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Dihedral-Biased Tempering. In this section, we describe a dihedral-
biased tempering technique that combines the virtues of a tem-
pering method (1) and a dihedral bias (2–6). The tempering part
accelerates a simulation by borrowing faster motion from higher
temperatures. The dihedral bias improves sampling helical con-
formations and accelerates the dynamics in the dihedral space.
The method preserves room-temperature properties, so the dihe-
dral bias is added only on higher temperatures.

Tempering. Tempering is a sampling technique that circumvents a
slow dynamics common in a regular room-temperature molecular
dynamics (MD) by exploiting a faster motion at higher tempera-
tures. Here, we employed a single-trajectory-based tempering
method (1), which can readily handle large systems and thus is
suitable for an explicit-solvent simulation that involves many
water molecules.

The technical objective of tempering is to allow the tempera-
ture to vary in a certain range, but at the same time to make sure
the statistical distribution at each individual temperature remains
correct. To do so, we employ a generalized statistical ensemble
composed of canonical ensembles from a temperature range.
Typically, the temperature range starts from TL, somewhere
slightly below the room temperature T0 ¼ 300 K, to a much
higher one (TH ≈ 600 K). We denoted the temperature by the
reciprocal temperature β ¼ 1∕ðkBTÞ, with kB being the Boltz-
mann constant, and similarly β0 ¼ 1∕ðkBT0Þ, βL ¼ 1∕ðkBTLÞ,
βH ¼ 1∕ðkBTHÞ.

In the generalized ensemble, we maintain the desired statisti-
cal distribution by following a Langevin equation for β in each
simulation step as

dð1∕βÞ
dt

¼ E − ~EðβÞ − ∂ logwðβÞ
∂β

þ
ffiffiffi
2

p

β
ξ; [S1]

where E is the current potential energy, ~EðβÞ is the estimated
average potential energy at β according to a runtime average,
wðβÞ is the overall temperature distribution density, and ξ is a
Gaussian white noise that satisfies hξðtÞ · ξðt 0Þi ¼ δðt − t 0Þ.

The only unknown in Eq. S1 is ~EðβÞ. It is estimated from data
collected in a window (β − Δβ, βþ Δβ) surrounding β using an
integral identity; details can be found in ref. 1. We also used an
adaptive updating scheme to quickly refresh data in the window.
The scheme allows a fast random walk across the temperature
space in the early stages of a simulation, and then gradually shifts
to a more equilibrium sampling.

TemperingWith a Bias Potential.On top of the tempering method, a
bias potential V ðXÞ, expressed as a function of molecular coor-
dinates X , can be added to the generalized ensemble without dis-
turbing room-temperature properties. This is achieved via a
temperature-dependent Hamiltonian

Hðβ; XÞ ¼ H0ðXÞ þ
�
β0
β
− 1

�
V ðXÞ; [S2]

where H0ðXÞ is the unbiased potential energy. Thus the magni-
tude ofV ðXÞ is full at the βH , but zero at β ¼ β0. The distribution
of the generalized ensemble becomes

ρðβ; XÞ ¼ wðβÞ exp½−βHðβ; XÞ�
ZðβÞ

¼ wðβÞ exp½−βH0ðXÞ − ðβ0 − βÞV ðXÞ�
ZðβÞ ; [S3]

where ZðβÞ ¼ ∫ exp½−βHðβ; XÞ�dX is the configuration space
partition function. A regular tempering is recovered if V ðXÞ ¼ 0.

No matter what the bias potential is, the Hamiltonian at the
room temperature is undisturbed, since Hðβ0; XÞ ¼ H0ðXÞ.
The biased Hamiltonian also preserves a linear relation between
the effective Hamiltonian βHðβ; XÞ and the temperature β; i.e.,

βHðβ; XÞ ¼ β0V ðXÞ þ ½H0ðXÞ − V ðXÞ�β:

Thus, room-temperature properties can be readily recovered
via the multiple histogram method (7–9) as in a regular temper-
ing. The only necessary modification is to substitute H0ðXÞ−
V ðXÞ for H0ðXÞ in using the method (also for E in Eq. S1) for

hH0ðXÞ − V ðXÞiβ ¼ −∂ logρðβ; XÞ∕∂β:

Dihedral Bias. In our case, the bias potential V ðXÞ applies only to
the two backbone dihedrals of amino acid residues in a protein.

For each residue i, the potential handles the two dihedrals φi
(C-N-Ca-C) and ψ iðN-Ca-C-NÞ separately by two functions
V φðφiÞ and V ψðψ iÞ. Thus

V ðXÞ ¼ ∑
ai≠G;P

V φ½φiðXÞ� þ V ψ ½ψ iðXÞ�;

where ai denotes the one-letter amino acid name of residue i,
φiðXÞ and ψ iðXÞ are the two backbone dihedrals as functions
of molecular coordinates X . After excluding all glycine (G) and
proline (P) residues, the two functions V φ and V ψ apply to all
residues without the distinction of residue type or index.

The problem now is to find V φðφÞ and V ψðψÞ that properly
bias towards the helical conformation. Since “the helical confor-
mation” is hard to define precisely (especially at a high tempera-
ture), we directly learn it from the force field.

First, we allow both V φðφÞ and V ψðψÞ to be linear combina-
tions of a few dihedral modes, each of which roughly corresponds
to a potential basin in the dihedral space towards a typical sec-
ondary structure. The coefficients of combination are user-adjus-
table; e.g., a larger coefficient of the helical mode increases the
bias towards the helical conformation.

Second, we obtain the dihedral modes from decomposing the
potentials of mean force (PMFs) along the two dihedrals. In this
way, the modes are intrinsic to the force field and are usually
smooth functions of the two dihedrals.

The PMFs were obtained by a special simulation on a helical
protein α3D (10) (PDB ID: 2A3D, also the first folding system) at
the highest temperature βH ¼ 0.2mol kJ−1 (TH ≈ 600 K) for
50 ns. The special simulation started from a fully extended chain
(thus no native structure was required), and was independent
of all folding simulations. In the simulation, we aimed at a flat
distribution along each dihedral. To achieve this, we adaptively
offset the projection of the force along each dihedral by its run-
time-averaged value, or the mean force. After the simulation, the
PMFs for φ and ψ were obtained by integrating the respective
mean forces. In our implementation, the histogram along a dihe-
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dral was not completely flat due to a small missing force compo-
nent from constraints; the corresponding correction based on the
histogram was thus applied. The approach allowed us to compre-
hensively sample the entire dihedral space, covering an otherwise
rarely visited barrier region. However, since we only sampled ex-
tended conformations, the PMFs obtained were expected to de-
viate from the actual ones, which were dominated by the folded
state with highly helical conformations.

We then decomposed the PMF (using φ as example) to three
modes as

V 0
φðφÞ ≈ V φðφÞ ¼ − ∑

k¼A;B;C

MkukðφÞ;

where V 0
φðφÞ is the intrinsic PMF along φ; V φðφÞ is its best ap-

proximation by a superposition of modes; Mk is the amplitude of
mode k ; ukðφÞ specifies mode k as a function of φ. Note before
the decomposition, we shift the PMF such that V 0

φðφÞ is always
negative, and thus every ukðxÞ is positive definite.

Each ukðφÞ is a bell-shaped function, asymmetric for φ > φc
and φ < φc(φc being the center), and with up to 6th order mo-
ments on the exponent:

ukðφÞ ¼ exp½−a�
2 ðφ − φcÞ2 − a�

4 ðφ − φcÞ4 − a�
6 ðφ − φcÞ6�;

where the superscriptsþ and − denote parameters for φ > φc and
φ < φc, respectively. The parameters a�

2 , a
�
4 , a

�
6 , and φc of dif-

ferent modes are determined via a least square fitting in minimiz-
ing the difference between V 0

φðφÞ and V φðφÞ

ðδV φÞ2 ¼
1

2π

Z
2π

0

½V 0
φðφÞ − V φðφÞ�2dφ:

The resulting parameters are listed in Table S6. As shown
in Fig. S20, the decompositions authentically recovered the
original PMFs: the average differences δV φ and δV ψ were
0.048 kJmol−1 and 0.030 kJmol−1, respectively (representing
about 0.2% relative error compared with the magnitudes of in-
trinsic PMFs).

