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I. Single-­‐molecule	
  data	
  selection	
  criteria	
  

Data selection is one of the most important steps in performing rigorous single-molecule experiments. 

The challenge for the experimentalist is objective elimination of those trajectories in which unwanted 

photo-physics (such as triplet-state blinking of the fluorophores) or multiple labeled molecules in the 

detection volume contribute to changes in emissive state that would otherwise be interpreted as 

conformational dynamics in single-molecule FRET experiments. This type of analysis is critical to 

single-molecule FRET experiments yet frequently performed manually, which can result in biased and 

inconsistent results. Furthermore, due to lack of rigorous criteria for well-behaved single-molecule 

trajectories, this essential step is almost never discussed in publications, which can result in wide 

variations in experimental results since this type of manual data selection is highly user dependent. In 

order to standardize data selection, a set of criteria has been implemented to reduce the variability 

arising from an entirely manual selection of FRET trajectories. Though it is impossible to completely 

automate trajectory selection, implementing this type of automated analysis as a precursor to manual 

selection will improve transparency and reproducibility in single-molecule data analysis. Criteria for 

semi-automated single-molecule data selection are detailed below. 

The first criterion is that each trajectory has a signal-to-noise ratio in both donor and acceptor 

channels of greater than 5:1 (details discussed in the Supplementary Information in Ref. [1]). Moreover, 

single-molecule data with a poor signal-to-noise ratio will have a relatively slow time-resolution when 

analyzed according to the maximum information method (MIM) and will result in single-molecule 

probability density functions (PDFs) created from raw-data with a broad range of time-resolutions.  

Inclusion of this low quality data in subsequent analysis would complicate, if not completely invalidate, 

the interpretation of single-molecule PDFs as a function of mean time-resolution as presented 

previously [1].  

Subsequent criteria used in automated trajectory selection rely on statistical tests derived for the 

detection auto- and cross-correlation in time-series [2, 3]. These tests are used to detect deviations from 

ideal behavior in single-molecule trajectories. Here, change-point analysis [4] is used to detect discreet 

changes in dye emission in order to break the single-molecule trajectory into three regions: in region 1 

the dyes are undergoing energy transfer and both are emitting photons, in region 2 the acceptor dye has 

photo-bleached but the donor is still emitting and in region 3 both dyes have photo-bleached and only 

background counts are detected in each channel. Though only region 1 contains distance information 
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from FRET, regions 2 and 3 both contain important information which is used for calibrating the 

measured distances in the MIM method [5]. After the acceptor dye has bleached in single-molecule 

FRET experiments, the intensity in each channel is expected to be constant in both regions 2 and 3. 

Typically deviations from ideal behavior arise from triplet-state blinking in region 2 or additional 

bleaching events arising from multiple labeled molecules in the detection volume, both of which are 

undesirable since they could lead to miscalibration of the measured distances in region 1. In the ideal 

case, intensity auto-correlation functions for both donor and acceptor channels in regions 2 and 3 are 

expected to show no significant intensity auto-correlation. A statistical test for auto-correlation [2] is 

applied separately to each channel in regions 2 and 3 and those trajectories displaying significant auto-

correlation at 95% confidence are removed from the data set and not included in subsequent data 

selection or analysis. In region 2, each channel is binned at 50 ms while in region 3 each channel is 

binned at 200 ms. These tests are intended to remove trajectories with large changes in emissive state 

such as blinking or bleaching of additional dyes in the detection volume, both of which would cause 

miscalibration in the data analysis parameters for MIM analysis. 

An intensity cross-correlation analysis is used to assess the validity of the trajectory in region 1 [2]. 

Since the emission of the dyes is expected to be uncorrelated or negatively correlated, those trajectories 

with positive correlation to 95% confidence are removed from the data set. Here positive correlation 

arises from triplet-state blinking of the acceptor dye, which leads to erroneous distance calculations. 

