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ABSTRACT An approach is described for the estimation
of the number of rare variants in the population from the
number in a sample drawn at random from the population. This
quantity is used to derive an estimate of the mutation rate. The
data required are the number of rare variants in the sample and
the distribution of offspring within a population of well-efined
size with little or no immigration. Application of this approach
to data on 28 loci assayed in the Yanamamo, a tribe of South
American Indians, yields an average mutation rate of 0.1 0.2
X 10-5. Determination of this figure is subject to several as-
sumptions concerning the nature of the rare variants and the
structure of the population. Violation of these assumptions will
generally result in the underestimate of the true mutation
rate.

A variety of approaches, both direct and indirect, have been
used in the past to estimate mutation rate in human populations.
Although direct approaches are most reliable, they are practical
only for dominant or semidominant mutations and where the
acquisition of extremely large samples is both possible and
feasible. Consequently, indirect approaches have been used
predominantly in the past because the data for such approaches
are easier to acquire and often mutation rate estimates can be
obtained whatever the phenotype of the heterozygote. The most
common and most widely used indirect approach postulates
an equilibrium between mutation rate and the effect of natural
selection, and can be used for both dominant and recessive
autosomal mutants as well as for sex-linked mutants. However,
its utility is limited by a number of restrictive assumptions that
are seldom met in practice (1).
A criticism that can be applied equally to the direct and in-

direct methods described above is that they can measure only
one type of mutational event, mutation of the wild-type allele
to a mutant form with a clearly defined phenotype (such as
complete dysfunction). This clearly defines a subset of all the
mutational events occurring at a given locus and, thus, any es-
timate obtained by these approaches must be considered to be
an underestimate. Such estimates may be useful for the con-
sideration of the impact of particular genetic traits, but they
are not so valuable for a general consideration of the effect of
mutations in human populations.
A completely different approach was suggested several years

ago by Kimura and Ohta (2), and first applied by Neel (3).
Modifications of this procedure have recently been proposed
by Nei (4). This estimate is based on the following formula,
which describes the number of different neutral alleles in a
population in terms of their rate of production due to mutation
and their rate of loss due to random events in a finite population.
The relationship is

2NA =K/t0, [1]

where N is the population size, g is the mutation rate, K is the
number of alleles in the population, and to is the expected
number of generations an allele remains in the population. The
utility of this estimate is limited by the ability to detect and
distinguish genetic variants by such biochemical screening
techniques as electrophoretic mobility. Although this approach
will still only identify a subset of all mutational changes, the
number of mutational events identified will clearly be larger
than in the approaches described above. In addition, this ap-
proach can be easily modified to incorporate estimates of the
expected proportion of mutations missed by the particular
screening technique employed.

In spite of the appealing simplicity of this formula, there are
two problems involved in its use for estimation of mutation rates
in human populations. (i) The number of alleles in the popu-
lation is generally unknown though the number of alleles in the
sample may be easy to obtain. (ii) The expected time before
extinction of an allele is difficult to estimate if the population
has any structure. In this paper we estimate the expected
number of alleles in a population from the observed number
of alleles in a sample and, using this estimate, we describe a
procedure for calculating mutation rates.

MODEL AND ESTIMATION PROCEDURE
A population of finite size will possess a characteristic number
of alleles at a given locus, with a characteristic distribution of
frequencies or numbers of copies of these alleles. The number
of alleles present as singletons in any one generation can be
described by the following simple equation,

[2]Kg(l) =2Nt+K ,g(j)Pjl,
i

where g(j) is the expected relative frequency of alleles present
as j copies in the population and K is the expected number of
alleles in the population. Pj1 is the probability that an allele is
present in i copies in the present generation given that it is
present in j copies in the previous generation; that is,

Pji = Pr[Xn = i|Xm-i = j], [3]
where Xm is the number of copies of an allele in generation m.
We assume here only that an infinite series of alleles can be
generated at this locus; namely, every new mutation is assumed
to result in a novel allele. This is commonly known as an infinite
alleles model. To use Eq. 2 to estimate mutation rate, it is nec-
essary to assume also that the distribution of the relative
frequencies of the alleles is constant from one generation to the
next. It should be noted that this assumption is less restrictive
than the assumption of a comprehensive equilibrium at which
all population parameters are constant. For example, the rela-
tive allele frequencies may remain constant even though pop-
ulation size is increasing and the numbers of copies of the alleles
are changing.
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Estimation of the mutation rate by Eq. 2 requires knowledge
of g(j), Ps, and K, and we now describe procedures to obtain
estimates of these parameters.

