Supplementary Information for Wallace *et al.*, Statistical colocalisation of monocyte gene expression and genetic risk variants for type 1 diabetes

Contents

Equivalence of Fieller and maximum likelihood test statistics	2
Posterior distribution of θ	3
Justification of a flat prior for θ	4
Members of the Cardiogenics Consortium not included in the manuscript	5
Confirmation of the $CD226$ monocyte eQTL	26

Supplementary Figures

1.	A bimodal log-likelihood	6
2.	Sample size affects equivalence of the asymptotic and posterior predictive \boldsymbol{p} values	7
3.	Effect of k in prior for θ on posterior predictive p values $\ldots \ldots \ldots \ldots \ldots$	8

Supplementary Tables

1.	T1D associated regions	9
2.	GHS eQTL signals in T1D regions	11
3.	Detailed colocalisation results	15

Equivalence of Fieller and maximum likelihood test statistics

We being by reparameterising the model in terms of $\theta = \tan^{-1}(\eta)$, with the null hypothesis expressed as

$$H_0: \beta_1 = \beta \cos(\theta); \beta_2 = \beta \sin(\theta).$$

Then

$$\mathbf{b}_1 \sim N(\boldsymbol{\beta}_1, \mathbf{V}_1) \qquad \qquad \mathbf{b}_2 \sim N(\boldsymbol{\beta}_2, \mathbf{V}_2),$$

 $-2\log L(\mathbf{b}1, \mathbf{b}2|\beta, \theta) = (\mathbf{b}1 - \beta\cos(\theta))^T \mathbf{V}_1(\mathbf{b}1 - \beta\cos(\theta)) + (\mathbf{b}2 - \beta\sin(\theta))^T \mathbf{V}_2(\mathbf{b}2 - \beta\sin(\theta))$

and the maximum likelihood estimate of $\pmb{\beta}$ is

$$\widetilde{\boldsymbol{\beta}} = \left(\cos^2\theta \mathbf{V}_1^{-1} + \sin^2\theta \mathbf{V}_2^{-1}\right)^{-1} \left(\cos\theta \mathbf{V}_1^{-1}\mathbf{b}_1 + \sin\theta \mathbf{V}_2^{-1}\mathbf{b}_2\right)$$
$$\mathrm{E}(\widetilde{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$
$$\mathrm{Var}(\widetilde{\boldsymbol{\beta}}) = \left(\cos^2\theta \mathbf{V}_1^{-1} + \sin^2\theta \mathbf{V}_2^{-1}\right)^{-1} = \mathbf{V}_+, \tag{1}$$

so that

$$-2\log L = \mathbf{b}\mathbf{1}^T \mathbf{V}_1^{-1} \mathbf{b}\mathbf{1} + \mathbf{b}\mathbf{2}^T \mathbf{V}_2^{-1} \mathbf{b}\mathbf{2} - 2\boldsymbol{\beta}^2 \mathbf{V}_+ \boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{V}_+ \boldsymbol{\beta}.$$
 (2)

Using a profile likelihood approach, we replace $\boldsymbol{\beta}$ by $\stackrel{\sim}{\boldsymbol{\beta}}$ to obtain

$$-2 \log L = \mathbf{b} \mathbf{1}^{T} \mathbf{V}_{1}^{-1} \mathbf{b} \mathbf{1} + \mathbf{b} \mathbf{2}^{T} \mathbf{V}_{2}^{-1} \mathbf{b} \mathbf{2} - \widetilde{\boldsymbol{\beta}}^{T} \mathbf{V}_{+} \widetilde{\boldsymbol{\beta}}$$

$$= \mathbf{b}_{1}^{T} \left(\mathbf{V}_{1}^{-1} - \cos^{2} \theta \mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{1}^{-1} \right) \mathbf{b} \mathbf{1} + \mathbf{b}_{2}^{T} \left(\mathbf{V}_{2}^{-1} - \sin^{2} \theta \mathbf{V}_{2}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} \right) \mathbf{b} \mathbf{2}$$

$$- 2 \sin \theta \cos \theta \mathbf{b} \mathbf{1}^{T} \left(\mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} \right) \mathbf{b} \mathbf{2}$$