For the dihedral φ, the three decomposed modes roughly cor-
responded to α-helix, β-strand, and left-handed helix conforma-
tions. However, the first two modes shared a large overlap in the
dihedral space due to the broadening at the high temperature
TH ≈ 600 K. For the dihedral ψ, the first two modes corre-
sponded to α-helix, β-strand conformations, with the last one ly-
ing in the transition region.

For convenience, we used the above PMFs and decomposed
dihedral modes in simulations of all proteins, although ideally
one could perform the above procedure for every target protein.

Adjusting Dihedral Modes. With the dihedral modes in hand, the
bias potential [using V φðφÞ for an example] is constructed as a
superposition of modes. In the first step, we construct a rough
~V φðφÞ via three parameters, pA, pB and pC, provided by the user,
as

~V φðφÞ ¼ ∑
k¼A;B;C

minf−kBT log pk; Mkg × ukðφÞ: [S4]

Eq. S4 means that if the expected number of visits to mode k
(k ¼ A; B; C) is to be multiplied by pk fold, its magnitude in
the bias potential is minf−kBT log pk; Mkg. The min function an-
nihilates the potential mode in case pk is so small that
−kBT log pk exceeds the intrinsic magnitude Mk.

To promote mode k, we can either increase pk or reduce pk 0s of
other k 0 ≠ k modes. The latter produces a softer potential sur-
face. ~V φðφÞ vanishes if all pks are 1.0, and the method is reduced

to a regular tempering. On the other hand, if all pks are 0.0,
~V φðφÞ annihilates the intrinsic PMF V φðφÞ and recovers a flat
histogram along either dihedral. A set of small pks reduces the
magnitude of all modes, and thus encourages transitions among
them. Note the populations of modes in a production simulation
are expected to disagree with the pks given by the user (even if
the simulation were run only at TH instead of in the generalized
ensemble) because the intrinsic PMFs were obtained from an
extended state simulation instead of a native one and because we
ignored correlations between the two dihedrals and those among
different residues.

The second (optional) step is to polish ~V φðφÞ to reduce the
free-energy barriers via the last parameter pmin (pmin ≥ 1.0).
We first constructed an expected distribution ρφðφÞ ¼
exp½−βV 0

φðφÞ − β ~V φðφÞ�. We then trimmed the potential such
that the expected distribution was ρφðφÞ → maxfρφðφÞ;
ρminpming, where ρmin ¼ min ρφðφÞ. In this way, the highest
free-energy barrier is lowered by log pmin∕β.

Parameters pA, pB, pC, and pmin of different trajectories are
listed in Table S3.

Generalization to Other Types of Proteins. So far, both the tempering
method and the decomposition of the dihedral modes have been
general. However, an optimal bias potential could accelerate the
folding.

In simulations presented in this study, we have assumed that
the potential V ðXÞ is biased towards the helical conformation;
i.e., the amplitude of the helical mode is set to be greater than
those of the other modes. If extended structures are to be biased
towards, then the relative amplitude should be inverted. Note,
however, that generally the dynamics in the dihedral space is not
the only contributing factor to protein folding. As shown in the
trajectories, hydrophobic collapse and determination of the right
geometry often take longer. Thus, more structural factors can be
included in the bias potential.

In case a preferable V ðXÞ is lacking, a random trial strategy
can be used. We can try several different bias potentials among
independent trajectories [note the method is single-trajectory-
based, thus the trial is relatively cheap in comparison of a parallel
strategy (11–14)]. Naturally, only a helpful V ðXÞ would facilitate
the folding.

We can monitor the average potential energy at the room
temperature to see if a trajectory employs a helpful V ðXÞ. As
the native conformation is usually energetically favorable, a tra-
jectory reaching the native conformation would have a lower
internal energy. As the bias is absent at the room temperature,
statistics from different trajectories can be compared there. Thus,
as long as some of the bias potential promotes the folding, folding
is accelerated in these trajectories before a complete equilibrium
is reached.

For example, if in a set of trajectories, half of them adopt a
V ðXÞ biased towards the helix conformation while the other half
a V ðXÞ biased against it, then at least the former half can achieve
a fast folding for helical proteins.

For other types of proteins, one could include in the bias
potentials, in addition to the dihedral term, other structural fac-
tors; e.g., the strength of hydrogen bonds, the strength of the hy-
drophobic and electrostatic interactions, and some surface area
terms. Different parameters within the potential can then be tried
in different trajectories.

From a more technical viewpoint, we can also apply the bias
potential through an additional sampling dimension at the roof
temperature. In this way, even at higher temperatures one can
switch between the biased and unbiased modes according to a
Monte Carlo transition probability. The strategy would reduce
the influence of the bias potential and produce a fraction of tra-
jectories behaving like a regular tempering.
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Performance of the Dihedral-Biased Tempering. Setup of the Testing
Case. We used the first protein, α3D (10), as a test case of the
dihedral-biased tempering method. Starting from a fully ex-
tended chain, we simulated the protein using three different
methods: a room-temperature (300 K) regular MD, a regular (un-
biased) tempering, and a dihedral-biased tempering (this meth-
od). As a control, we also ran a regular 300 K MD starting from
the native structure.

For the dihedral-biased tempering, we ran multiple indepen-
dent trajectories, each of which used a different bias potential
(parameters are listed in Table S3).

Convergence of Tempering. We first examined the convergence of
the tempering part. We used trajectory 7 (Table S3) as an exam-
ple. In Fig. S2A and B, we show the time series for the instanta-
neous potential energy and temperature, both of which
underwent many round-trips in their respective range.

The convergence of tempering can be checked from the tem-
perature histogram HðβÞ, which should be proportional to the
intended temperature density wðβÞ. In Fig. S2C, we show that
the ratio HðβÞ∕wðβÞ indeed approached a constant.

To illustrate the efficiency of tempering, we show in Fig. S2D
the reconstructed potential energy histograms plotted at a tem-
perature interval Δβ ¼ 0.002 from β ¼ 0.20 to 0.42 (thus 111 his-
tograms). A parallel tempering simulation would need about 100
copies running in parallel to cover the same temperature range
with decent overlap between neighboring temperatures, and the
computational cost would be much higher.

Folding Progress (RMSD).We used the backbone root-mean-square
deviation (RMSD) from the experimentally determined (NMR)
structure to monitor the progress of folding.

As shown in Fig. S3A, a typical RMSD at 300 K native simula-
tion was 3.2 Å. In a regular MD starting from a fully extended
conformation (a large spiral with RMSD≈19 Å), the RMSD lin-
gered around 25 ∼ 32 Å, a typical value for the unfolded state.

In an unbiased tempering, the RMSD had a larger fluctuation
from 6 Å to 25 Å, but a complete folding was unfortunately not
achieved in 1 μs.

In trajectories using the dihedral-biased tempering, the RMSD
readily dropped under 3.2 Å, indicating successful folding. Addi-
tionally, large-scale unfolding/refolding events occurred in both
trajectories 2 and 7.

The comparison showed that the only the biased tempering
method was able to quickly fold the protein and also sampled var-
ious unfolded states.

Folding Progress (Backbone Dihedrals). Similar to the previous case,
we monitor the progress in the dihedral space by computing the
fraction of correct backbone dihedrals (FCBD). We first define
four backbone dihedrals conformations:

φ < 0 and ψ ∈ ½−100°; 80°Þ.
φ < 0 and ψ ∈ ½−180°; −100°Þ ∪ ½80°; 180°Þ.
φ > 0 and ψ ∈ ½−80°; 100°Þ.
φ > 0 and ψ ∈ ½−180°; −80°Þ ∪ ½100°; 180°Þ.

For each residue, a dihedral conformation is considered cor-
rect if it falls into the category as that in the native structure.
FCBD was then computed as the fraction of residues with the
correct dihedral conformations (excluding the two terminals).

