The fitting procedure provides
the values for the coefficients (a,,, b,) that minimize the function
D?:

N 5
D> = Y ri=r(6)) + e Y n’(ag + by). [s2]

i=1 n=1

The first term is the contribution of the square distance between
the pixel clusters and the fitted curve, and the second is a con-
tribution that penalizes the higher order harmonics to avoid over-
fitting by high-frequency oscillations. The weight of this second
contribution relative to the first one is determined by the para-
meter e. It was chosen to be € = 0.1, but there were no detectable
differences in the fitted curve for small variations in e. This
analysis can also be applied to open filaments if the 6 value is
restricted to a limited range. Fig. S1 illustrates that the procedure
gives a smooth and fairly accurate fit of the open filaments
(Fig. S14) and the closed rings (Fig. S1B). The integration of
the analytical curve (@) provides the filament length at each
frame. Fig. S1C shows the time evolution of the length of a given
filament L(¢).

Statistical Analysis of Filamenting Temperature-Sensitive Mutant Z
(FtsZ) Polymers at Single-Filament Level. AFM images provide infor-
mation on individual FtsZ filaments. The survival time of each
closed FtsZ rings (Fig. 4 in the main paper) and the decay in
length with time of open filaments (Fig. 5 in the main paper)
can be measured directly. These experimental data are beyond
the usual description of the chemical reaction kinetics, which ana-
lyzes the average depolymerization in a large ensemble of fila-
ments, disregarding their size distribution. Here we use simple
examples to illustrate the statistical methods that are used to ex-
tract all the information provided by the single-filament data from
AFM images.

For the analysis of closed rings, our experimental results show
clearly that the ring survival time depends on ring size. On aver-
age, large rings disappear sooner than small rings. A coarse de-
scription within the framework of the kinetics of chemical reac-
tions would add all the observations together, to get a lifetime
distribution with a corresponding mean lifetime, which would de-
pend on the particular distributions of ring sizes. However, with
the statistical treatment described in the section below, we can
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check the hypothesis that the reaction rate for the irreversible
depolymerization is proportional to the ring size, and get a break-
ing rate per bond that is independent of ring length. This infor-
mation can then be “exported” to the analysis of open filaments.

For the depolymerization velocity of open filaments (Fig. 5 in
the main paper), our analysis goes beyond the usual reaction ki-
netics concerned with mean values in systems with a large number
of molecules. We use the tools of the statistical physics of small
systems to analyze the fluctuations of depolymerization velocity
around its mean value. This analysis is crucial to extract all the
information provided by the single-filament data from AFM
images, as demonstrated below in the simple example in Statis-
tical distribution for the instantaneous depolymerization velocities
of single FtsZ filaments.

Analysis of the lifetimes for FtsZ closed rings with different sizes (col-
lective kinetics for multiple reactions with proportional rates). Con-
sidering FtsZ rings in the sample and their irreversible
depolymerization a process triggered by a single reaction with
a rate v, in a purely random way, then the time evolution equa-
tion for the concentration of these rings Zn.s(f) would be

ering (t)

dt = _VoZring(t)’ [S3]

and its solution would give the number of rings at any time as
Zring (t) = Zring(o) CXP(—VOI). [S4]
The mean survival time of a ring could be calculated as

_ jooo TZring(t)dt _ fooo Te Vol dt
fooo Zring(t)dt fooo eVl s

(T) =v5' [S5]

so that the reaction rate v, could be obtained directly from the
mean survival times of the rings. If our experimental data (pre-
sented in Fig. 4 of the main paper) were analyzed in this way, dis-
tinguishing as different populations of rings the ones grown under
different experimental conditions, we would get (7)) = 6.45 min
for GTP in the normal buffer, (7)) = 13.13 min for GMP, and
(T) = 8.88 min for GTP with 15% glycerol; giving reaction rates
v, = 0.15, 0.076, and 0.11 per minute, respectively. That would be
the only information available from the experimental data with the
simple analysis of the irreversible depolymerization as a single ran-
dom process over the whole experimental sample.