Cross-correlation tests in region 1 are performed on data binned at 2 ms. 

Another criterion used in data selection relies on a unique feature of the MIM analysis method.  As 

mentioned above, regions 2 and 3 of each single-molecule trajectory are used to calibrate the distances 

measured in region 1 [5]. This is necessary since differences in experimental collection efficiencies 

from each channel as well as differences in intrinsic quantum yield between the fluorophores results in 

different intensities detected for each fluorophore. This correction is analogous to the gamma factor 

correction commonly applied to single molecule efficiency measurements.[6] In the MIM method, the 

calibration of donor and acceptor intensities is done on a molecule-by-molecule basis, which allows an 

equivalent to the gamma factor to be calculated for each molecule as , where  is the average 

intensity of donor emission in the absence of acceptor and  is the interpolated acceptor intensity at 

100% energy transfer [5]. This molecule-by-molecule analysis reveals that the gamma factors are 

normally distributed rather than truly constant as is commonly assumed in conventional FRET analysis 

and is a necessary assumption in single-molecule diffusion type experiments. This is expected to arise 

from gradual drift in focus and instrumental alignment during data collection as well as error in the spot 

finding algorithm used to find the centroid of each molecule. Application of a constant gamma factor to 
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a single-molecule data set will cause calibration errors to manifest themselves as an artificially 

broadened distribution.  

The  ratio calculated in MIM analysis is used as a data selection since outliers are indicative of 

multiple chromophores in the detection volume or drastic focus and spot finding errors. In this case any 

molecule with an  ratio lying more than three standard deviations from the mean is removed from 

subsequent data analysis. 

II. Resolving	
  power	
  of	
  the	
  maximum-­‐information	
  method	
  

It is important to characterize the resolving power of the data analysis approach, given that a 

potentially multimodal distribution has been observed. To investigate the intrinsic resolution of the 

single-molecule data analysis methods utilized in the present work, data sets of known composition 

were simulated by creating artificial, in silico mixtures of experimental poly-L-proline trajectories. 

Figure S1 shows the results of this exercise for both the maximum information method (MIM) and 

constant time binning (CTB) analysis as discussed in the main text. Binary mixtures, created by 

combining data from only two single-molecule trajectories, were constructed to investigate the 

performance of the maximum entropy deconvolution algorithm used to remove noise from probability 

density functions (PDFs) (Figure S1a-d). Two molecules with delta function-like PDFs were combined 

and the resolving power of maximum entropy deconvolution was investigated as a function of the mean 

distance between the states. With the molecule at 47 Ångströms as a reference, separations of -10 

(Figure S1a), -4.6 (S1b), -2.3 (S1c) and +10 (S1d) Ångströms are presented, here blue lines represent 

the simulated mixtures, dashed red lines represent the expected result, and histograms in the 2nd row are 

results from CTB analysis. All PDFs presented in Figure S1 are created with an accuracy of 7%, thus 

the method should be able to resolve populations separated by more than ~3.3 Ångströms. 

Deconvoluted distributions resolve two states for each of the simulated binary distributions studied 

except the one with a separation of 2.3 Ångströms (Figure S1c), consistent with the theoretical 

resolution for maximum entropy deconvolution. Results of binary mixtures from CTB analysis are 

broad and relatively featureless, in stark contrast to the deconvoluted PDFs. Visually, only the -10 Å 

(Figure S1a) and +10 Å (S1d) histograms appear bimodal by CTB analysis and further interpretation of 

these distribution is possible only through Gaussian fitting. This demonstrates that the MIM analysis in 

conjunction with maximum entropy deconvolution has reached theoretical resolution limit and that the 

results are consistent in terms of weight, position and shape of the distribution. 