As shown in Fig. S3B, after equilibration, the 300 K MD simu-
lation from the native yielded a FCBD of about 80 ∼ 90%. The
fraction could not, however, reach 100% possibly due to the flex-
ibility of loop regions.

The 300 K regular MD from a fully extended chain yielded a
low FCBD of about 15 ∼ 35%. The regular (unbiased) tempering

allowed a larger fluctuation that spanned from 20% to 60%, but
failed to reach the native level.

In the dihedral-biased tempering, a large FCBD was reached
after the initial 1 ∼ 10 ns, long before a complete folding oc-
curred. Thus, the bias helped the protein to quickly build up he-
lical content, while the folding process was still limited by the
formation of correct tertiary structure.

Convergence in the Dihedral Space. We further examined the con-
vergence in the dihedral space. We wished to see if trajectories
with different dihedral bias potentials reached the same dihedral
distributions at T0 as designed.

We computed the residue-averaged dihedral distributions at
the room temperature T0 ¼ 300 K and a higher temperature
580 K, using the multiple histogram method (7–9). Since the Ha-
miltonian was unbiased only at 300 K, the dihedral distributions
from simulations with different biases should agree with each
other at 300 K, but not at 580 K.

There was, however, a practical difficulty for a direct compar-
ison. Although different trajectories shared the same native con-
formation, they sampled different nonnative conformations, with
each conformation manifesting slightly different dihedral distri-
butions. Thus, the resulting distributions could differ due to sim-
ply a relatively slow convergence in sampling various nonnative
conformations, not to the method itself. To avoid this distracting
factor, we only included frames in the folded states by imposing
the condition RMSD <6 Å, and filtered out all other frames. We
emphasize, however, that the distributions computed here could
only be used as a test of the method, not to represent the actual
free-energy landscape due to the filtering.

As shown in Fig. S3C–F (for distributions of φ and ψ, respec-
tively), the dihedral distributions at 300 K from three biased tem-
pering trajectories agreed with each other, and also with the
distributions from the native simulation at the same temperature.
On the other hand, the distributions at 580 K differed signifi-
cantly as expected.

Geometric Measures.We specify the mathematical definition of (i)
the chiral distance of helix-packing, (ii) the distance between two
helices, and (iii) the angle of two helices.

Representing a Helix as a Rod. We needed to model a helix by a
representative rod. To do so, we first compute the eigenvalues
of the moments of inertia I ¼ fIαβg from all alpha carbon
(Cα) atoms on the helix, where Iαβ ¼ Σiðriα − rcαÞðriβ − rcβÞ with
α; β ¼ x; y; z; ri ¼ frix; riy; rizg and rc ¼ frcx; rcy; rczg are the co-
ordinates of the ith Cα atom on the helix and the center of mass,
respectively. Geometrically, the eigenvectors and eigenvalues of
the matrix correspond to the directions and lengths of the prin-
ciple axes of the representative ellipsoid. For the representative
rod, we choose the eigenvector v1ðjv1j ¼ 1Þ with the largest eigen-
value λ1 as the direction, and the construct the two ends b� by
extending from the center of mass rc oppositely along the direc-
tion as b� ¼ rc �

ffiffiffiffiffiffiffi
3λ1

p
v1. It is easy to see that if atoms are den-

sely and uniformly distributed on a thin rod of length l along x,
then Ixx ¼ l2∕12, and a l l o ther Iαβ’ s a re zeros . s ince
λ1 ¼ l∕ 2

ffiffiffi
3

p� �
; rc � l∕2ð Þv1 recovers the ends of the rod as ex-

pected.

Chiral Distance for Packing Helices.We now define a chiral distance
D for three helicesA, B, andC. If helicesA and B are parallel,D
equals to the signed distance from helix C to the plane extended
by A and B. If A and B are not parallel, the definition is general-
ized as follows: First, the middle helix B is modeled as a rod as in
the above, with b0 and b1 being the two ends (connected toA and
C, respectively). We can then compute, for any two points a and c,

Zhang and Ma www.pnas.org/cgi/doi/10.1073/pnas.1112143109 3 of 19

http://www.pnas.org/cgi/doi/10.1073/pnas.1112143109


Dða; b0; b1; cÞ ¼
ðb0 − aÞ × ðb1 − b0Þ

‖ðb0 − aÞ × ðb1 − b0Þ‖
· ðc − b1Þ: [S5]

Finally, we let a run through all Cα atoms on helix A and c
through those on helix C, and compute the average as

DðA; B; CÞ ¼ hDða; b0; b1; cÞia on helix A; c on helix C

DðA; B; CÞ is positive if viewing along helix B from b0 to b1, helix
A can be rotated clockwise to the position of helix C by an angle
less than 180°, and is negative otherwise.

Helix Distance. We compute the distance between two helices A
and B as follows: First, for a Cα atom a on helix A, we computed
the minimal distance da to any Cα atom on helix B. Similarly db is
computed for a Cα atom b on helix B. The average of all das and
dbs is then defined as the distance between helices A and B.

Helix Angle.For two helicesA andB, their angle is computed from
the angle of the two corresponding representative rods.

Hydrophobic Contact Number.We compute the number of contact-
ing hydrophobic residues as the number of pairs of Cα atoms on
different helices within a 12 Å distance cutoff.

Clustering Method. Requirements From Statistical Mechanics. For a
simulation trajectory, the objective of the clustering method is
to form a reasonable set of groups of frames with similar struc-
tures, or a cluster configuration. From the viewpoint of statistical
mechanics, the cluster configuration is merely a discrete distribu-
tion. Hence, the clustering method must be consistent with the
principles of statistical mechanics.

The above requirement sets two conditions. First, the cluster
method must be deterministic and independent of the order of
frames, for otherwise it would not be an ensemble property.

Second, each frame i should be able to carry the weightwi from
the multiple histogram method (7–9). It ensures that the cluster
configuration reflects the properties at the room temperature;
i.e., high-temperature noises should be filtered out.

The first condition can be satisfied by setting the cluster con-
figuration as the one that minimizes some target functionH. The
second requires the multiple-histogram weight to enter H.

The Target Function.The following target function satisfy the above
conditions

H ¼ 1

2

�
∑
c

wcd̄c

�
þ 1

2
NcμW;

where the sum is performed over all clusters c s; wc ¼ ∑i∈cwi is
the total weight of all frames in cluster c; d̄c ¼ ∑i;j∈cdijwiwj∕
ð∑i∈cwiÞ2 is the average distance among any two frames in cluster
c (the distance dij was computed as the backbone RMSD of two
protein conformations i and j after a mutual structural align-
ment); Nc is the number of clusters; μ is the energy cost of form-
ing a new cluster, or the “chemical potential”; and W is the total
weight of all frames in the trajectory.

To see why the above target function produces a sensible clus-
ter configuration, we considered the process of adding a new
frame j to a cluster c, with its weight wj much smaller than
the total weight wc ¼ ∑i∈cwi of the cluster. The resulting change
to the target function is

δHj→ c ¼
�∑

i

dijwi

wc
−
d̄c
2

�
wj

wc
: [S6]

On the right hand side of Eq. S6, the first term in the parenth-
eses gives the average distance from the new frame j to an existing
frame in the cluster c, while the second the half of the average
distance among all existing frames in the cluster c, or a “radius.”
Thus, the target function decreases if the new frame is closer to
existing frames than the current radius. Further, the new frame j
only joins the cluster that minimizes δHj→c.

Minimization of the Target Function.Now we only have to minimize
the target function. Due to many local minima in the space of
cluster configurations, we used a global minimizer (15). It re-
quires a statistical ensemble of clustering configurations, which
we define as

Z ¼ ∑ð
Y
c

nc!Þ expð−βHÞ;

where β is an reciprocal temperature (just for the clustering, not
to be confused with the actual temperature in sampling), and nc is
the number of frames in cluster c. The factor nc! encourages clus-
ters to change sizes as it varies drastically with the cluster size nc.