Estimation of P,1. Although only Pji is specified explicitly
in Eq. 2, it will be necessary to obtain Ppi for calculation of g(j)
described in the next section. In general, estimation of the
mutation rate will involve the determination of Ppj for i,j = 1,
2,. .., 2N, where N is the population size. It is clear that for a
population of any appreciable size, the number of values of Pjp
to be determined will become impossibly large. However, we
take advantage here of the consideration that the majority of
alleles will be present in very low frequency if 4NeM << 1, where
Ne is the effective population number (5, 6). Thus, providing
this inequality is true, we can focus attention only on the rare
variants (2) in the population. This simplifies our estimation
procedure considerably, as we only need to calculate the Ppj for
i,j small. For the purposes of this treatment, we consider rare
alleles to include the rare variants and private polymorphisms
defined in the following paper (7), i.e., alleles whose frequency
in the population is small compared to the population size
(7).
Under some circumstances, for example, when detailed

pedigree data are available for the population, it may be pos-
sible to determine Ppj directly. In the absence of such infor-
mation, we must proceed indirectly and calculate Pp from the
offspring distribution.

If the distribution of offspring A(x) for members of the
population is known, then, assuming Mendelian inheritance,
we can deduce the probability mass function for the number
of copies produced by a given allele, B(x), to be

allele frequencies (g(j)), and P is the matrix of transition
probabilities.

Since the components of G are relative frequencies of rare
alleles, it follows that their sum must equal one,

1'G = 1, [9]
where 1' is the vector (1, 1, 1..... 1). We can easily modify Eq.
8 to incorporate this constraint, namely,

1 = 1'(1 -P')-'M. [10]
We are therefore able to determine the first element of M,

2Ng/K, and thus estimate g(j) from Eq. 8.
Estimation of K. In general, the sample size will be smaller

than the population size and, thus, only the number of alleles
in the sample (k) will be known. If the population is sampled
without replacement, the probability of not detecting an allele
that occurs as j copies in the population will be

(2N-j)

g(j)
2N(
\2nJ

[11]

where n is the sample size, and N is, as before, the size of the
population. Thus, the probability of not detecting an allele in
the sample that does occur in the population is

12N-jA
2N (2N/i
E g(j)
j=l (2N

\2n/

[12]

B(x) = :(r) ()tA( ). [4]

The probability generating function corresponding to B(x) is
co

f(s) = E B(x)sx
r=O [5]

If we assume that the rare alleles are neutral in effect, the
number of copies produced by each rare allele will be inde-
pendent of each other, each with the same probability gener-
ating function f(s). Then it follows by standard statistical pro-
cedures that

Pi = Pr[X =|= iIXm-i= j] = coefficient of si e [f(s)]J.
[6]

In most situations the probability generating function f(s)
will be unknown, since A(x) will be unknown. However, it is
possible to obtain reliable estimators for Pp when a good esti-
mate of A(x) is available.

Estimation of g(j). Although it is possible to determine the
relative frequencies of the rare alleles in the sample from the
data, we cannot obtain the relative frequencies g(j) of the alleles
in the population so simply. We are restricted to the following
procedure, which uses the transition probabilities calculated
earlier.

Eq. 2 describes the expected relative frequency of alleles
present as singletons in the population. In a similar fashion, it
is easy to see that the expected relative frequency of alleles with
i copies in the population will be

E g(j) Pp = g(i).
j=l

[7]

We can combine Eqs. 2 and 7 and write them in matrix form
in the following manner.

G = (I- p')-I M 1[8]
whereM = (2NgIuK, 0,0.... 0), G is the vector of relative rare

Therefore, the expected number of alleles in the population
is

E (kIK, 2N) = K{1 _2g(j) ( . [13]

By consideration of the method of moments type of estimation,
a suitable estimator of K is therefore

k [14]

1-E Ag(j) (1 _ f)j
where f = n/N. Estimation of ,t follows easily from Eq. 10.