Since typical data analysis is not done on single trajectories, intrinsic resolution of the two data 

analysis methods has also been investigated for simulated data sets comprised of a mixture of 200 
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experimental single-molecule trajectories re-sampled from poly-L-proline peptides of different lengths 

(Figure S1e-h). Here simulated distributions are created by combining poly-L-proline samples P15 and 

P24 in a 1:1 ratio (Figure S1e) as well as P8, P15 and P24 in ratios of 2:1:1 (S1f), 1:1:1 (S1g) and 1:1:2 

(S1h). All ratios are calculated according to total trajectory length in each simulated data set. Although 

interpretation of the results of this exercise is less straight forward than the mixtures of two delta 

functions presented above, the deconvoluted PDFs are unambiguously able to resolve each population in 

the distribution, as well as reproduce approximately the correct weights and overall shape. By contrast 

the distributions produced by CTB are broad and although some of the information about the position 

and relative weight of states can be recovered by Gaussian fitting, the results obtained in this manner are 

non-optimal. Whereas the PDFs produced by MIM analysis have a meaningful shape, the CTB analysis 

contains little information about the overall shape of the distribution due to the broadening introduced 

by experimental noise. 

 

Figure S1  – Investigation of intrinsic resolution of single-molecule data analysis 

methods. Binary mixtures of two single molecule trajectories separated by -10 (a), -4.6 

(b), -2.3 (c) and +10 (d) Ångströms, with the trajectory at 47 Ångströms as a reference. 



 S7 

Blue lines are the deconvoluted binary mixture from maximum information method 

(MIM) analysis, dashed red lines represent the expected result from individual 

trajectories and histograms in the 2nd column are the results from constant time binning 

(CTB) analysis. Deconvolution is expected to have a resolution of ~3.3 Ångströms, 

consistent with the results presented, whereas CTB analysis has an apparent resolution of 

10 Ångströms. Simulated data sets consisting of mixtures of 200 poly-proline trajectories 

at ratios of 1:1 poly-proline-P15:P24 (e) as well as mixtures of P8:P15:P24 at 2:1:1 (f), 1:1:1 

(g) and 1:1:2 (h). MIM results are in the top column while CTB results are in the bottom 

column. The MIM unambiguously reveals populations at the correct position and weight 

and contains meaningful information on the shape of the distribution, whereas the CTB 

results rely on fitting to Gaussian distributions for their interpretation and are 

significantly broadened due to photon-counting noise. 

III. Single-­‐molecule	
  spectra	
  and	
  lifetime	
  distributions	
  

To ensure that the distance distributions measured in these experiments reflect actual lengths of poly-

L-proline peptides in solution it is important to know the fluorescence characteristics of the attached 

donor and acceptor fluorophores when the peptide is immobilized on the coverslip surface. Deviations 

from the bulk fluorophore characteristics can skew the average single molecule length determination, 

and molecule-to-molecule variations distort the length distribution derived from single molecule 

measurements. This was first clearly demonstrated by Talaga et al. who showed that immobilization of 

a peptide by absorption to a silanized quartz surface caused artifacts in both conformation and dynamics 

when compared to the same peptide in solution [7]. In the present work, immobilization is achieved 

through a biotin-PEG passivated quartz cover slip to which the streptavidin-bound poly-L-prolines can 

be specifically attached. Though the use of PEG is thought to prevent non-specific interactions with the 

quartz substrate, careful control experiments must be performed to ensure that this is the case. 

In order to show that the dye photo-physics are unaffected by proximity to the quartz or 

immobilization, dye emission spectra and excited-state lifetime were measured at the single-molecule 

level using a multi-parameter fluorescence microscope [8, 9]. Experiments were performed on doubly 

labeled poly-L-proline, P15. Figure S2 shows a sample single-molecule intensity-versus-time trajectory 

from which spectra and lifetime data for both donor and acceptor have been extracted. Donor data is 

extracted from the region of the trajectory after the acceptor has bleached while acceptor data is 

measured from the region of the trajectory undergoing FRET.  The measured single molecule donor and 

acceptor spectra can be well fit by the bulk emission spectra of the individual dyes as seen in Figure S2.  
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There is very little variation in the spectra between individual molecules. Representative fluorescence 

decay curves extracted from the single molecule trajectory are shown in Fig. S2 along with single 

exponential fits to the decays including convolution with the instrument response function.  The 

lifetimes of both dyes are substantially longer when conjugated to the peptides than the reported 

lifetimes of the free dyes (Invitrogen). The results of these experiments confirm that the effect of the 

immobilization on the fluorophore characteristics is small and the single molecule distributions should 

described the bulk properties. 