The number of resulting clusters depends on μ. A larger μ in-
creases the cost of forming a new cluster and thus leads to fewer
clusters. We used μ ¼ 0.7 Å, which usually yielded a single cluster
for a 300 K native simulations but a handful of clusters for a fold-
ing trajectory.

The method is relatively expensive, since it is based on a thor-
ough sampling of clustering configurations and operates on a full
RMSDmatrix of all frame pairs. Thus we skip frames at a regular
interval to limit the total number of frames within 2000.

Initial Structures.The initial structures for folding trajectories were
all prepared according to the following protocol. For each pro-
tein, the initial structure was a large extended spiral such that
it fit into the simulation box. The program we used for generating
the initial spiral can be found in the website mentioned in the
article text. The resulting configuration was then solved in a si-
mulation box with water molecules subsequently added. A mild
(usually less than 1000 steps) energy minimization was preformed
to remove strong frictions between the protein and its surround-
ing water molecules. A short (2–10 picoseconds) room-tempera-
ture MD simulation was then performed on the energy-
minimized structure at 300 K to raise the energy to a normal level.
The resulting structure was used as the initial structure for all
folding trajectories of the same protein.

For the four existing proteins, we show in Fig. S12 the initial
structures after the above procedures. The water molecules are
not included for clarity.

Representative Structures at the Room Temperature.To illustrate the
nature of typical native and nonnative structures found in folding
trajectories, we shall analyze trajectory 7 for α3D and trajectory 2
for α3DL in detail. In Fig. S13, we plotted the RMSD as a func-
tion of time with representative structures shown at roughly a
300 ∼ 500 ns interval. The representative structures must carry
a weight w > 0.5 after the histogram reweighting method applied
to 300 K to ensure that they were relevant to the room tem-
perature.

For the trajectory of α3D, the N-terminal and middle helices
were roughly formed while the C-terminal helix was not at 300 ns.
A fully folded structured was reached at the 600 ns and main-
tained to 1000 ns. However, a subsequent unfolding changed
its chirality to a left-handed one, as shown in the 1400 ns frame.
The left-handed structure was unstable, as indicated by a comple-
tely disintegrated C-terminal helix. Nevertheless, the geometry
sustained to the 1700-ns frame, in which the N-terminal helix
was loosened as well. The protein refolded at the 2000-ns frame
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and unfolded again at the 2400-ns frame, in which a pair of short
β-strands was formed.

For the trajectory of α3DL, at 200 ns, only a small fraction of
structure was helical, while a β-hairpin and several random coils
were formed. At 500 ns, the protein was almost folded, while the
packing of the C-terminal helix against the other two was still
loose. After an unfolding around 700 ns, the structures at
900 ns and 1200 ns consisted mainly of random coils, with only
a small fraction of the helical structures. At 1500 ns, however, the
helices N and C were aligned antiparallel, leading to a structure
similar to the configuration 3 of α3W and LQLQ; see Fig. S7.

The above observations suggest that even in the nonnative con-
formations, there was still a fraction of residual helical content
(cf. Fig. S3B). This was in agreement with a recent MD simulation
on Anton (16). Nevertheless, nonhelical structures such as coils
and β-strands were also common.

Analyses on the Root-Mean-Square Deviation (RMSD).We computed
the distributions of the root-mean-square deviation (RMSD)
from the native conformation for each protein (at 300 K after
histogram reweighting). For the mutants, the putative structures
were used.

α3D and α3DL. The RMSD distributions for α3D were computed
from all folding trajectories, and the results are shown in
Fig. S141A. The distribution can be roughly divided at RMSD ¼
8.0 Å; the left and right are for the “folded” (RMSD < 8.0 Å)
and unfolded states (RMSD > 8.0 Å), respectively.

In six out of seven trajectories, the folded state itself had two
separated peaks (the exception was trajectory 4, in which the first
peak was missing). The representative structures at the two peaks
from each trajectory were superimposed in Fig. S11A.

For each trajectory the representative structure was computed
as follows: First, the frames within a RMSD range (for the first
peak: 2.8 Å to 3.0 Å, the second: 4.7 Å to 5.0 Å) were collected.
Then the frame with the lowest average distance from all other
frames in the collection was selected as the representative struc-
ture. In the averaging, frames carried the multiple histogram
weights to 300 K. The procedure was used to produce similar fig-
ures for other proteins. We shall thus only indicate the RMSD
filtering ranges, which were also approximately indicated by
the color strips in Figs. S11 to S15. Note the filtering ranges were
artificial and did not represent physical clusters.

From Table S3, we observed that the cluster centers of the most
folded trajectories had a RMSD of 2.5 Å to 2.7 Å, which was close
to the value of the first peak. As discussed in VII.F, the first peak
represented the geometric center, while the second peak repre-
sented some peripheral states surrounding it.

However, it does not mean that conformations in second
peak were completely void of structure. In fact, they resulted
from a relative sliding of helices along the helical axis. From
Fig. S11A, it was clear that the structures in the second peak were
still compact and resembled those in the first peak. We also note
that the direction of the sliding was also not random; e.g., the
C-terminal helix tended to take a higher (according to the orien-
tation of the figure) position in the second peak than in the first
peak. Thus, we speculate that the conformations at the second
peak might correspond to a transition state that facilitated the
folding (17).

For α3DL, the RMSD distributions manifested a similar two-
peak feature, as shown in Fig. S11B (for the representative struc-
tures, the RMSD range for the first peak was 2.4 Å to 2.8 Å; the
range for the second peak was 4.3 Å to 4.7 Å). Thus, the relative
sliding between helices might be common in the transition states.

α3W. Similar to the previous case, the RMSD distributions of α3W
also had two peaks in the folded state, as shown in Fig. S12. The

representative structures for the two peaks were computed from
the RMSD ranges (2.1 Å, 2.5 Å) and (4.2 Å, 5.0 Å), respectively.

The first peak was close to the geometric center of the folded
state, as it shared a similar value with the RMSD of cluster cen-
ters, 1.7 Å ∼ 2.4 Å, from trajectories 1–4 (see Table S3). Note
trajectories 5 and 6 were less reliable as they adopted a stronger
bias towards helical conformations.

The relative sliding of helices still contributed to the difference
between the structures of the first and the second peaks (although
other local adjustments also occurred). The sliding was again not
completely random, e.g., Trp34 was consistently lower in the sec-
ond peak.

Unlike the α3D case, the second peak of the distribution was
more populated than the first one. Although insufficient sampling
could be the reason, we also suspect that the shift of population
could result from a more symmetric sequence of α3W than that of
α3D. Thus, the second peak became more entropically favorable,
as there were more energetically inexpensive ways of sliding he-
lices and other adjustments.

LQLQ, LALQ, and LALA. We computed the RMSD distributions of
the symmetrical three-helix bundles LQLQ, LALQ, and LALA.
The experimentally determined (left-handed) conformation of
α3W was used as a template to produce the reference conforma-
tions in the three cases. As shown in Fig. S13, the distributions of
LQLQ and LALQ were similar. In either case, there was a peak
for the left-handed conformation around RMSD ¼ 2 Å, as well
as a peak for the right-handed one around RMSD ¼ 9 Å. In the
case of LALA, the left-handed conformation was not sampled.
However, the right-handed conformation had a broadened peak
covering both the bend and straight conformations (cf. Fig. S9).

Fap1-NRα. The RMSD distribution Fap1-NRα (Fig. S14) showed
that the native conformation did not occupy the largest cluster.
However, in trajectory 1, the native resided in the second largest
cluster, whose population was about 45% of that of the largest
one. This could result from a combination of insufficient sam-
pling and force field error. Due to the larger size in comparison
with the previous protein, simulations should also take longer to
converge. Additionally, since the protein was a natural domain,
the native basin was possibly narrower than those in the designed
proteins, further increasing the difficulty.

The main problem of folding the protein was that the long C-
terminal helix was hard to maintain at the room temperature even
through the sampling method explicitly used a helical bias at high-
er temperatures. To see this, we observed that the peak at RMSD
of 6.4 Å corresponded to a conformation with a kinked C-term-
inal helix around the short GNNT sequence (Gly68, Asn69,
Asn70, and Thr71), which was reasonably “mistaken” as a loop
in the trajectories. The highest peak occurred at a RMSD around
12.5 Å, corresponding to a conformation of a more globular
shape. Interestingly, the GNNTsegment also adopted a loop con-
formation instead of a helical one there.