$$= \mathbf{b}_{1}^{T} \left(\mathbf{V}_{1}^{-1} - \mathbf{V}_{1}^{-1} \mathbf{V}_{+} (\mathbf{V}_{+} - \sin^{2} \theta \mathbf{V}_{2}^{-1}) \right) \mathbf{b} \mathbf{1} + \mathbf{b}_{2}^{T} \left(\mathbf{V}_{2}^{-1} - \mathbf{V}_{2}^{-1} \mathbf{V}_{+} (\mathbf{V}_{+} - \cos^{2} \theta \mathbf{V}_{1}^{-1}) \right) \mathbf{b} \mathbf{2}$$

$$- 2 \sin \theta \cos \theta \mathbf{b} \mathbf{1}^{T} \left(\mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} \right) \mathbf{b} \mathbf{2}$$

$$= \sin^{2} \theta \mathbf{b}_{1}^{T} \mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} \mathbf{b}_{1} + \cos^{2} \theta \mathbf{b}_{2}^{T} \mathbf{V}_{2}^{-1} \mathbf{V}_{+} \mathbf{V}_{1}^{-1} \mathbf{b}_{2} - 2 \sin \theta \cos \theta \mathbf{b}_{1}^{T} \mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} \mathbf{b}_{2}^{T}$$

$$= (\sin \theta \mathbf{b}_{1} - \cos \theta \mathbf{b}_{2})^{T} \mathbf{V}_{1}^{-1} \mathbf{V}_{+} \mathbf{V}_{2}^{-1} (\sin \theta \mathbf{b}_{1} - \cos \theta \mathbf{b}_{2})$$

since all matrices are symmetric and using (1).

Note the similarity with Fieller's chisquare statistic which, under this parameterisation, is

$$X^{2} = (\sin\theta \mathbf{b}_{1} - \cos\theta \mathbf{b}_{2})^{T} (\sin^{2}\theta \mathbf{V}_{1} + \cos^{2}\theta \mathbf{V}_{2})^{-1} (\sin\theta \mathbf{b}_{1} - \cos\theta \mathbf{b}_{2})^{T}.$$
 (3)

Now,

$$(\mathbf{V}_1^{-1}\mathbf{V}_+\mathbf{V}_2^{-1})^{-1} = \mathbf{V}_2\mathbf{V}_+^{-1}\mathbf{V}_2 = \sin^2\theta\mathbf{V}_1 + \cos^2\theta\mathbf{V}_2$$

Thus, $X^2(3) = -2 \log L(2)$ and the likelihood statistic and Fieller's statistic alternatively derived here are identical.

Posterior distribution of θ

The full joint likelihood is given by

$$L(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}|\boldsymbol{\theta},\boldsymbol{\beta}) = \frac{1}{(2\pi)^{p/2} (|\mathbf{V}_{1}||\mathbf{V}_{2}|)^{1/2}} \\ \cdot \exp\left(-\frac{1}{2} \left[(\mathbf{b}_{1} - \cos \boldsymbol{\theta} \boldsymbol{\beta})^{T} \mathbf{V}_{1}^{-1} (\mathbf{b}_{1} - \cos \boldsymbol{\theta} \boldsymbol{\beta}) + (\mathbf{b}_{2} - \sin \boldsymbol{\theta} \boldsymbol{\beta})^{T} \mathbf{V}_{2}^{-1} (\mathbf{b}_{2} - \sin \boldsymbol{\theta} \boldsymbol{\beta}) \right] \right) \\ = \frac{1}{(2\pi)^{p/2} (|\mathbf{V}_{1}||\mathbf{V}_{2}|)^{1/2}} \\ \cdot \exp\left(-\frac{1}{2} \left[(\boldsymbol{\beta} - \boldsymbol{\mu})^{T} \mathbf{M}^{-1} (\boldsymbol{\beta} - \boldsymbol{\mu}) - \boldsymbol{\mu}^{T} \mathbf{M}^{-1} \boldsymbol{\mu} + \mathbf{b}_{1}^{T} \mathbf{V}_{1}^{-1} \mathbf{b}_{1} + \mathbf{b}_{2}^{T} \mathbf{V}_{2}^{-1} \mathbf{b}_{2} \right] \right)$$

where

$$\mathbf{M} = \left(\cos^2\theta \mathbf{V}_1^{-1} + \sin^2\theta \mathbf{V}_2^{-1}\right)^{-1}$$
$$\boldsymbol{\mu} = \left(\cos\theta \mathbf{b}_1 \mathbf{V}_1^{-1} + \sin\theta \mathbf{b}_2 \mathbf{V}_2^{-1}\right) \mathbf{M} = \overset{\sim}{\boldsymbol{\beta}}.$$