Extension of Model for Expanding or Contracting Popu-
lations. In the approach described above we have considered
that population size is constant from generation to generation.
It should be pointed out that this assumption is not necessary
for the valid estimation of mutation rate using this approach.
Apart from the assumption of the infinite alleles model, the only
assumption necessary is that the distribution of relative fre-
quency of rare alleles, g(j), is constant from generation to
generation. If the population has been changing in size at a
constant rate for a number of generations, this assumption will
still be reasonable. An estimate of mutation rate may then be
obtained if the growth rate per generation is known. Eq. 2 can
be modified to include the effect of an increasing population
size as follows,

Kmg(l) = 2Nm-l AL + Km E g(j)P1l,
i

[15]

where population size in the previous generation, Nm-I, can
be calculated easily from a knowledge of the growth rate. This
approach to the estimation of mutation rate can be considered
to be an extension of that of Lea and Coulson (8).
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APPLICATION OF MODEL
Data that are appropriate for calculation of mutation rate in
this way must satisfy two main conditions: (i) the population
must be defined and finite in size, (ii) there must be no immi-
gration to the population. It is clear that acculturated popula-
tions, which have ill-defined population sizes and extensive
immigration rates, do not meet these criteria. However, data
from unacculturated tribal populations can be considered in
many cases suitable for this approach. One of the best studied
tribal populations is that of the South American Indian tribe,
the Yanamamo, living in the area defined by the border be-
tween Venezuela and Brazil. This tribe has been the subject of
a series of biological, medical, and sociological investigations
by Neel and his group (9) over the past 17 years. Population size
of the tribe is well defined, and immigration rates from either
Western civilizations or from neighboring tribes have been
judged to be almost nonexistent (10). We therefore use data
from this tribe to illustrate the calculation of mutation rate.
These data are described in more detail in the following paper
by Neel and Rothman (7), which presents estimates of mutation
rate using this and two other approaches, to data on 12 Amer-
indian tribes.
To calculate the mutation rate we must first estimate the

transition probabilities, P~j, the distribution of the number of
copies of rare alleles, A(j), the population size for a single gen-
eration, N, and the number of alleles in the population, K. The
estimation of the distribution of the transition probabilities is
probably the most involved. Normally, accurate determination
of Pj1 may be quite difficult, if not impossible, if the population
of study has any appreciable structure. However, we are only
concerned with the distribution of rare alleles in the population;
under these circumstances we make use of the results of Li et
al. (11), which show that the number of copies produced by
each rare allele is distributed approximately geometrically.
Thus,

1 - b ;j0

A(x) = fr'l;j.1 [16]

where b and c are parameters of the geometric distribution. For
estimation of the parameters of the geometric distribution we
use the data on family size distribution for the Yanamamo given
by Neel and Weiss (10). Thompson and Neel (12) estimated the
parameters of this geometric distribution, yielding values of 1
= 0.34 and c = 0.40 for the Yanamamo data. Practically
identical estimates of b and c (1 =0.34,c= 0.41) were obtained
(11) when account is taken of infanticide (12), a practice extant
in the Yanamamo.
By Eq. 6 the transition probabilities can be calculated from

the estimates of b and c to be

Pfi = he 1h( )1- b >bhoi-h. 1l71

The expected relative frequency of rare alleles present as j
copies in the population, g(j), can be calculated from Eq. 8 and
the constraint that F1g(j) = 1. Table 1 shows this distribution
for i, the number of copies, up to 30. The dimensions of the (I
-p') matrix were chosen empirically to be (30,30). The crite-
rion for this choice was that our estimate of K remained con-
stant to two significant figures over the range (25,25)-
(30,30).

Population size in the Yanamamo has been estimated to be
15,000 (10). However, this figure includes individuals of both
prereproductive age and postreproductive age and, therefore,
includes individuals from more than one generation. Consid-

Table 1. Estimated distribution of expected relative frequency
of rare alleles with exactly i copies for the Yanamamo population

i g(i) i g(i) i g(i)

1 0.425 11 0.016 21 0.004
2 0.130 12 0.013 22 0.003
3 0.087 13 0.012 23 0.003
4 0.063 14 0.010 24 0.003
5 0.048 15 0.009 25 0.002
6 0.038 16 0.008 26 0.002
7 0.031 17 0.007 27 0.002
8 0.026 18 0.006 28 0.001
9 0.021 19 0.005 29 0.001
10 0.018 20 0.005 30 0.001

ering the reproductive span in the Yanamamo to be between
the ages of 15 and 40, 48% lie within this cohort (10). The esti-
mate of population is adjusted to reflect this, and is taken to be
7200.