S-836. In Fig. S15, we show that in the RMSD distribution of S-
836, the native peak had almost equal height to any of the three
competing conformations. However, the native peak was still the
most populated one, as it was broader. The native conformation
occupied the largest cluster in the first four trajectories, and the
population ratios to those in the next largest clusters were 2.1, 3.8,
1.1, and 1.9, respectively (the last trajectory never sampled the
native conformation). As shown in Fig. S10, the energetic differ-
ence between the native and RR and RL conformations were re-
latively small (in comparison with the α3D or α3W cases), and
hence the native did not appear to be as predominant.

Since this was the largest protein, we expect that longer simu-
lations were needed to discern more accurately the small free-
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energy difference between these conformations, and to compute
more precisely the relative population ratios.

RMSD of the Cluster Center vs. Average RMSD of a Cluster. We ob-
served that the RMSD of the central structure of the native
cluster was considerably smaller than the average RMSD of
the cluster. By the native cluster we mean all frames with
RMSD < 6.0 Å, which include frames in both the first peak of
the RMSD distribution and possibly a nearby intermediate one
(cf. the α3D or α3W case). This RMSD-based definition was
roughly equivalent to the output of our clustering method, which
only recognizes large clusters.

For example, in the α3D case, the native cluster had two peaks,
one around 2.8 Å, the other 4.8 Å. Thus, the average RMSD
should be somewhere in between. However, the RMSDs of clus-
ter centers were 2.5 Å ∼ 2.7 Å for 6 out of the 7 trajectories
(Table S3).

In the α3W case, the native cluster also had two peaks, one
around 2.3 Å, the other around 4.6 Å with a larger population.
Thus, the average RMSD should be between the two figures and
closer to the latter 4.6 Å. But the RMSDs of the cluster centers
were 1.7 Å ∼ 2.2 Å in the first trajectories, again below the first
figure.

In the S-836 case, the broad native peak spanned from 4 Å to
6 Å but the RMSDs of the cluster centers were 2.5 Å ∼ 4.3 Å for
the four trajectories that reached the native state.

We propose an explanation by a model illustrated in Fig. S16A.
Structures in the native cluster can be characterized by fluctua-
tions around the minimal free-energy configuration x0, which is
roughly the experimental structure. Thus, in the configuration
space, they are distributed over a volume roughly enclosed by
an n-dimensional (n is the number of degrees of freedom) hyper-
sphere surrounding x0, with the radius being a multiple of the
average RMSD of cluster. On the other hand, the cluster center
should be identified as some frame near x0 to minimize the aver-
age distance from all other frames (see Clustering Method). Thus
its RMSD would be considerably less than the average RMSD.

The model predicts that the RMSD from the native will posi-
tively correlate with the average distance from other frames in the
native cluster. As shown in Figs. S16B–E, this was indeed the case
for the four studied proteins. A frame of a low RMSD usually also
had a low average distance from other frames, and vice versa.

Back to the two-peak distributions observed in α3D and α3W,
the model suggests that the second peak was an aggregate of con-
formations surrounding the native structure with similar RMSDs
but different fluctuations. Thus, even if the second peak had a
higher population, it did not affect the location of the native.
The model is useful in cluster analyses because it means that
we can include structures in the second peak into the native clus-
ter, but still identify the native one with precision.

Note the model does not require that structures in the second
peak to be completely random, but only its systematic deviation
from the native to be small compared with its random deviation.

Side-Chain Flexibility. We investigated the side-chain flexibility of
the folded proteins. We focused on the side-chain dihedrals χ1
(C-Cα-Cβ-Cγ). We assigned a number q from 1 to 3 for the three
rotamer conformations: 1 for jχ1j > 120° (where the dihedral
C-Cα-Cβ-Cγ is in its trans conformation), 2 for −120° < χ1 <

0°, and 3 for 0° < χ1 < 120° (where the other dihedral
N-Cα-Cβ-Cγ is in its trans conformation).

The collective χ1 conformation of a specific residue group,
referred to as a rotamer combination (RC), is specified by a cor-
responding set of rotameric numbers, q ¼ fqkg. We now define
its rotameric entropy S as

SðqÞ∕kB ¼ −∑
q

pðqÞ log pðqÞ [S7]

where the sum is carried over all possible RCs or qs, with pðqÞ
being the observed occurring frequency of a particular q, and
kB is the Boltzmann constant.

The effective number of RCs can be computed from S as
N ¼ eS∕kB . If all protein rotamers were frozen, S ¼ 0 and
N ¼ 1. Generally, S > 0 and N > 1 due to the thermal fluctua-
tion. Since the entropy is extensive, we further define
s̄ ¼ SðqÞ∕Nres: and n̄ ¼ es̄∕kB for the respective quantities per re-
sidue, whereNres: is the number of residues in the group. Clearly,
1 ≤ n̄ ≤ 3 as each χ1 has only three rotamers.

The collective measures, S,N, s̄, and n̄, were computed for two
residue groups, (i) residues involved in the hydrophobic cores,
and (ii) peripheral hydrophilic ones. For each protein, we first
collected data from both the 300 K-reweighted folding trajec-
tories and the native regular MD, then limited ourselves to
the folded state by only including frames with RMSD < 6 Å.

As shown in Table S5, even residues involved in the hydropho-
bic core usually had hundreds to thousands of RCs. However,
compared with hydrophilic residues, the figures were smaller,
suggesting certain mutual restriction and collectivity. It also
shows that Fap1-NRα had fewer RCs in comparison with the
other three proteins, suggesting that the natural protein might
have a tighter hydrophobic core than the designed ones.

In Fig. S5, we show that the dihedral conformations for indi-
vidual residue of five proteins. For each residue, the height of a
color bar represents the frequency of the corresponding χ1. Note
the frequency here is averaged over all other residues, and thus
does not take collectivity into account. Nevertheless, we show
that a residue could on average adopt two or three rotamers,
agreeing with the results in Table S5. However, bulky residues
(e.g., Phe and Trp) were often able to maintain a single χ1 rota-
mer, so were Asp and Asn.

The Packing-ChiralityDDistributions.The packing-chirality distribu-
tions of all simulation trajectories of α3D, α3W, LALA, and Fap1-
NRα are shown in Fig. S17. The chirality distributions of other
proteins are shown in Figs. 3, 4, and 5 in the main text, and in
Fig. S8. The distribution computed from the trajectory 4 of
α3D showed considerable difference from the other trajectories.
This was related to the fact that this trajectory did not reach the
native state with the same accuracy as the others (as shown in
Table S3, the minimal RMSD 2.85 Å was much higher than those
from the other trajectories). The outlying distribution from tra-
jectory 5 of α3W was due to a similar reason. We did not sample
the left-handed conformation of LALA, and thus there was only
the right-handed peak. For Fap1-NRα, although there was not a
sharp peak corresponding to a distinct folded state as in the other
cases, the distribution was tilted to the left-handed side, where
the native conformation belonged.
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Fig. S1. Initial extended conformations of (A) α3D, (B) α3W, (C) Fap1-NRα, and (D) S-836. Water molecules are removed for clarity.

Fig. S2. Representative structures (reweighted to 300 K) along (A) trajectory 7 of α3D and (B) the trajectory 2 of the mutant α3DL.
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Fig. S3. Three trajectories of α3DL. (A) Root-mean-square deviation from the putative native structure and (B) instantaneous potential energy versus time t.
Red, green, and blue are for trajectories 1, 2, and 3, respectively.

