Supporting Information

Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at low pH

Somnath Bhattacharjee, Jinlan Dong, Yiding Ma, Stacy Hovde, James H Geiger, Gregory L. Baker*, and Merlin L. Bruening*

^aDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

* Corresponding author.

email: bruening@chemistry.msu.edu, bakerg@msu.edu

Phone: +1 517 355-9715 ext. 160

Fax: +1 517 353-1793

Table S-1. Water permeabilities of nylon membranes before and after modification with PSS/PAH/PAA films.

Multilayer in	pH of PAH	Water permeability	Water permeability	Reduction
membrane pore	and PAA	of unmodified nylon	of modified nylon	of Water
	deposition	membranes	membrane	permeability
	solution	(mL/cm ² min atm)	$(mL/cm^2 \min atm)$	(%)
	2	114±10	57±4	50±10
	3	107±17	34±11	68±22
PSS/PAH/PAA	4	116±6	75±11	35±11
	5	120±18	79±32	34±31

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

Table S-2. Water permeabilities of nylon membranes before and after modification with $PSS/PAH/PAA-NTA-Cu^{2+}$ films.

Multilayer in	pH of PAH	Water	Water	Reduction
membrane pore	and PAA	permeability of	permeability of	of Water
	deposition	unmodified nylon	modified nylon	permeability
	solution	membranes	membrane	(%)
		$(mL/cm^2 \min atm)$	$(mL/cm^2 \min atm)$	
	2	105±3	77±6	27±6
	3	123±3	98±5	20±5
PSS/PAH/PAA	4	123±2	56±1	55±2
	5	131±5	39±5	70 ± 6

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

Table S-3. Water permeabilities of nylon membranes before and after modification with PAA monolayers.

Monolayer in	pH of PAA	Water permeability	Water permeability of	Reduction
membrane	deposition	of unmodified nylon	modified nylon	of Water
pore	solution	membranes	membrane	permeability
		$(mL/cm^2 \min atm)$	$(mL/cm^2 \min atm)$	(%)
	2	116±10	42±8	64±12
	3	143±11	46±15	68±14
PAA	4	122±5	111±4	9±5
	5	136±23	128±22	6±23

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

Table S-4. Water permeabilities of nylon membranes before and after modification with PAA-NTA- Cu^{2+} films.

Monolayer in	pH of PAH	Water	Water	Reduction
membrane	and PAA	permeability of	permeability of	of Water
pore	deposition	unmodified	modified nylon	permeability
	solution	nylon	membrane	(%)
		membranes	$(mL/cm^2 min)$	
		$(mL/cm^2 min)$	atm)	
		atm)*		
	2	86±1	75±2	13±3
	3	89±1	68±2	24±3
PAA	4	90±2	80±2	11±3
	5	80±2	74±1	7.5±3

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

*Membrane coupons were cut from a large sheet, and this particular batch of coupons showed a \sim 30% lower permeability (before modification) than others.

Table S-5. Water permeabilities of nylon membranes before and after modification with PAA/PAH/PAA or PAA/PEI/PAA.

Multilayer in	pH of PAH	Water	Water	Reduction	
membrane pore	and PAA	permeability of	permeability of	of Water	
	deposition	unmodified	modified nylon	permeability	
	solution	nylon	membrane	(%)	
		membranes	$(mL/cm^2 min)$		
		$(mL/cm^2 min)$	atm)		
		atm)			
PAA/PAH/PAA	3	114±7	25±5	78±9	
PAA/PEI/PAA	3	123±7	69±3	44±7	

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

Table S-6. Water permeabilities of bare membranes and membranes modified with $PAA/PAH/PAA-NTA-Cu^{2+}$ or $PAA/PEI/PAA-NTA-Cu^{2+}$.

Multilayer in	pH of PAH	Water	Water	Reduction	
membrane pore	and PAA	permeability of	permeability of	of Water	
	deposition	unmodified	modified nylon	permeability	
	solution	nylon	membrane	(%)	
		membranes	$(mL/cm^2 min)$		
		$(mL/cm^2 min)$	atm)		
		atm)			
PAA/PAH/PAA	3	118±4	59±2	50±4	
PAA/PEI/PAA	3	123±1	77±2	38±2	

Each experiment was repeated with two different membranes, and the \pm values represent the standard deviation of multiple measurements on these membranes.

(a)

(b)

Figure S-1. SEM images of a bare nylon membrane with nominal 1.2 μ m pores (a), and similar membranes modified with PSS/PAH/PAA deposited at pH 2 (b) and pH 5 (c).

Figure S-2. Breakthrough curves for the passage of 0.3 mg/mL lysozyme through nylon membranes modified with single layers of PAA adsorbed at various pH values. The protein-solution flow rate was 1 mL/min, which corresponds to a linear velocity of 19 cm/h above the membrane.

Figure S-3. Breakthrough curves for the passage of 0.45 mg/mL lysozyme through nylon membranes modified with PAA/PAH/PAA or PAA/PEI/PAA multilayers. The pH of PAA, PAH and PEI deposition solutions was 3, and the protein solution flow rate was 1 mL/min.

Figure S-4. Breakthrough curves for the passage of 0.3 mg/mL Con A (pH 6, 20 mM phosphate buffer) through nylon membranes modified with PSS/PAH/PAA-NTA-Cu²⁺ films adsorbed at different pH values. The protein solution flow rate was 1 mL/min.

Figure S-5. Breakthrough curves for the passage of 0.3 mg/mL Con A through nylon membranes modified with PAA-NTA- Cu^{2+} film (pH of PAA deposition solutions were varied). The protein solution flow rate was 1 mL/min.

Figure S-6. Breakthrough curves for the passage of 0.3 mg/mL Con A through nylon membranes modified with PAA/PAH/PAA-NTA- Cu^{2+} and PAA/PEI/PAA-NTA- Cu^{2+} films. The protein solution flow rate was 1 mL/min.

Figure S-7. Repetitive lysozyme binding capacities for nylon membranes modified with PAA/PEI/PAA films deposited at pH 3. (The blue and maroon bars show the different replicates on the two different membranes)

Figure S-8. The original gel image from which Figure 5(b) was taken (purification of CSN 8 from a cell extract). The lanes are: 1- first eluent from the membrane; 2- second eluent from a spin-trap column; 3- first eluent from a spin-trap column; 4- membrane wash; 5- spin-trap wash; 6- protein solution that passed through the membrane; 7- protein solution treated with the spin-trap column; 8- cell lysate; 9- protein ladder. Figure 5 in the text shows only lanes 9, 8, 6, and 1.