Finally, estimation of K, the number of rare alleles present
in the population, follows simply from Eq. 14. Twenty-eight
loci were assayed, and the estimate of K obtained for the Ya-
namamo is 0.0995 rare alleles per locus.

Using the values of N, K, and R(j) we calculate the average
mutation rate per generation per locus to be 0.145 X 10-5. If
we consider the Yanamamo as a growing population, it is more
suitable to consider the extension of the model described earlier.
Considering that the growth of this tribe is 0.75% per year (10),
and assuming the generation time to be 25 years, our estimate
of mutation rate becomes 0.175 X 10-5. It can be seen that this
value differs insignificantly from the estimate obtained as-
suming a constant population size. The Yanamamo yield the
lowest mutation rate of all the 12 tribes considered in the fol-
lowing paper (7).

DISCUSSION
We have presented here an approach to the estimation of
mutation rate that is particularly suitable for well-defined
populations of finite size with no immigration. A number of
assumptions must be made for this estimation procedure to be
valid. (i) Each allele generated by mutation is uniquely iden-
tifiable. (ii) The distribution of the relative frequencies of rare
alleles is constant from one generation to the next. (iii) The
distribution of number of rare allele copies generated is known.
For the Yanamamo we assume this distribution to be geometric.
(iv) The rare alleles are neutral in selective value. (v) The
sample is drawn at random from the population. Some of these
are common to other estimation procedures. At this juncture
it is appropriate to consider each of them in detail.

(i) Infinite Alleles Model. This assumption requires that each
rare allele represents one mutational event. The most wide-
spread biochemical technique used to identify mutant alleles
is electrophoresis. Since an electrophoretic mobility class can
represent a heterogeneous collection of alleles (see, e.g., refs.
13 and 14), it is possible that the rare alleles observed in the
Yanamamo are polyphyletic in origin. However, we regard this
as extremely unlikely. Two pieces of evidence support this
conclusion. First, the data represent the total number of rare
alleles seen for 26 different loci. From simple statistical con-
siderations, the low number of alleles seen for this number of
loci makes a polyphyletic origin extremely improbable. Second,
the rare alleles found in Amerindian tribes often have a highly
nonrandom distribution over the whole tribe and are usually
restricted to a small geographical area encompassing small
numbers of villages. An allele that is heterogeneous would not
be expected to have such a nonrandom geographical distribu-
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tion. Any bias introduced by our inability to detect a poly-
phyletic origin for rare alleles will tend to underestimate the
true mutation rate, since the actual number of rare alleles will
be larger than the observed number.

Although we can confidently assume that the rare alleles are
homogeneous, we cannot make the same assumption for the
common alleles. The technique of electrophoresis does not
detect all genetic variation (13, 14) at a locus, and we expect that
cryptic rare alleles are included in the common allele classes.
Thus, only a proportion of the rare alleles will be detectable,
and this will serve to underestimate the mutation rate. We re-
gard this to be the most serious bias inherent to our model.

Recently it has become apparent that electrophoretic mo-
bility at one locus may be influenced by variation at a second
modifying locus. Evidence from Drosophila (V. Finnerty and
G. Johnson, personal communication) suggests that modifying
loci will increase the apparent number of electrophoretic var-
iants for a locus. In general, this is also a potential source of bias
in the estimation of mutation rates by the method described in
this paper. At present we have no way of evaluating the im-
portance of this possible effect.

(ii) Constancy of Distribution of Allele Relative
Frequencies. For unacculturated tribal populations the equi-
librium assumption is probably reasonable, as most evidence
indicates that the structure and environment of the tribes have
remained virtually unchanged for many generations. We have
no way of critically evaluating the verity of this assumption, and
so we consider here the possible biases introduced by the lack
of an equilibrium. If the population has been growing or di-
minishing steadily in size, distribution of relative frequencies
of rare alleles may still be constant in the population. The
mutation rate may then be estimated without bias from Eq.
15.
However, a bias in the mutation rate estimate will be intro-

duced if the population has recently undergone a sudden in-
crease or decrease in size. In such cases the matrix of Psjs cal-
culated from the offspring distribution will reflect only the rate
of growth occurring in the present generation. For example,
if the population has experienced a sudden increase in growth,
the estimate of mutation rate will be biased downward. There
is indication that the population size of the Yanamamo has re-
cently increased (10), and this may account for the low mutation
rate estimate in comparison to other South American tribes
(7).