However, there is more information contained in these data-
sets. In Fig. S2 we present the (normalized) distribution for the
observed times for FtsZ rings, in terms of the reduced time
== T/(T) for each buffer condition. According to Egs. S4, S5,
this distribution should be a pure exponential, P(z) = exp(—1),
but the experimental results seem to deviate from that simple
form.

The statistics are not very good, because the number of rings is
not very large, but (because we have already normalized the times
in each dataset with its own mean value), we may accumulate
the three sets in the single histogram. The better quality of the
accumulated histogram confirms the nonexponential shape of
Zings(t): The decay is too rapid at short times and too slow at
the tail of the distribution.

This representation of the experimental data shows that the
depolymerization of the rings cannot be described by a single
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reaction rate v, to represent all the rings in each sample. We have
to look for the additional elements that explain why the depoly-
merization of the rings deviates from the simple behavior defined
by Eq. S3. The experimental data provide the length of individual
rings. This information is very useful because its shows clearly
that longer rings disappear faster than smaller ones. Having a
mixture of rings with different sizes gives a complex (nonexpo-
nential) behavior to the time-decay of the total population
of rings.

Let us consider two subpopulations of FtsZ rings, Z, and Z,,
shrinking through different reaction rates v, and v, respectively
(e.g., because they have different sizes N, = 2N, and that is re-
flected in v, =2v,). The concentrations of each component
would follow a simple exponential decay Z,(t) = Z,(0)
exp(—v,t) and Z,(t) = Z,(0) exp(—v,t), but if we treat all of them
together, the total number of rings Zng(t) = Z,(t) + Z(t),
evolves like

Ziings (1) = Z4(0) exp(=vat) + Zy(0) exp(—vp), [S6]
which does not follow the simple Eq. S3.

If we describe the full sample as a whole, the mean survival
time would be

vt Z,(0) +v;2Z,(0)
O =T Z.0) T Z,(0) 1571

which depends on the initial amount of rings of each type, Z,(0)
and Z,(0), and which gives some intermediate value between the
two reactions rates v, and v, that really describe the depolymer-
ization process in the sample. Fig. S3, Left shows the shape of
Z,ings(t) compared with the exponential form P(z) = exp(-7)
of a single process with the same mean value (r) as given by
[S7]. The deviation of Z(¢) from the exponential shape is si-
milar to that observed in Fig. S2 for the actual experimental
results.

Obviously, in this example, we may do separate analysis of the
data for the two subpopulations, to recover the simple exponen-
tial distribution for each one, Z,(t) = Z,(0)exp(—v,t) and
Z,(t) = Z,(0) exp(—vpt), so that the complex stochastic phenom-
ena behind Z..(f) is decomposed in its simple components.
However, if we have some hypothesis for the ratio between
the two reaction rates v, /v, (e.g., we may guess that the reaction
for b is twofold faster than for a because b rings are twice as large
as the a rings), we may check the accuracy of the hypothesis de-
fining effective times, f.; = 2t for a and ¢; = ¢ for b, and collect-
ing the information of Z,(¢) and Z,(¢) into a single function for
equal values of their effective times, Z.;(t) = Z,(2t) + Z,(t). The
result, presented in Fig. S3, Right, is

Zeg(1) = Z,(0)e ™" + Z(0)e ™" =

— Z(0)e=2,

(Z,(0) + Z,, (0)]e !

[S8]

which follows the simple Eq. S3 with a single effective rate
Vver = 2v,. Therefore, the basic hypothesis v, = 2v, would then
be confirmed (or rejected) by the observation (or not) of a pure
exponential shape for the distribution of reduced survival
times 7 = fop/(tef).

