

Figure S1 *C. glabrata* wild-type cells exhibit a shrunken cell morphology at 40°C in the presence of FK506 or CsA. Cells were grown overnight in YPD medium at 24°C, washed twice with dH₂O, diluted to 0.5 OD_{600} /ml in fresh liquid YPD medium in the presence or absence of FK506 (1 µg/ml) or CsA (100 µg/ml), and incubated at 24°C or 40°C with shaking at 250 rpm for 4 h. The *cna1* mutant strain was served as the control. The shrunken cells (marked with arrowheads) were only found at high temperature (40°C), but not at 24°C. The percentage of shrunken cells at 40°C in wild-type, FK506-treated wild-type, CsA-treated wild-type, and *cna1* mutant are 3.1 ± 1.4% (mean ± standard deviation; from three independent experiments), 27.1 ± 8.3%, 23.4 ± 9.3%, and 42 ± 11.3%, respectively. The images were taken at 100X. Scale bar = 10 µm.

Figure S2 TEM images of *C. glabrata* wild type (CBS138) and *crz1* mutant (YC182) cells grown at 40°C. *C. glabrata cna1* and *cnb1* could not be recovered from growth at 40°C for TEM analysis. Wild-type cells (**A**, **B**) display normal morphology and budding but *crz1* mutants (**C**, **D**) display aberrant cell membrane and morphology in comparison to wild-type cells. Scale bar = 500 nm (**A**, **C**) and 100 nm (**B**, **D**). First and second columns represent a global image of the cell and a higher magnification view of the cell membrane, respectively.

Figure S3 *C. glabrata* wild type and calcineurin mutant cells exhibit normal cortical actin patch structures. The incubation and staining of cells with Alexa fluor[®] 488 phalloidin are described in material and methods. The images were taken at 100X. Scale bar = 5 μ m.

Figure S4 Some *C. glabrata* clinical isolates exhibit temperature-sensitive growth when exposed to calcineurin inhibitors. Cells were grown overnight in YPD at 30°C, 5-fold serially diluted, and spotted onto YPD medium containing FK506 (1 μ g/ml) or cyclosporin A (CsA; 100 μ g/ml). Cultures were incubated at the indicated temperatures for 48 h. *C. glabrata* strains that are hypersensitive to calcineurin inhibitors at high temperature are indicated in dark red.

Figure S5 Virulence of *C. glabrata* calcineurin and *crz1* mutants in murine urinary tract and ocular infection models. **(A)** The fungal burden in the bladders was determined at day 7 after challenging mice with 3 x 10⁷ cells via urinary tract infection. Five female C3H/HeJ mice were inoculated per strain (except one *crz1* mutant with 4 mice due to the death of one mouse following anesthesia treatment). The *P* value between wild-type (WT) and mutants is shown. **(B)** Disease severity was scored for 8 days. *C. albicans* SC5314 and the PBS mock inoculation served as reference controls. Mice infected with *C. glabrata cna1, cnb1,* or *crz1* mutants, or the PBS control, exhibited normal corneas, and score curves essentially overlapped. Mice infected with wild-type *C. glabrata* CBS138 and *C. albicans* SC5314 strains exhibiting visible signs of keratitis were plotted.