(iii) Distribution of Rare Allele Copies. The construction
of the matrix of transition probabilities for the Yanamamo ex-
ample relies on the assumption that the distribution of allele
copies generated every generation is geometric. This assump-
tion is justified theoretically and by the results from simulations
(11) which show that the number of allele copies in the Yana-
mamo closely fits a geometric distribution. However, this fit
was only approximate and so it is worthwhile to consider here
the sensitivity of our mutation rate estimate to the character-
istics of this distribution. Results (11) for the Yanamamo show
that when the number of copies is large, the observed number
of copies produced is consistently slightly higher than that
predicted by a geometric distribution. Correction for this effect
would increase the mutation rate. Alternatively, in other pop-
ulations it may be that the distribution of allele copies ap-
proximates a Poisson distribution. In this case, the mutation rate
would be overestimated using the geometric model.

(iv) Neutrality of Mutant Alleles. The distribution of the
relative frequencies of rare alleles must be estimated from the
offspring distribution on the population. This approach assumes
that the behavior of all alleles is equal and neutral. Such an as-
sumption is common to the earlier approach for estimating
mutation rate (2). Some of the rare mutant alleles are probably

selected against. If these are recessive to the normal allele in
selective effect, as is likely, their selective disadvantages will
never be manifested, as their rarity determines that they will
always occur with a normal allele in a heterozygote. Thus, most
of the mutant alleles can, for practical purposes, be considered
to be neutral in effect and to act independently of each other.
Any manifestation of selection against the mutant alleles will
render our estimate of mutation rate an underestimate, since
the mutation rate required to maintain a set of deleterious alleles
in the population will be higher than that required for a set of
neutral alleles given the same frequency distribution.

(v) Randomness of Sample. It is clear that in this approach
to the estimation of mutation rate, as in so many other statistical
procedures, the sample must be drawn at random from the
population. However, it is equally clear that this requirement
is rarely, if ever, met in sampling tribal populations. For the
Yanamamo data, used here as an example, the sample is defi-
nitely nonrandom. This tribe was sampled by villages, and in
any one village, villagers tended to be sampled in family groups
(9). The effect of this nonrandomness is to underestimate the
mutation rate. From a consideration of Eq. 14, it can be seen
that the estimate of the number of alleles in the population, K,
is a function of f, the ratio of sample size to population size. The
true random sample is smaller than the actual sample. Conse-
quently, the estimate of the number of alleles in the population
is underestimated and this, in turn, will lead to an underestimate
of the mutation rate.

It is appropriate to mention here a further effect of the
sampling procedure that also serves to underestimate mutation
rate. The mutation rate estimated for the Yanamamo is an av-
erage over 28 loci. However, the sample size for each locus
varied greatly. This variation was in part related to the difficulty
of assaying some enzymes and sensitivity to storage between
the time the sample was taken and its arrival in the laboratory.
For example, the sample size for the 2,3-diphosphoglycerate
mutase locus was 149, while sample size for the albumin locus
was 3504. In our calculations we have used the arithmetic mean
sample size for all loci. Although this simplification is necessary
to render the calculations tractable, it also biases the estimate
of mutation rate downwards. Eq. 14 shows that K is a nonlinear
function of sample size. As sample size is increased, the rate of
increase of the estimate of the number of alleles in the popu-
lation (k) is reduced. Thus, in any average estimate, unusually
low sample sizes will contribute disproportionately to K. The
use of the average sample size to calculate K reduces the con-
tribution of the small sample sizes of particular loci and there-
fore biases the estimates of K and mutation rate downward.
Conclusions
We have described here an approach for estimation of mutation
rate which is based on a determination of the number of alleles
in a population sample and on the distribution of the number
of offspring in the population. Both statistics are comparatively
easy to obtain. The estimate of mutation rate obtained by this
approach is subject to a number of biases. However, most of the
biases described above have the effect of underestimating the
mutation rate.
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