This procedure becomes very useful if, instead of the two com-
ponents a and b, we have a stochastic process with many simple
components, each with a different reaction rate vy. That is the
case for the irreversible breaking of FtsZ rings with a broad initial
distribution of size Py (0), which would evolve in a complex way,
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) exp(—vnt), [S91

nngs Z P N

adding to the nonexponential decay in Fig. S2. The separated
analysis of each ring population, Z;,,(¢), would be impossible be-
cause we do not have enough observations for each value of N, so
that we lack information to get accurate separated fits to
Zn(t) = Pn(0) exp(—vnt). However, the obvious hypothesis to
be tested is that the reaction rates for depolymerization are pro-
portional to the length of each ring, so that, as described above,
we define the effective time of a ring with length N as .y = Nt. As
shown in Fig. 4 of the main paper, this description leads to the
simple exponential decay of P(t./({t)), so that the hypothesis is
confirmed: The irreversible depolymerization of FtsZ rings is
triggered by independent events at each bond, so that the reac-
tion rate v, is proportional to N, and the whole process is de-
scribed by a single reaction rate per bond v, = {(f.;)~!, which
characterizes all the rings in each nucleotide buffer.

Statistical distribution for the instantaneous depolymerization veloci-
ties of single FtsZ filaments. If we consider the simplest depolymer-
ization process, where monomers are released from a filament
one-by-one by a purely stochastic process with fixed rate v, then
the change of the number of FtsZ filaments with length N, Zy(¢),
in a sample with a broad size distribution is given by the reaction
kinetic equation

dZy(1)
dt

=—vZn({t)+VvZNy () [S10]

for N > 2. The integration of these coupled equations gives the
populations Zy(¢) from the set of initial values Zy(0), and we
could extract any global measure of the sample, like the total
number Z(¢) and the total length of all the filaments Li(z)
as

Zi(t) = Y Zy(0), [S11]
N>2
L(t) = Y NZy(0) [S12]

N>2

then the total mean length of the filaments in the sample is given
by

ZNZN

N>2 Ly (1)
NO=5700 " Zul [S13]
N>2

If we may neglect the adsorbing boundary at the short filament
end of the distribution Zy(¢) (i.e., as far as all the initial filaments
still have N > 2), the total number of filament is constant

dZtOl

= —VEZN + vZZN+1 [S14]
and the mean length decays steadily at the rate v
D NZ(t) = Zy (1)
d<N>(t) _ N>2 - Ztol(t) _
dt Zi(1) T Za "
[S15]
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(N)(t) = —vt [S16]
as it may have been written directly, because all the filaments are
shrinking at that mean rate. Therefore, the depolymerization rate
v could be directly extracted from experimental observations for
the mean decay of the filament length (i.e., the mean depolymer-
ization velocity) as

vy~ N6 = N)w) 171
1y — 1t

However, the information obtained experimentally by the estima-
tion (/) is not enough to characterize the depolymerization me-
chanism. If we consider a four-by-four mechanism (i.e.,
depolymerization occurs taking off pieces of four monomers from
the filament with a rate v’), the reaction kinetics would be de-
scribed now by

dZy(1)
dt

= —V,ZN(1)+V,ZN+4(t), [SIS]

and we may follow the same argument as above to get the mean
depolymerization rate as

ZN[ZN(t) —Zni4(0)]

d<N> (t) _ N2 _ /4Zt0t(t) _ ’
a7 0 =T Z) -
[S19]
oy = ) =Ml S0
tr—1p

therefore (17) cannot be used to discern between a basic depo-
lymerization mechanism that releases the monomers, one-by-
one, at a rate v = v;, and another mechanism in which the mono-
mers are released in bunches of four monomers but fourfold
slower—i.e., with a rate v/ = v, = v; /4. Moreover, any stochastic
combination of both processes could be interpreted either as a
one-by-one or a four-by-four mechanism.

As will be shown below, analysis of the distribution of instan-
taneous velocities can distinguish between the two depolymeriza-
tion mechanisms described above. Notice that the principal
advantage of AFM is that we get direct access to the time evolu-
tion of single filaments and it is possible to construct the whole
instantaneous velocities histogram between two AFM frames. In
contrast, such information is not accessible from any other experi-
mental method that looks at ensembles and collects the mean size
value from a broad distribution of filament lengths.