A	CgRcn1 ScRcn1 CaRcn1	1 MDSLVTDTIILTSNERDITGQEILPILASWFEDNVLSNIQVLPANPIQLL MGNIITDTIIITSDKCDIVDNDNVERIQVWLSKNILRKFQINENEPLQLI MPRKPTNTLIITNIDDSLLSNPEPIISLLGDQPYMIELI
	CgRcn1 ScRcn1 CaRcn1	LLKNFKRCLIICPDHAVSNAVMQKLKLKVPLP ILKRFKRILLICPSHDISQHVMDASRALEME VLMKFKRILLICQTSKIATKTKTFLLNQWETTTIGGGGGGGGGGGGGGGGGGGGGGG
	CgRcn1 ScRcn1 CaRcn1	DLIFN <mark>YS</mark> ITDSQNNSSVKKDYLKVPEHQRLFLIS NFNFS <mark>YSLQD</mark> GQRNLTKQYLKVPESEKMFLIS SISIS <mark>YS</mark> LKDNSRILDPEEEDEEDGKDGGGKGGRFLDIPKDLEIKR <mark>FLIS</mark>
	CgRcn1 ScRcn1 CaRcn1	PPSSPPPEFD-YSKCEDKPSFKTHAHQPEKILRQAT PPASPPPEFD-FSKCEDAPQRHIQSHIQQDQQQRLEASQLLPNNPDKNNN PP <mark>ASP</mark> HS <mark>EWD</mark> DWD <mark>KVE</mark> EGPNETNIHDYLWEKLKTH
	CgRcn1 ScRcn1 CaRcn1	-SFVAIESQV <mark>GTITVN</mark> TCDDYN-NGGPGLEG-VR <mark>TALPPK</mark> SIFDDI <mark>D</mark> E- GTFTLLKSKV <mark>GAITID</mark> RCPTNDGNGQMQLADHVK <mark>TAFPPK</mark> SIFDTDDDD ENEEKEKDSGISEDDDGCES-IKKVEL <mark>PK</mark> IVLNATDN-
B	CgRen2 ScRen2 CaRen2	¹ SKWPDTLEKKLFKEKYP MANQKQMRTQILITDIPSGKFTSKWPTQLEKTLFKEQFP MSTSPKLSEITIPKTSLIISNLNKEDFVKPSSSQDSQSTKLISKNLALVD
	CgRcn2 ScRcn2 CaRcn2	QYRKHLQYFTPLPFLDRVIIILDDEAATMEIYEYLQKEE NLQSHLQYYTPLPFLNRIIIFDNEDDTLQVFKFLQ-EL QIKLKVLNFEDDIAS <mark>H</mark> ISHWSN <mark>LPFL</mark> SRVI <mark>VI</mark> FQNETTAKKIFEF <mark>L</mark> TKEL
	CgRcn2 ScRcn2 CaRcn2	PSVVNDKS-IKLYLTES <mark>LL</mark> SNRF-R <mark>S</mark> RSMGESSPEDS <mark>NAASNGSADSN</mark> SA LAKENSGP-MKLFVTESLLNNQHPRSRSTDDAVSLQDNNLALLEDHRN AKFDDHYSYIKIHLQENLLQKSK-S <mark>S</mark> DNLHDCQNEKLNVTKSLNNFRNFH
	CgRcn2 ScRcn2 CaRcn2	IG-DKPIL <mark>SLDTNP</mark> VSTGINVQ-SLAMGSPSLSPDRRTSLESPTLLKFAN KPLLSINTDPGVTGVDSS-SLNKGGSSLSPDK-SSLESPTMLKLST NDPKNEFTSEYVEPEPAKFNVYNDLANLGIDLSQYN-SAEQLEELKQSQQ
	CgRen2 ScRen2 CaRen2	DEKAHLYREPLPTKSDSSKDESSPG <mark>T</mark> TE DSKPFSYQEPLPKLSRSSSSTSNLSLNRSSQTSLPSQLENKDKSASGTKC DQNQDQNQKEVKNSRDGNSHSNTNSLPVQLGRRKST <mark>T</mark> KT
	CgRcn2 ScRcn2 CaRcn2	LHKSQKLTVSTDAVNKMASNTPPPL <mark>SP</mark> SITVDEFFN LFASKPLGLTIDTSTRSNAASCTENDVNATASNPPKSPSITVNEFFH LFKPELKLNTTAKPGLLNEKQKEQDFVS <mark>SP</mark> TITLDETF-

Figure S6 Pairwise alignment of calcineurin regulators from *C. glabrata, S. cerevisiae*, and *C. albicans*. Multiple sequence alignments are depicted using ClustalW software (<u>http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_clustalw.html</u>). The conserved amino acids and TxxP motif are purple- and green-shaded, respectively. The PxlxIT-like motif [P/G]x[I/V]x[I/V/L][E/D/N/H/T] is blue-shaded in panel A (depicting Rcn1 alignments), and underlined in panel B (depicting Rcn2 alignments).