The posterior for θ is given by

$$\mathcal{P}(\theta) \propto \int_{-\infty}^{\infty} L(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2 | \theta, \boldsymbol{\beta}) \pi(\theta) \pi(\boldsymbol{\beta}) d\boldsymbol{\beta}$$

where $\pi(\theta) \propto 1$ and $\pi(\beta) \propto 1$ are uninformative priors for θ and β respectively. Thus

$$\mathcal{P}(\theta) \propto \frac{|M|^{1/2}}{(2\pi)^{p/2} (|V_1||V_2|)^{1/2}} \exp\left(-\frac{1}{2} \left[\mathbf{b}_1^T \mathbf{V}_1^{-1} \mathbf{b}_1 + \mathbf{b}_2^T \mathbf{V}_2^{-1} \mathbf{b}_2 - \boldsymbol{\mu}^T \mathbf{M}^{-1} \boldsymbol{\mu}\right]\right).$$

Justification of a flat prior for θ

We have used a non-informative prior for θ . To consider the case of suitable alternative priors, its worth considering the simpler case of Feiller's theorem (i.e. univariate β_1 , β_2).

If we take β_1 and β_2 as having Gaussian priors with zero mean, β_1/β_2 has a Cauchy(0, k) prior where k is the ratio of the prior variances of β_1 and β_2 . Thus writing

$$\tan(\theta) = \frac{\beta_1}{\beta_2}$$

the density of θ is

$$\frac{k(1+\tan^2(\theta))}{2\pi(1+k^2tan^2(\theta))}.$$

This is uniform when k = 1. Of course, k is itself unknown. We have experimented with a range of k, and found inference differed very little (Supplementary Figure 1). Therefore we have used k = 1 in the results presented in this paper.

Members of the Cardiogenics Consortium not included in the manuscript

Tony Attwood¹, Stephanie Belz², Peter Braund³, Jessy Brocheton⁹, Abi Crisp-Hihn¹, Panos Deloukas⁴, Jeanette Erdmann², Nicola Foad¹, Tiphaine Godefroy⁹, Jay Gracey³, Emma Gray⁴, Stefanie Gulde², Rhian Gwilliams⁴, Susanne Heimerl⁵, Christian Hengstenburg⁵, Jennifer Jolley¹, Unni Krishnan³, Patrick Linsel-Nitschke², Heather Lloyd-Jones¹, Ingrid Lugauer⁵, Per Lundmark⁶, Seraya Maouche², Gilles Montalescot⁹, Jasbir S Moore³, David Muir¹, Elizabeth Murray¹, Chris P Nelson³, Jessica Neudert⁷, David Niblett⁴, Karen O'Leary¹, Willem H Ouwehand¹, Helen Pollard³, Carole Proust⁹, Angela Rankin¹, Augusto Rendon¹, Catherine M Rice⁴, Hendrik Sager², Jennifer Sambrook¹, Gerd Schmitz⁸, Michael Scholz⁷, Laura Schroeder², Heribert Schunkert², Ann-Christine Syvannen⁶

¹Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 2PT, UK and National Health Service Blood and Transplant, Cambridge Centre, Long Road, Cambridge, CB2 2PT, UK; ²Medizinische Klinik 2, Universitt zu Lbeck, Lbeck Germany; ³Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK; ⁴The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; ⁵Klinik und Poliklinik fr Innere Medizin II, Universitt Regensburg, Germany; ⁶Molecular Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; ⁷Trium, Analysis Online GmbH, Hohenlindenerstr. 1, 81677, Mnchen, Germany; ⁸Institut fr Klinische Chemie und Laboratoriumsmedizin, Universitt, Regensburg, D-93053 Regensburg, Germany; ⁹INSERM UMRS 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, 91 Bd de lHpital 75013, Paris, France