For a set of images of one filament taken at A, intervals, we get
a time series N(¢;) for t; =iA,, and i =0, 1, 2, .... The depoly-
merization velocity in each time interval is given by

N(ti1) = N(t)

V() = A,

[S21]

then, in the one-by-one monomer depolymerization mechanism
with a rate v, the observed velocities would be
V=0,1/A,2/A,,3/A,, ...,n/A, that correspond to have 0, 1,
2, 3,..., n releasing events in the time interval ¢, —; = A,.
The probability for each possible value of V' is given by a Poisson
distribution
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—VA, n
P<V:£) :ﬂ' [S22]
A, n!

In contrast, with a depolymerization in bunches of four mono-
mers with rate v/ =v/4 would produce only values V' = 0,4/
At, 8/At, ..., with probabilities

4 —v'A, AN
P(V:_n) :M. [S23]
A, n!

The mean value of n from [S22] would be (n) = vA,, so that the
mean depolymerization velocity is (V) = % = v, as expected. Si-
milarly, from [S23] we get (n) = v'A,, so that the mean depoly-
merization velocity is (V) = % =4v’ =v. The two processes

would give again the same mean depolymerization velocity,
but now we may easily discern between the two alternatives from
the very different shape probability distributions (Fig. S4).

In particular, the typical deviation for the velocity distributions
would be o, =+/(V?)— (V)2 =/v/A, from [S22] and
4/v'[A; =24/v/A; from [S23]—i.e., with equal values of
(V) = v, the typical deviation in the four-by-four depolymeriza-
tion mechanism would give twofold larger than for the one-by-
one. Therefore, the experimental estimation of (}') and ¢}, would
provide the information to discern between depolymerization
processes. Moreover, if we can get accurate results for the whole
probability distribution P(}'), and it shows a non-Poissonian
shape as in Fig. 6 in the main article, we would learn that the
polymerization reaction follows a more complex reaction pattern
than a mixture of one-by-one, four-by-four, or other unbiased de-
polymerization steps. In this case of such a sized-biased process,
to get an analytical prediction of P(V'), the use of computer si-
mulations (with simple parametric forms for the size dependence
of the fragmentation rates) provides the simplest way to compare
with the experimental distributions.

To conclude, notice that the method is still valid for relatively
long time intervals (in the series of AFM images we have
A, =1 min), so that vA; may be relatively large (approximately
10 in our case) and the observed depolymerization steps are
usually composed of several basic steps. The probability distribu-
tions [S22, S23] are still valid, although for large A,, they become
narrower, o ~ 1/+/A,, and it would be more difficult to discern
the shape. Also, there is an inherent noise from the imaging and
the parametrization of the filaments, to get N(¢), so that the hy-
pothetical probability distributions P(V') are blurred, and we
even observe some positive values of V' (spurious polymerizations
from the uncertainty in the experimental characterization of the
filament length). Nevertheless, we have proved here that, with a
feasible number of observations, we may get enough resolution in
P(V) to discard both a one-by-one depolymerization and the un-
biased fragmentation.

Langevin Computer Simulations. Protein monomers are modeled as
beads of a chain linked by elastic springs that give an optimal dis-
tance between beads and an optimal angle between bonds, with
thermal fluctuations around these optimal values, assuming that
each protein monomer moves in a viscous fluid, with limiting ve-
locity proportional to the instantaneous force. The force on each
monomer has a deterministic component coming from the
springs that links it to its neighbors along the chain, and a stochas-
tic component that represents the thermal noise—i.e., the mole-
cular collisions with the bath.

The characteristics of the springs and the thermal bath were
tuned to reproduce the distribution of filament shapes observed
in AFM images for short FtsZ filaments, polymerized with a
slowly hydrolyzing GTP analogue (1). A computer simulation
using this same model may be used to describe the separation
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of the filaments fragments following the elimination of one of the
spring bonds, to mimic the breaking of a bond along the chain.