Figure S7 Synteny analysis of Rcn1 and Rcn2. NCBI tBLASTx (Altschul *et al.*, 1997) and Artemis programs (Carver *et al.*, 2008) were used to conduct synteny analysis. Red and blue blocks (lines) represent forward and reverse matches of the DNA sequence (tBLASTx based) among *S. cerevisiae* (*Sc*), *C. glabrata* (*Cg*), and *C. albicans* (*Ca*).

REFERENCES

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25: 3389-3402.

Carver, T., Berriman, M., Tivey, A., Patel, C., Bohme, U., Barrell, B.G., Parkhill, J., and Rajandream, M.A. (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. *Bioinformatics* **24**: 2672-2676.

Table S1 PCR primers

Primer	Use	Sequence $(5' \rightarrow 3')$
JC17	SAT1 flipper	GGCCCCCCTCGAGGAAGTT
JC18	<i>SAT1</i> flipper	GCTCTAGAACTAGTGGATCT
JC49	5'NCR of CNA1	ACACATTATGCAACATCAA
JC50	5'NCR of CNA1	AACTTCCTCGAGGGGGGGGCCATTGTCGGTGCCAACAAGAA
JC51	3'NCR of CNA1	AGATCCACTAGTTCTAGAGCTTTCATCTCAAGAGCAAAA
JC52	3'NCR of CNA1	TTGAACGTTACTGGGGTTGA
JC55	CNA1 ORF	AAGACAGACGCAGAGCTGAAT
JC56	CNA1 ORF	GACATTCGTTTTTGAAAGTGA
JC48	Disruption confirmation	ACAATCAAAGGTGGTCCT
JC81	Disruption confirmation	AACTTCCTCGAGGGGGGGGCC
JC122	Disruption confirmation	CACACTTTTATTGTTGTCGCC
JC134	5'NCR of CNB1	ACACCATAAAAAGTCCCAGCG
JC135	5'NCR of CNB1	AACTTCCTCGAGGGGGGGGCCTTCCCTTGATTAATACTTCTC
JC136	3'NCR of CNB1	AGATCCACTAGTTCTAGAGCGGCAAGAAACTTAACGAGGA
JC137	3'NCR of CNB1	TCAACTTCAACAGAGTAGCTC
JC138	CNB1 overlap	CAAACGTTTTGTTGGATGGC
JC139	CNB1 overlap	CAACACTTTCGGAGAGAGAT
JC140	CNB1 ORF	ATGGGAGCTGCACCATCTAAA
JC141	CNB1 ORF	TACTGAAGGGTCAGGCTCTTT
JC142	5'NCR of CRZ1	TAAACCCATGGAGTGTGGAA
JC143	5'NCR of CRZ1	AACTTCCTCGAGGGGGGGGCCGCTGAATATTGCAAAATCTTG
JC144	3'NCR of CRZ1	AGATCCACTAGTTCTAGAGCCACAAACCTCCAGTATTTTT
JC145	3'NCR of CRZ1	TCAAGTCTTAGAGATTCACCA
JC146	CRZ1 overlap	TAATGAAAGCAATGCCAA
JC147	CRZ1 overlap	GCAACAAATTTCTTGACTGGT
JC148	CRZ1 ORF	TGGGCGATAACGAAGAGGATA
JC149	CRZ1 ORF	CTCAAGTTATTTGAAGATGCA
JC441	5'NCR of <i>RCN2</i>	CCGTCGGGCTTCTTTAAAT
JC442	5'NCR of <i>RCN2</i>	AACTTCCTCGAGGGGGGGGCCTTGTGCTGCTATATCTGCGTG
JC443	3'NCR of <i>RCN2</i>	AGATCCACTAGTTCTAGAGCGGGGGATTGCTTCTATGAAGCT
JC444	3'NCR of <i>RCN2</i>	AAATTGCTCACGGAGTCACCT
JC445	RCN2 overlap	CTCGGGATCATTGCTCAATA
JC446	RCN2 overlap	AACGGGTCTAGTCGAGGACTT
JC453	<i>RCN2</i> ORF	AAAGGATCCATGAAGACACAGGTATTGA
JC454	<i>RCN2</i> ORF	AAAGGGCCCCTAGTTAAAGAACTCATCGAC
JC459	5'NCR of <i>RCN1</i>	CGAGTGTTTATTATTCGGG
JC460	5'NCR of <i>RCN1</i>	AACTTCCTCGAGGGGGGGGCCTCCGATAAGAATGTTCAGATG
JC461	3'NCR of <i>RCN1</i>	AGATCCACTAGTTCTAGAGCGTACCTATCATGGTTGGTTAA
JC462	3'NCR of <i>RCN1</i>	TGTGATCTGCTCGATTTTACC
JC463	<i>RCN1</i> overlap	CCATTAACTATAGACGTTGCT
JC464	RCN1 overlap	AACAGCACATAGAAAGATCAA
JC465	RCN1 ORF	ACTCACGTCTAATGAAAGGGA
JC466	<i>RCN1</i> ORF	ATTTTGGTGGCAATGCCGTT
JC370	qPCR ACT1 ORF	GTACCACCATGTTCCCAGGT
JC371	qPCR ACT1 ORF	ACCACCGATCCAGACAGAGT
JC437	qPCR <i>CNA1</i> ORF	ACAGAGCGCTGTTCCTGATT
JC438	qPCR <i>CNA1</i> ORF	TGGTTGGGAAGTCCTGTTTT
JC439	qPCR <i>CRZ1</i> ORF	GGGCGATAACGAAGAGGATA