 

Figure S2 – Dye spectra and lifetime measured at the single-molecule level using a 

multispectral confocal microscope. A sample single-molecule trajectory is displayed in 
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panel (a). Acceptor emission is red while donor emission is blue. Dashed vertical lines 

represent the time at which each dye photo-bleaches. The maximum-information analysis 

of the FRET region is shown in panel (b). Spectral data for the FRET region of the 

trajectory is displayed in (c). Dashed red line represents a fit of the bulk spectra to the 

spectra obtained from single-molecule experiments. The donor spectrum obtained from 

the region of the trajectory after the acceptor dye has bleached is shown in (d) and also is 

in excellent agreement with the bulk counterpart.  Acceptor lifetime information (f) is 

obtained over the wavelength range of 640-730 nm and is shown with the result of a 2 ns 

lifetime single exponential fit (in red) including convolution with the instrument 

response. The donor lifetime (g) is obtained from the region of the trajectory after the 

acceptor dye has bleached and is shown with the corresponding single exponential fit 

(lifetime 550 ps). 

IV. Single-­‐molecule	
  polarization	
  measurement	
  of	
  dye	
  

randomization	
  

Accuracy of absolute distances measured in FRET experiments relies on orientational randomization 

of the dyes, manifested as  in the calculation the of Förster radius (R0). This calculation assumes 

 for complete orientational randomization of the dyes thus deviation from this ideal case will 

results in misestimation of R0. It has been previously demonstrated that  approaches the 2/3 

theoretical limit assuming a randomization of dyes on a similar timescale to the inter-photon distance in 

single-molecule experiments [10, 11]. Single-molecule polarization modulation experiments have been 

used to demonstrate this assumption experimentally. Though, these results have been presented 

previously [1, 2], they are briefly summarized here.  The plane polarized excitation source was 

modulated by 90º on the millisecond time scale with a Pockel’s cell. Dyes with a freely randomized 

dipole should show constant emission intensity whereas dyes with a static or restricted dipole 

orientation should show polarization dependent emission intensity since the absorption of polarized light 

is dependent on the orientation of the dye dipole. An emission intensity dependence of polarized light 

direction would be manifested as intensity fluctuations on the same timescale as the Pockel’s cell 

oscillation and can be readily detected as significant positive correlation in intensity auto-correlation 

function analysis [2]. Representative intensity auto-correlation functions for these experiments are 

presented for acceptor-only labeled poly-L-proline-P24 specifically immobilized via streptavidin-PEG 

chemistry (Figure S3b) as well as nonspecifically spin-coated on a glass cover slip (Figure S3a). Spin-

coated samples have a static dipole orientation, which is manifested by significant correlation in their 
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intensity auto-correlation functions at the frequency of Pockel’s cell oscillation (dashed red lines in 

Figure S3). By contrast, specifically immobilized samples show no correlation in their intensity auto-

correlation functions indicating complete randomization of the dye on the experimental timescale. 

Polarization for the acceptor dye is presented since this dye is in closer proximity to the streptavidin and 

quartz substrate than the donor; however, similar results were obtained for polarization modulation 

experiments of the donor dye. Taken with the results of single-molecule spectral and lifetime 

measurements, these results demonstrate that dye properties are unaffected by the immobilization 

strategy used and that the Förster radius is consistent between bulk and single-molecule experiments. 