Fig. S4. The putative native structure of α3DL (A) versus the native one of α3D (B). Hydrophobic, positively charged, and negatively charged residues are shown
in gray, blue, and red, respectively.
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Fig. 5. The χ1 rotamer profiles (computed from folding trajectories, reweighted to 300 K) of (A) α3D, (B) α3DL, (C) α3W, (D) Fap1-NRα, and (E) S-836. Gly and Ala
residues are excluded for lack of Cγ atoms. Colors of the three rotamers, red: jχ1j > 120°, green: −120° < χ1 < 0°, and blue: 0° < χ1 < 120°. In each panel, the top
bar represents the χ1 rotamer of each residue in the experimentally determined conformation.

Fig. S6. Right-handed conformation of α3W. (A) Top view of the three helices. (B) and (C) Schematic plots of the unadjusted and best adjusted conformations,
respectively. In helices B or C, the b and c residues and e, f , and g residues carry opposite charges (the lowercase letters a–g are from the helix heptad). The
unadjusted conformation involves strong electrostatic repulsion among e, g residues, as shown in red lines in B. However, if helix A slides along the helical axis
by one helix turn (along the green arrow in panel B), such that the e, f , and g residues on helix A are roughly on the same level of the b and c residues on helices
C and B (instead of opposing their counterparts with the same charges), the direct electrostatic repulsion can be replaced by a weak attraction, as illustrated by
green lines in C. Similar arrangements involving more helices are also possible. (D) and (E) Schematic and ribbon representations of the a conformation ob-
served from a trajectory.
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Fig. S7. (A) Conformation 3 of α3W. Helices A and C are closely aligned in antiparallel through both hydrophobic residues and charged residues (Arg3-Glu61,
Lys10-Glu56, Lys17-Glu49), leading to a closer distance 8.4 Å. Additionally, Trp34 on helix B is packed against the hydrophobic residues on helices A (Val18 and
Leu21) and C (Val50). Helix B is further secured by two additional salt bridges: Lys31-Glu15 for helices B and A, and Lys38-Glu54 for helices B and C. (B) Con-
formation 3 of LQLQ. It breaks an interesting symmetry: helix B is aligned antiparallel (andmore closely) to helix C instead of helix A. As both helices A and C are
slightly bent according to the coiled-coil topology, the curvature makes helix C to tilt away from the hydrophobic face around the loop region between helices
B and C. Thus stretching the B–C loop is more difficult than stretching the A–B loop, and hence a closer association of helices B and C. The conformation
resembles a “helix hairpin,” e.g., PDB ID: 2K1E (1).

1 Ma D, et al. (2008) NMR studies of a channel protein without membranes: Structure and dynamics of water-solubilized KcsA. Proc Natl Acad Sci USA 105:16537–16542.

Fig. S8. The packing-chirality D distributions (300 K) of LALQ. Two conformations at cluster centers from cluster analyses are also shown. The colors of the
three successive helices are blue, yellow, and red starting from the N to C terminus. The shaded peaks (to be read from the right vertical scale) in both panels
were obtained from 300 K regular MD simulations starting from the respective cluster-center structures.
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Fig. S9. Two competing conformations, bent and straight, of LALA (extracted from the two largest clusters). Leu side chains are also shown. The colors of the
three successive helices A, B, and C from the N to C terminus are blue, yellow, and red, respectively. (A) In the bent conformation, helix A is kinked with
shortened distances to helices B (7.1 Å) and C (6.8 Å). The distance between helices B and C is 9.1 Å. (B) In the straight conformation, the distance between
B and C (6.7 Å) is shorter, while the other two distances are longer: 9.1 Å (A–B) and 9.8 Å (B–C).

Fig. S10. The packing patterns of charged residues in the four possible chiral conformations of the four-helix bundle S-836. The chiral conformations are
casted to four quadrants LR, RR, RL, and LL according to the signs of the two chiral distances DABC and DBCD. Only the LR, RR, and RL conformations were
observed from folding trajectories. Each helix of the protein adopts the heptad repeat a-b-c-d-e-f -g. Residues on a, d, and sometimes e positions are hydro-
phobic. The rest (charged/polar) on the heptad are engaged in interhelical pairing, and can be casted into two groups: b and e (or f if e is hydrophobic) residues
on one side, and c and g residues the other. The two sides interact with different helices and are shown as the two “arms” in the helix wheel representation
(outer residues are closer to the reader). Interactions of charged/polar residues between two different helices are shown as two aligned arms with residues on
the interface. Unfavorable interactions between corresponding residues with same charges are shown by magenta bars. In the observed conformations of LR,
RR, and RL, a helix often slides slightly along its axis, as indicated by blue arrows, to optimize interhelical interactions among charged residues.
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Fig. S11. The 300 K distributions of the RMSD from the (putative) native structures for (A) α3D and (B) its mutant α3DL. The representative structure (black) at
the smallest RMSD peak (gray strip) and that (colored) at the second smallest RMSD peak (light-blue strip) from each trajectory are aligned. Trajectory 4 of α3D
did not have the first peak and thus is omitted. The colored strips indicate where the representative structures were extracted, but do not represent physical
clusters (same for Figs. S12 to S15).

Fig. S12. The 300 K distributions of the RMSD from the native structure for α3W. The representative structure (black) at the smallest RMSD peak (gray strip)
and that (colored) at the second smallest RMSD peak (light-blue strip) from each trajectory are aligned. Trp34s in the second peaks were consistently lower than
those in the first peaks.
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Fig. S13. The 300 K distributions of the RMSD from the putative native structures for (A) LQLQ, (B) LALQ, and (C) LALA. The representative structures at the
distribution peaks are also shown. The RMSD ranges for selecting the representative structures are as follows: LQLQ left, (2.1, 2.4) Å; right, (8.7, 9.0) Å. LALQ
left, (2.1, 2.3) Å; right: (8.5, 8.7) Å. LALA left (straight), (7.4, 7.7) Å; right (bent): (8.3, 8.6) Å (cf. Fig. S9).

Fig. S14. The 300 K distributions of the RMSD from the native structures of Fap1-NRα. Three representative structures for RMSDwithin the ranges (1.4 Å, 1.6 Å)
(red), (6.3 Å, 6.5 Å) (blue), and (12.3 Å, 12.6 Å) (cyan) are also shown.
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Fig. S15. The 300 K distributions of the RMSD from the native structure of S-836. The left and right vertical scales are for the combined trajectory and in-
dividual ones, respectively. Representative structures for RMSD within the ranges (4.3 Å, 4.7 Å) (native, red), (9.2 Å, 9.4 Å) (RR, blue), (10.4 Å, 10.6 Å) (RL, green),
and (14.6 Å, 14.8 Å) (conf. 4 as in Fig. 5 in the text) are also shown.

Fig. S16. (A) A model for the relation between the fully folded and intermediate states in the configuration space. (B)–(E) The average distance from other
frames in the native cluster (frames with RMSD < 6.0 Å) versus the RMSD from the native conformation for α3D, α3W, Fap1-NRα, and S-836, respectively.

Zhang and Ma www.pnas.org/cgi/doi/10.1073/pnas.1112143109 14 of 19

http://www.pnas.org/cgi/doi/10.1073/pnas.1112143109


Fig. S17. The packing-chirality D distributions of all trajectories of (A) α3D, (B) α3W, (C) LALA, and (D) Fap1-NRα. D > 0: right-handed, D < 0: left-handed. Since
trajectory 4 of α3D and trajectory 5 of α3W reached the respective folded states with lower accuracy (cf. Table S3), their distributions differed considerably from
the rest distributions.
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Fig. S18. The potential of mean force (computed from a special simulation of α3D) and three decomposed dihedral modes for φ and ψ in panels (A) and (B),
respectively. Dashed line: sum of modes; light solid line: the original potential of mean force. The maximum of the potential is shift to zero.