JC440	qPCR <i>CRZ1</i> ORF	TACATCGCCATTCATGCTGT
JC431	qPCR <i>YPS5</i> ORF	CAAGATCAGCGATGAACTAACG
JC432	qPCR <i>YPS5</i> ORF	TACTTGCGCTGACAAACCAC
JC435	qPCR <i>RCN2</i> ORF	CAGTACTTCACGCCGCTTC
JC436	qPCR <i>RCN2</i> ORF	CGATAACAGGGACTCCGTCA

Underline indicates sequences complementary to the SAT1 flipper

		Fold change	
ORF	Gene	(FK506	Functional description
		/ WT)	
CAGL0M12947g		10.2	Unknown
CAGL0M01760g	PDR5	9.5	Plasma membrane ATP-binding cassette multidrug transporter
CAGL0M09713		5.3	Unknown
CAGL0F02717g	PDR15	2.8	Plasma membrane ATP-binding cassette multidrug transporter
CAGL0E06688g		2.3	Unknown
CAGL0K09702g		2.2	Unknown
CAGL0C03223g	SDH2	1.9	Iron-sulfur protein subunit of succinate dehydrogese
CAGL0M09735g	MEC3	1.9	Damage and meiotic pachytene checkpoint protein
CAGL0M01870g		1.8	Unknown
CAGL0G00242g	YOR1	1.8	Plasma membrane ATP-binding cassette multidrug transporter
CAGL0C03289g	YBT1	1.6	Bile acid transporter
CAGL0K12958g		1.4	Unknown
CAGL0B01947g	INO2	1.3	Heteromeric Ino2/Ino4 basic helix-loop-helix transcription activator
CAGL0L09603g	DSN1	1.3	Important for chromosome segregation
CAGL0C04433g	MCD1	1.3	Required for sister chromatid cohesion in mitosis and meiosis
CAGL0I04180g	CUP2	0.8	Copper-binding transcription factor
CAGL0M09889g		0.7	Unknown
CAGL0J08184g	ALP1	0.7	Arginine transporter
CAGL0G06358g	SNC1	0.7	Vesicle membrane receptor protein
CAGL0A01089g		0.6	Unknown

 Table S2
 Genes induced by FK506 but not by calcineurin mutation.