 

Figure S3 – Intensity auto-correlation functions of single-molecule polarization 

modulation experiments for acceptor-only labeled poly-L-proline-P24. The polarization of 

the excitation source is modulated by 90º at 1 kHz with a Pockel’s cell in order to 

demonstrate randomization of the dye orientation on the experimental timescale. (a) Spin 

coated proline on a glass surface showing significant auto-correlation due to a static dye 

orientation and (b) streptavidin immobilized proline on biotin-PEG passivated quartz 

showing no significant auto-correlation due to a randomized dye orientation. See text for 

further discussion. Vertical red lines are plotted at one and two times the Pockel’s cell 

oscillation frequency to aid visualization. Error bars were calculated according to [2]. 
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V. Steady-­‐State	
  FRET	
  in	
  trifluoroethanol	
  

The solvent trifluoroethanol (TFE) is known to reduce the frequency of cis-isomers in poly-proline 

peptides [12, 13]. ensemble FRET experiments were conducted in TFE in order to demonstrate that the 

ensemble and single-molecule FRET measurements of poly-L-proline in aqueous buffer are consistent 

with the model in which cis-isomers exist in an otherwise trans helix. Figure S4 shows the ensemble 

FRET data in TFE (green line) compared to the ensemble FRET data in aqueous buffer (red) and the 

mean distances from single-molecule experiments (blue). As in the main text Figure 6, the dashed black 

line represents the end-to-end distance expected from a perfectly rigid all-trans proline using a rise of 

3.12 Å per proline residue derived from the crystal structure [14]. The distances in TFE are consistently 

longer than those found in aqueous buffer as predicted. The error bars for poly-proline-P8 are large since 

this sample had a FRET efficiency of 0.99, thus the distance measurement is expected to be less 

accurate [5]. An R0 value of 65 Å was used for the FRET dye pair in TFE compared to a value of 51 Å 

in aqueous buffer. This value was calculated assuming the only changes in R0 were due to refractive 

index and quantum yield according to the relationship  where 

 is the fluorescence quantum yield of the donor in TFE and n is the refractive index. The 

quantum yield ratio is calculated by measuring the relative molar fluorescence in the two solvents. The 

refractive index for water is nref=1.3333 while that for TFE is nTFE=1.2907 [15]. 

 

Figure S4 – Comparison of steady-state bulk FRET in TFE (green line) and aqueous 

buffer (red line) to mean distances from single-molecule experiments (blue curve). For 

comparison, the predicted end-to-end distances for perfectly rigid poly-L-prolines have 

been included (dashed black line); no correction has been made for additional distance 

contributions expected from dyes and dye-linkers. 
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VI. The	
  freely	
  jointed	
  chain	
  model	
  

The freely jointed chain (FJC) model has been widely used to model polymers, denatured proteins, 

unstructured peptides and peptidyl segments, and so forth. In this model, a polymer chain is considered 

as composed of  rigid segments of length  joined together in which each segment can freely move 

around about the joint. The probability density function for finding a polymer of contour length  

exhibiting an end-to-end distance of  is [16], 

 . (S1) 

The mean distance is therefore, 

 . (S2) 

To fit the FJC model to the experimentally measured mean end-to-end distance, we consider the 

averaged effective length of the dye linkers ( ) added to the overall distance. The contour length of 

a poly-L-proline of  residues was estimated by  Å, where the increment per residue for the 

all-trans poly-L-proline II structure, 3.12 Å, was deduced from the crystal structure by Cowan and 

McGavin [14]. We used the fminsearch function in Matlab (R2007a) to fit  and  in Eq. (S2) 

for the following equality: 

 . (S3) 

Using data from Ref. [10], we found  Å and  Å. The comparison of fitted result 

with data is displayed as the green line in the inset of Fig. 4 in the main text. The optimal fitting 

parameters (  and ) were also used in Eq. (S1) to produce the distance distribution functions 

shown in Fig. 5 in the main text. 