Zhang and Ma www.pnas.org/cgi/doi/10.1073/pnas.1112143109 15 of 19

http://www.pnas.org/cgi/doi/10.1073/pnas.1112143109


Fig. S19. Folding trajectory 7 of α3D. (A) and (B) The instantaneous potential energy and temperature versus simulation time t. (C) The temperature histogram
HðβÞ divided by the intended temperature density wðβÞ, a quantity expected to be constant after convergence. (D) 111 energy histograms at different tem-
peratures with an interval Δβ ¼ 0.002 from β ¼ 0.20 to 0.42 (cf. the temperature bin size is δβ ¼ 0.0001).
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Fig. S20. For α3D: (A) backbone RMSD from the native structure versus time for a regular constant-temperature molecular dynamics (CTMD) simulation
starting from a fully extended chain, CTMD from the experimentally determined structure, unbiased (TP) and dihedral-biased (this method, trajectories
2, 5, and 7) tempering from an extended chain. (B) The fraction of correct backbone dihedrals versus time. (C) and (D) Residue-averaged backbone dihedrals
distributions of φ (C-N-Cα-C) and ψ (N-Cα-C-N), respectively, at 300 K via the multiple histogram method computed from native-like conformations. (E) and (F)
The corresponding distributions at 580 K. Note in producing panels C–F, we only included the folded state (frames with RMSD < 6 Å) to avoid the disturbance
from the conformational diversity; thus, they are only used to study local dihedral equilibration and not for representing the free-energy landscape.

Table S1. The amino acid sequences of α3D, α3W, Fap1-NRα, and S-836 and the mutants

Prot. Sequence

α3D MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVEALRKEAAAIRDELQAYRHN
α3DL MGSWEAFKQRLAAIKTRLQALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVAELEKRAAAIEDRLQAYNHR
α3W GSRVKALEEKVKALEEKVKALGGGGRIEELKKKWEELKKKIEELGGGGEVKKVEEEVKKLEEEIKKL
LQLQ GSGLQQLQQQLQQLQQQLQQLGGGGGLQQLQQQLQQLQQQLQQLGGGGGLQQLQQQLQQLQQQLQQL
LALQ GSGLAALQQQLAALQQQLAALGGGGGLAALQQQLAALQQQLAALGGGGGLAALQQQLAALQQQLAAL
LALA GSGLAALAAALAALAAALAALGGGGGLAALAAALAALAAALAALGGGGGLAALAAALAALAAALAAL
Fap1-NRα ENLDKMISEAEVLNDMAARKLITLDAEQQLELMKSLVATQSQLEATKNLIGDPNATVADLQIAYTTLGNNTQALGNELIKL
S-836 MYGKLNDLLEDLQEVLKHVNQHWQGGQKNMNKVDHHLQNVIEDIHDFMQGGGSGGKLQEMMKEFQQVLDEIK

QQLQGGDNSLHNVHENIKEIFHHLEELVHR
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Table S2. Simulation conditions for α3D, α3W, Fap1-NRα, and S-836 and the mutants

Prot. PDB ID Nres: charge* box (Å) † Nwater RMSDmin
bb (Å)‡ RMSD300 K

bb (Å)§ t300 K (ns)¶

α3D 2A3D 73 −1 68 6989 1.9 3.2 ± 0.2 410
α3DL 73 −1 68 6971 n∕a n∕a 423
α3W 1LQ7 67 +2 65 6055 1.4 2.2 ± 0.3 436
LQLQ 67 0 65 6096 n∕a n∕a n∕a
LALQ 67 0 68 7075 n∕a n∕a n∕a
LALA 67 0 68 7120 n∕a n∕a n∕a
Fap1-NRα 2KUB 81 −6 70 7515 1.0 1.5 ± 0.2 500
S-836 2JUA 102 +2 80 11440 2.1 3.1 ± 0.4 400

*MARKER1 The total charge of the protein; sodium (Naþ) and chloride (Cl−) ions were added to neutralize the respective
system, e.g., two chloride ions were added to α3W.

†MARKER2 The box size represented by the side length of the bottom square of the dodecahedron.
‡The minimal root-mean-square deviation (RMSDs) of backbone atoms from the experimentally determined structure.
§The average backbone RMSD in the control simulation performed at 300K using regular MD.
¶The corresponding simulation time. n/a: RMSDs are not applicable to designed proteins.

Table S3. Trajectory parameters of α3D, α3W, Fap1-NRα, and S-836 and the mutants

Prot. ID t (μs) * φ : pA; pB; pC; pmin ψ : pA; pB; pC; pmin rs; rv ; rc; ΔxPMF (Å) † RMSDmin∕RMSDcls: (Å)
‡

α3D

0 1.7 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 7, 8, 10, 1.31 6.27/na
1 1.0 1.0, 0.1, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.31 1.94∕2.51
2 1.3 1.0, 0.2, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.31 1.87∕2.61
3 1.2 1.0, 0.2, 0.5, 3.0 9.0, 0.5, 1.0, 3.0 7, 8, 10, 1.31 1.90∕2.51
4 1.3 0.15, 0.05, 0.1, 3.0 1.5, 0.5, 0.5, 3.0 7, 8, 10, 1.31 2.85∕4.62;99%
5 2.0 0.25, 0.05, 0.1, 1.0 3.0, 0.2, 0.2, 1.0 8, 9, 11, 1.42 1.97∕2.71
6 1.0 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.42 2.12∕2.71
7 2.5 0.1, 0.05,0.1, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 2.03∕2.61

α3DL

1 2.5 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 na
2 2.5 1.0, 0.5, 1.0, 1.0 1.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na
3 2.5 0.5, 0.1, 0.3, 1.0 2.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na

α3W

0 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 7, 8, 10, 1.33 7.18/na
1 1.6 0.15, 0.05, 0.1, 1.0 1.5, 0.3, 0.3, 1.0 7, 8, 10, 1.33 1.47∕2.21
2 1.8 0.25, 0.05, 0.1, 1.0 2.0, 0.2, 0.2, 1.0 7, 8, 10, 1.33 1.39∕1.71
3 2.5 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 7, 8, 10, 1.33 1.38∕2.21
4 1.8 0.2, 0.05, 0.1, 1.0 2.0, 0.3, 0.3, 1.0 7, 8, 10, 1.33 1.40∕2.41
5 1.0 1.0, 0.1, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.33 1.83∕3.62;93%
6 1.0 1.0, 0.1, 0.3, 3.0 10, 0.5, 0.3, 3.0 7, 8, 10, 1.33 1.36∕3.21

LQLQ
1 1.7 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.33 na
2 1.5 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 8, 9, 11, 1.33 na

LALQ
1 1.0 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 na
2 1.0 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na

LALA
1 1.2 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 na
2 1.2 0.5, 0.1, 0.3, 1.0 2.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na

Fap1-NRα
1 2.4 0.25, 0.05, 0.1, 1.0 3.0, 0.3, 0.3, 0.0 8, 9, 11, 1.46 1.00∕1.42;45%
2 2.5 0.2, 0.05, 0.1, 1.0 2.0, 0.25, 0.5, 1.0 8, 9, 11, 1.46 3.11/na

S-836

1 3.1 0.2, 0.05, 0.1, 1.0 2.0, 0.3, 0.3, 1.0 8, 10, 12, 1.45 2.09∕3.81
2 3.3 0.2, 0.05, 0.1, 1.0 2.0, 0.4, 0.0, 1.0 8, 10, 12, 1.45 2.21∕3.81
3 4.2 0.25, 0.05, 0.1, 1.0 2.5, 0.3, 0.1, 1.0 7, 8, 10, 1.25 2.30∕4.31
4 3.3 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 8, 9, 11, 1.43 2.13∕2.51
5 3.1 0.25, 0.05, 0.1, 1.0 3.0, 0.15, 0.3, 1.0 8, 9, 11, 1.43 7.31/na