Size-dependent diffusion effect of FtsZ filament fragments. We have
simulated the breaking of open filaments with N = 100 mono-
mers each. The initial shapes of the filaments were selected along
the configurations of a long Langevin simulation in thermal equi-
librium at room temperature. For each of these configurations, a
bond was broken, either at the middle point, breaking the fila-
ment in two parts with N, = N, = 50 each, or at one end of
the filament, separating a single monomer N, = 1 from the re-
maining N, = 99 monomers. At the breaking time, the mono-
mers started with their original (bounded) coordinates, but the
spring joining them was deleted to simulate the effect of the
GTP hydrolysis. Then the simulation was run for the two frag-
ments of the filament, to follow the time evolution of distance
and relative angular orientation between the two previously as-
sociated monomers. These variables follow a Brownian diffusive
dynamics, so that the distance and the angular mismatch change
in a random way but, on average, they move away from their in-
itial values as shown in Fig. S5. The main difference between the
diffusion of an isolated monomer and that of a monomer still
linked to a longer filaments appears in the relative angle A¢ be-
tween their orientations. It increases more than threefold only
0.1 s after rupture.

The timescale for the Langevin simulation has been calibrated
from the comparison of the fluctuations in the shape of closed
rings observed in AFM images and in Langevin simulations with
the same model. According to the hydrolysis rate for GTP, ap-
proximately 8 min~!, the FtsZ bonds become weaker every 7
to 8 s, and they would open to replace the GDP by a fresh
GTP from solution. The small time fraction of (ca. 0.05-0.1 s)
needed for that replacement would be enough to produce an im-
portant angular mismatch in the orientation of an isolated mono-
mer, so that after capturing a GTP, the FtsZ monomer may
diffuse away from the remaining filament, instead of finding
its way to remake the broken bond. In contrast, when the break-
ing of the filament leaves two large fragments, their typical diffu-
sion during the same time would be of only a few degrees of
angular mismatch (and a few nanometers of distance), making
more likely that the bond is sealed after the nucleotide exchange.
Notice that a quantitative estimate for the frequencies of the de-
polymerization reaction rates would require a description of the
GTP hydrolysis and replacement at the molecular level, and the

1. Horger |, et al. (2008) Langevin computer simulations of bacterial protein filaments
and the force-generating mechanism during cell division. Phys Rev E Stat Nonlin Soft
Matter Phys 77:011902.
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above estimations can only be used at a qualitative level because
support to the hypothesis that the fragmentation rate may depend
on the fragment size.

Size biased fragmentation process for FtsZ filaments. We have run
computer simulations for the fragmentation of 103 filaments,
with initial sizes following the distribution observed for closed
rings (Fig. 1 in the main paper), assuming that a filament with
size (N,) may undergo any possible fragmentation in two pieces
of size N, and N, = N, — N,, but with a frequency that depends
on the size of the fragments.

V(Ng, Np) = v, +v (e N/l 4 e=No/L), [S24]

The parameter v; represents the rupture frequency of short
filaments (i.e., with size N, ;, < L), whereas the value of v, gives
the breaking frequency of long fragments (i.e., with size
N, > L). Fragmentations are attempted at randomly chosen
points and accepted with a probability P(N,, N,) proportional
to v(N,, Np). As done in the analysis of the experimental depo-
lymerization histories, after a fragmentation, we keep track only
of the larger segment of the filament, so that we cut away a bunch
of N, = min(N,, N,) monomers, and iterate the process until
the larger fragment becomes shorter than 10 monomers.