Supplementary Figures

Supplementary Figure 1. Coefficients from two regressions (left panel) and a typical bimodal log-likelihood (right panel). The maximum likelihood estimate of θ may be understood graphically as the line through the origin which minimises the distance from the each pair of coefficients (allowing for some weighting according to their variance estimate, which is shown as the shaded ellipse). The log-likelihood of these data under a range of θ from 0 to π is shown and has two local minima, *i.e.* the likelihood is bimodal. Note also that the shape of the minima are not symmetric, meaning that it the likelihood there cannot be adequately described by a quadratic approximation.

Supplementary Figure 2. Effect of sample size on the equivalence of the asymptotic and posterior predictive p values. We repeatedly resampled with replacement nG individuals from the GHS dataset and nD individuals from the T1D case/control dataset for two probes - ILMN_2168217 (orange crosses) which was consistent with colocalisation and ILMN_1690921 (blue squares) which was not - to ensure we covered small and large p values. The figures show the posterior predictive p values on the x axis, and the asymptotic p values on the y axis, both using a log₁₀ scale. While the two are in close correspondence for smaller p values and larger sample sizes, for larger p values (in the regions consistent with the null hypothesis) and smaller sample sizes, there can be considerable disagreement. Plots are truncated at $p > 10^{-6}$ to allow the effects at larger p values to be seen clearly. Note this truncation means points for ILMN_1690921 are missing in the later plots, but they continue to follow the trend indicated by the points which are within the plotted region.

Supplementary Figure 3. Effects of changing k in prior for θ on posterior predictive p values from colocalisation test. The left column shows the shape of the prior across $theta \in [0, \pi]$, and the right column the -log10 posterior predictive p values from the model assuming that prior (vertical axis) compared with a model assuming a flat prior (k = 1, horizontal axis).

Supplementary Tables

Chromosome	Start	End	Size (kb)
1p13.2	113620000	114460000	840
1q31.2	190728079	190816535	88
1q32.1	204869063	205116454	247
2q11.2	99883121	100415547	532
2q24.2	162669119	163101007	432
2q32.2	191596469	191738798	142
2q33.2	204381054	204528303	147
3p21.31	45955677	46629136	673
4p15.2	25637903	25745871	108
4q27	123128865	123833732	705
6q15	90863556	91103018	239
6q22.32	126479722	127461527	982
6q23.3	137915383	138379949	465
6q25.3	159237500	159446677	209
7p15.2	26624487	27171807	547
7p12.2	50337181	50662811	330
7p12.1	50866662	51640000	773
9p24.2	4218550	4311558	93
10 p 15.1	6069732	6237542	168
10p15.1	6475380	6585110	110
10q22.3	80629523	80761569	132
10q23.31	89998027	90268360	270
11p15.5	2025000	2264880	240
12p13.31	9512800	9867423	355
12q13.2	54637613	55091576	454

Supplementary Table 1. Forty-nine T1D associated regions in which evidence for eQTLs was assessed in GHS data. Positions are according to genome build 36.

Chromosome	Start	End	Size (kb)
12q13.3	55268557	56819824	1551
12q24.12	109772109	111723111	1951
13q32.3	98723873	98915794	191
14q24.1	68237491	68387815	150
14q32.2	97427667	97601359	174
14q32.2	100357784	100398492	41
15q14	36604000	36786000	182
15q25.1	76773860	77050416	277
16p13.13	10923546	11560000	636
16p11.2	28191236	28944416	753
16q23.1	73760231	74086012	326
17q12	34634168	35508018	874
17q21.2	35990900	36132000	141
18p11.21	12726556	12916278	190
18q22.2	65630495	65722590	92
19p13.2	10256447	10489468	233
19q13.32	51843218	52015224	172
20p13	1444473	1707590	263
21q22.3	42681878	42761422	80
22q12.2	28137855	28999883	862
22q12.3	35868086	35892057	24
22q13.1	35898616	35996732	98
Xp22.2	12820442	12934000	114
Xq28	153480831	154098953	618