The temperature range β ∈ ð0.2; 0.42Þ, with the bin size δβ ¼ 0.0001 for the first three, or 0.00005 for S-836. The thermostat temperature T0 ¼ 480 K. For
the integral identity, the temperature window for integral identity was ðβ − Δβ; βþ ΔβÞ where Δβ∕β ¼ 0.03 for the first three, or 0.02 for S-836. The time
step for integrating Langevin equation ΔtkT ¼ 2 × 10−5 for the first three, or 10−5 for S-836. The amplitude for adaptive averaging Cγ ¼ 1.0
*Simulation time.
†The switching radius rs for van der Waals interactions, cutoff radius rv for van der Waals interactions, real-space cutoff rc and Fourier grid spacing ΔxPMF

for PME.
‡The minimal and cluster-center backbone root-mean-square deviations (RMSD) from the experimentally determined structure; the latter was measured
from the cluster containing the native conformation (RMSD < 5 Å, na if no such cluster exists); the subscript was its rank of in size, and if not 1, then
followed by the population to the largest cluster, e.g., 2.51 means the native cluster was the largest and its RMSD is 2.5 Å, 1.42;45% means the native cluster
was in the second largest, and its population ratio to the largest is 45%.
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Table S4. Geometry measures of various conformations of three-helical bundles

t (ns) NC DABC (Å) dAB (Å) dAC (Å) dBC (Å) θABð°Þ θACð°Þ θBCð°Þ
α3D, native 410 49 ± 2 9.6 ± 0.4 9.8 ± 0.3 9.7 ± 0.4 9.8 ± 0.6 168 ± 5 11 ± 4 167 ± 4
α3DL, native 423 50 ± 2 −9.6 ± 0.5 9.6 ± 0.4 9.8 ± 0.3 9.6 ± 0.5 174 ± 3 8 ± 4 168 ± 4
α3W, native 436 49 ± 2 −9.0 ± 0.4 9.9 ± 0.3 9.6 ± 0.3 9.6 ± 0.4 163 ± 4 20 ± 5 165 ± 5
α3W, conf. 2 240 40 ± 3 9.6 ± 0.6 9.6 ± 0.5 9.3 ± 0.5 10.0 ± 0.4 152 ± 10 20 ± 8 168 ± 5
α3W, conf. 3 236 32 ± 2 9.7 ± 1.1 12.0 ± 0.4 8.5 ± 0.3 15.0 ± 0.4 72 ± 7 168 ± 6 108 ± 9
LQLQ, conf. 1 205 51 ± 2 −9.4 ± 0.3 9.6 ± 0.2 9.8 ± 0.3 9.4 ± 0.3 165 ± 4 14 ± 3 172 ± 4
LQLQ, conf. 2 216 51 ± 2 9.8 ± 0.4 9.2 ± 0.3 10.2 ± 0.9 9.6 ± 0.8 171 ± 4 13 ± 5 165 ± 5
LQLQ, conf. 3 197 47 ± 2 9.1 ± 0.5 10.6 ± 0.6 9.2 ± 0.4 10.2 ± 0.5 29 ± 8 160 ± 4 165 ± 6
LALQ, conf. 1 201 51 ± 2 −9.6 ± 0.5 9.5 ± 0.6 10.2 ± 0.7 9.4 ± 0.3 165 ± 4 15 ± 4 172 ± 4
LALQ, conf. 2 197 51 ± 2 9.8 ± 0.3 9.3 ± 0.3 11.1 ± 0.8 9.1 ± 0.7 171 ± 4 11 ± 3 168 ± 4
LALA, bent 205 40 ± 2 4.5 ± 0.3 7.1 ± 0.2 6.9 ± 0.2 9.4 ± 0.2 141 ± 3 44 ± 2 119 ± 3
LALA, straight 197 49 ± 2 7.3 ± 0.3 9.1 ± 0.2 9.8 ± 0.3 6.9 ± 0.2 162 ± 3 21 ± 5 168 ± 5

NC: the total number of contacting hydrophobic residues between different helices with a 12 Å cutoff; DABC: the chiral distance. dAB, dAC and
dBC: the interhelical distances between helices A-B, A-C, and B-C, respectively; θAB, θAC and θBC: the interhelical angles between helices A-B, A-C,
and B-C, respectively; Residues that define helices A, B and C: for α3D and α3L, A: 4–21, B: 28–45, C: 53–70; α3W, LQLQ, LALQ and LALA, A: 4–21, B:
27–44, C: 50–67. Numbers followed � are standard deviations.

Table S5. The rotameric entropy S of collective χ 1-dihedral conformations for several proteins

Protein

Nres S∕Nres, S, eS∕kB (native) S∕Nres, S, eS∕kB (folding)

residues

α3D, core
17 0.35, 5.9, 3.5 × 102 0.45, 7.6, 2.1 × 103

W4 F7 L11 I14 L18 L21 L28 F31 I35 F38 L42 Y45 V53 L56 I63 L67 Y70

α3D, exposed
12 0.56, 6.7, 7.9 × 102 0.67, 8.0, 3.0 × 103

K8 R10 K15 R17 E32 E34 E39 E41 R57 E59 R64 E66

α3DL, core
17 0.31, 5.3, 2.0 × 102 0.44, 7.5, 1.8 × 103

W4 F7 L11 I14 L18 L21 L28 F31 I35 F38 L42 Y45 V53 L56 I63 L67 Y70

α3DL, exposed
12 0.55, 6.6, 7.6 × 102 0.65, 7.8, 2.5 × 103

K8 R10 K15 R17 E32 E34 E39 E41 E57 R59 E64 R66

α3W, core
18 0.38, 6.8, 9.1 × 102 0.47, 8.5, 5.0 × 103

V4 L7 V11 L14 V18 L21 I27 L30 W34 L37 I41 L44 V40 V53 V57 L60 I64 L67

α3W, exposed
12 0.49, 5.9, 3.5 × 102 0.65, 7.8, 2.5 × 103

E8 K10 E15 K17 K31 K33 K38 K40 E54 E56 E61 E63

Fap1-NRα, core
18 0.28, 5.1, 1.6 × 102 0.31, 5.6, 2.7 × 102�

L3 M6 I7 L13 L21 L32 L36 T39 L43 T46 L49 I50 L60 Y64 L67 T71 L74 L78

Fap1-NRα, exposed
12 0.61, 7.4, 1.6 × 103 0.51, 6.2, 4.8 × 102�

K5 E9 E11 R19 E31 K34 Q40 E44 Q61 Q72 E77 K80

S-836, core
32 0.25, 7.9, 2.6 × 103 0.27, 8.80, 6.5 × 103

L5 L8 L9 L12 V15 L16 V19 W23 M30 V33 L37 V40 I41 I44 F47 M48 L57
M60 M61 F64 V67 L68 I71 L75 L82 V85 I89 I92 F93 L96 L99 L100

S-836, exposed
20 0.43, 8.6, 5.7 × 103 0.46, 9.2, 9.5 × 103

K4 E10 Q13 K17 Q21 K28 K32 Q38 E42 H45 K56 E59 K62 Q66 K72 E87 E91 H94 E98 H102

For each protein, we define two groups of residues: core for residues engaged in hydrophobic core, and exposed for exposed hydrophilic residues (which
are the e, g residues on the heptad for α3D, α3DL and α3W). The former group reveals the flexibility of the hydrophobic core, while the latter group serves as
a control for comparison. Nres is the number of residues involved in a rotameric pattern. Unit of entropy is the Boltzmann constant kB. A larger entropy
suggests more rotamer combinations. For each protein, the entropy is calculated from both the 300 K nativeMD trajectory, and a combination of all folding
trajectories. The entropy from the latter is often larger due to a more thorough sampling. The results for Fap1-NRα from folding trajectories (marked by
“*”) are likely underestimated due to limited folding trajectories

Table S6. The parameters of the dihedral modes from decomposing the potentials of mean force along the two
backbone dihedrals φ and Ψ

MðkJ mol−1Þ φc or ψc(rad) a−
2 a−

4 a−
6 aþ

2 aþ
4 aþ

6

φ, A 53.1498 −1.35644 1.13993 0 0.35771 0.82287 0 0
φ, B 35.6254 −2.88178 1.62469 0 0.43748 1.90438 0.28168 0.23115
φ, C 31.1770 1.14492 2.38089 0.38803 0 2.07291 0 1.78939
ψ, A 28.0089 −0.60321 1.29464 0 0.02106 1.3024 0 0.08051
ψ, B 30.3457 2.65584 1.55338 0.13681 0.37975 1.47698 0 0.20224
ψ, C 14.6367 0.93443 0 0.25603 0.01605 0.45829 0.22928 0.06936

For each dihedral, the three modes are successively labeled as A, B, and C
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