The value of v, is keep to be the irreversibly opening frequency
obtained from the analysis of closed rings (Table 1 in the main
paper), whereas v; and L are used to get the same mean value
and asymmetry of the experimental instantaneous depolymeriza-
tion velocity distribution. We have obtained the best fits (black
full line in Fig. 5 of the main paper) with v, /v, = 30 £ 5 for both
guanosine-5-[(B, y)-methyleno]triphosphate (GMPCPP) and
GTP plus glycerol buffers. Instead the values found for L are
30 £ 6 for GMPCPP, whereas for GTP plus glycerol the experi-
mental results are better fit using L = 15 £ 4, in good accordance
with the fact that shorter filaments may move similar distances in
a more viscous medium than longer filaments in the aqueous buf-
fer. These values for v; and L may only be considered as semi-
quantitative predictions because the specific choice of the
parameters in Eq. S24 is reasonable but by no means unique,
and the fit to the experimental data leave large error bars. Never-
theless, the qualitative interpretation of the depolymerization as
random fragmentations with an enhanced frequency for short
fragments is very robust and well founded.
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Fig. S1. Fitted curves for a FtsZ ring and filament using different harmonics. A and B show the fit to the digitalized image for different value of n. Cillustrates
the time evolution of the filament length estimated from the AFM images. (Scale bars: 100 nm.)
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Fig. S2. Normalized histograms for the survival time of FtzS rings in different nucleotide buffers. The time is scaled with the mean value (T) for each set. The
red lines correspond to the exponential decay P(7) = exp(—7) predicted by Eq. S3. The blue dashed line is a one exponential fit that illustrates that one ex-
ponent can only account for the slow tail but not the behavior of the full histogram.
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Fig. S3. At the left-hand side, the continuous black line is the distribution Z,(t) for the survival times in a system with two subpopulations: a (red line) with
initial concentration P,(0) = 0.2 and reaction rate k, = 1 (in arbitrary units), and b (blue line) with P,(0) = 0.8 and k;, = 2. The dashed line is the exponential
distribution that would describe a single process with the mean reaction rate. The log scale (Lower) shows more clearly the tail of the distributions. At the right-
hand side, the same data are analyzed in terms of the effective time, which takes into account the ratio k, /k, = 2 and produces a pure exponential decay for
zef(tef)-
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Fig. S4. The distribution of chain length that would be observed in the simple examples described here. A is the Poisson distributions for one-by-one de-
polymerization events Eq. S21; B represents Eq. S22 for the hypothetical four-by-four depolymerization. Both cases have the same mean value (taken as
arbitrary unit), and they correspond to observations times relatively large, A; = 3, so that every “observed” change of length may include several “depoly-
merization events.” With the ideal resolution of these graphs, the difference between the two cases would be obvious: A presents nonzero probabilities for all
the values corresponding to an integer number of monomers, whereas in B the gap between observed values for “instantaneous” depolymerization rates is
four times larger. In the bottom distributions, we have added a Gaussian noise to the results, so that the gaps between observed rates have disappeared.
Nevertheless, the shape of the distributions still allows one to distinguish between the one-by-one (A and C) and the four-by-four (B and D) cases.
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Fig. S5. The standard deviation for the distribution of distances (Left, in nanometers) and relative angle (Right, in degrees) between the ends of a broken
bond in a set of Langevin simulations for model FtsZ filaments. The growth of AR and A¢ with the time (in seconds) after the breaking of a polymeric bond
along the filament reflects the diffusive changes in the shapes of the filaments (see text). The full lines correspond to the fragmentation of a filament with
N = 100 monomers into two equal pieces (N, = N, = 50). Other fragmentations with N, # N, give similar results unless one of the pieces is very small. The
dotted lines correspond to the separation of a single monomer (N, = 1, N, = 99), which shows faster diffusion in distance and particularly in the relative angle.
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Fig. S6. The figure shows the time evolution of FtsZ filaments imaged in acid buffers: (A) pH 6.5, (B) pH 5.0.
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Movie S1A. The behavior of closed rings formed with GTP.

Movie S1A (AVI)

Movie S1B. The behavior of closed rings containing GMPCPP.

Movie S1B (AVI)

Movie S2A. The evolution of an open filament containing GMPCPP.

Movie S2A (AVI)
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Movie S2B. The evolution of a filament containing GTP imaged in a buffer containing 15% glycerol.

Movie S2B (AVI)

Movie S3A. The evolution of a filament containing GTP imaged in a buffer at pH 6.5.

Movie S3A (AVI)

Movie S3B. The evolution of a filament containing GTP imaged in a buffer at pH 5.

Movie S3B (AVI)
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Table S1. The number of observed FtsZ rings, their mean size and
size dispersion, and the mean time for which each ring is observed,
with GTP buffers of different acidity

pH 7.5 6.5 5.0
No. rings 243 176 69

(N) 103 99 80

on 26 28 16

(T), min 6.5 22.0 25.5
(Tp), min 670 2,200 2,000

Vo, Min~! 0.0015 0.00045 0.0005
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