 

VII. The	
  self-­‐avoiding	
  chain	
  model.	
  	
  
The self-avoiding chain (SAC) model is a more physically reasonable refinement of the FJC model, 

which takes into account excluded volume effects from the other monomers of the chain. Though this 

model has no closed form solution the mean end to end distance, , is known to obey the scaling 

relationship [17],  
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  (S4) 

where is the number of monomers,  and are critical exponents with values of 0.588 and 0.56 

respectively and , , and are model dependent constants. The distribution of end-to-end distances 

is show by des Cloizeaux to be [18], 

  (S5)  

where  is the end-to-end distance from Eq. (S4),  and have values of 0.2753 and 2.427 

respectively [17] and a and b are normalization constants whose values satisfy the relationship 

. 

Eq. (S4) was used to fit the mean experimental data in the same manner as the FJC model by 

comparing the mean fret distances to, 

 . (S6) 

The best-fit parameters were found to be A = 338 Å2, B = 1.63 × 10-8, C = 3.63 × 107, and =15.08 

Å. The normalization parameters in Eq. (S5) were found to be a = 3.766 and b = 1.272. 

VIII. The	
  worm-­‐like	
  chain	
  model	
  

The worm-like chain (WLC) model treats polymers as semi-flexible rods and has been used by 

Schimmel and Flory to describe the nature of poly-L-proline [19]. An analytical form for the end-to-end 

distance probability density of a WLC polymer has been found by Becker et al. [20], which reads, 

 , (S7) 

where a = 14.054, b = 0.473, and 

  

 
  
c = 1− 1+ 0.38κ −0.95( )−5( )−1 5

,  
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d =
1, κ < 1 8,

1− 0.177 κ − 0.111( ) + 6.40 κ − 0.111( )0.783( )−1

, κ ≥ 1 8,

⎧

⎨
⎪

⎩
⎪

 

,  with  being the contour length of the polymer and the persistence 

length. The expectation value of end-to-end distance was calculated by numerical integration of the 

radial distribution function, . 

 Similar to the FJC model, Eq. (S7) was used to fit Eq. (S8) to the experimentally measured mean 

end-to-end distances shown in Fig. 4 in the main text, 

 , (S8) 

where the adjustable parameters are the persistence length  and the linker length . The optimal 

fitting parameters are  Å and  Å. These optimized parameters were then used in 

Eq. (S8) to produce the red WLC distributions shown in Fig. 5 in the main text.  

The numerical value of the fitted  is similar to the persistence length of 23 Å obtained by Mattice 

and Mandelkern from bulk viscoelastic measurements [21, 22]. Indeed, in the previous work [10], 

 Å was used to constrain the fitting, for which very good results were also obtained. Sahoo et al. 

have made a comprehensive comparison of short (n = 1 –6) poly-L-proline results from different 

research groups and essentially obtained excellent fits for both the FJC (Gaussian model in their article) 

and the WLC models [23]. They have concluded that the persistent length is about 30 –70 Å. Doose et 

al. have also studied the end-to-end distances of short poly-L-prolines (n = 1 –10) using excited-state 

electron transfer. They have provided strong evidence that cis residues exist in the otherwise trans 

polymers. An independent work by Best et al. have also provided strong NMR evidence that cis 

configurations do exist in poly-L-prolines in water, albeit to a small yet to be determined extend [13]. In 

the concluding paragraph, Soose et al. have cautioned the applicability of the WLC model, which 

applies to semi-flexible rod but not segmented repeats. These results underscore the conflicting views 

regarding the nature of poly-L-proline, which has served as an important model for poly-peptide 

configurations. The inability to discriminate among different models further emphasizes the difficulty in 

resolving models (including those based on the same basic physical picture but having different 

persistent lengths) based on the apparent mean distances along. 
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In Fig. 6 in the main text, Eq. (S7) was used to fit the experimentally obtained end-to-end 

distribution functions in which the effective persistence length  and the apparent contour length  

were the adjustable parameters. 
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