Supplementary Table 2. Probes which associate with SNPs located in the T1D regions in the GHS monocyte dataset. Evidence for association in CTS is also presented where available. SNP is the most associated SNP in the region, Alleles lists the major and minor alleles, respectively, and Fold is the change in normalised expression level per copy of the minor allele in GHS (G) and CTS (C). CTS indicates whether the probe is present in CTS. Where the probe is present, the most associated SNP was either directly available (r2 = NA) or imputed with an estimated r^2 shown. p values are given for the association in GHS (p^G), CTS (p^C) or overall (p^O), calculated by Fisher's combination of p^G and p^O . \dagger SNP not available in HapMap to enable imputation.

Region	cis/	Gene	Probe	SNP	Alleles	$\operatorname{Fold}^{\operatorname{G}}$	\mathbf{p}^{G}	CTS?	$\operatorname{Fold}^{\operatorname{C}}$	r^2	$\mathbf{p}^{\mathbf{C}}$	$\mathbf{p}^{\mathbf{O}}$
	trans											
2q11.2	cis	AFF3	ILMN_1775235	rs11681966	C/A	-0.0764	1.72e-10	yes	-0.05194	0.98	2.17e-03	1.10e-11
6q25.3	cis	EZR	$\rm ILMN_1795937$	rs10455834	A/G	0.1206	1.95e-09	yes	0.13463	1.00	7.68e-06	4.91e-13
6q25.3	cis	RSPH3	ILMN_1788223	rs10455840	C/T	-0.4175	7.25e-70	yes	-0.46737	NA	1.72e-30	2.86e-97
7p15.2	cis	_	ILMN_1869943	rs2522828	C/T	0.2077	1.27e-70	no	_	_	—	_
7p15.2	cis	HOXA9	$\rm ILMN_1739582$	rs10259620	G/A	-0.1066	1.32e-23	yes	-0.13299	NA	1.49e-13	1.63e-34
10q23.31	cis	RNLS	$\rm ILMN_{-}1718520$	rs1035796	C/T	-0.0393	6.59e-11	yes	-0.05491	NA	4.28e-07	1.10e-15
12p13.31	cis	CLECL1	ILMN_1782729	rs7970116	G/A	0.6008	4.66e-182	yes	0.88127	1.00	3.97e-84	1.13e-262
12q13.2	cis	LOC 650646	$\rm ILMN_1726647$	rs1873914	G/C	0.9725	5.39e-195	no	_	_	_	_
12q13.2	trans	_	ILMN_2180866	rs1873914	G/C	0.9933	5.62 e- 194	no	_	_	_	_
12q13.2	trans	BEND4	ILMN_1740094	rs1873914	G/C	0.3072	3.59e-159	yes	0.32735	NA	5.92e-60	1.07e-215
12q13.2	trans	DCAF16	ILMN_1753440	rs1873914	G/C	0.1531	3.47e-34	yes	0.17358	NA	9.11e-34	4.87e-65
12q13.2	cis	RPS26	$\rm ILMN_1678522$	rs1873914	G/C	0.8949	2.29e-184	no	_	_	_	_

Region	c/t	Gene	Probe	SNP	Alleles	$\operatorname{Fold}^{\operatorname{G}}$	p^{G}	CTS?	$\operatorname{Fold}^{\operatorname{C}}$	r^2	$\mathbf{p}^{\mathbf{C}}$	$\mathbf{p}^{\mathbf{O}}$
12q13.2	trans	RPS26	ILMN_1737991	rs1873914	G/C	0.8122	6.87e-197	no	_	_	_	_
12q13.2	cis	RPS26	ILMN_1750636	rs1873914	G/C	1.0564	9.31e-184	yes	1.01223	NA	1.40e-82	7.98e-263
12q13.2	cis	RPS26	ILMN_2209027	rs1873914	G/C	0.9294	1.70e-186	yes	0.89618	NA	2.42e-85	2.57e-268
12q13.2	cis	RPS26	ILMN_2310703	rs1873914	G/C	1.0144	5.13e-204	yes	0.92379	NA	4.27e-76	1.41e-276
12q13.2	cis	<i>RPS26P31</i>	$\rm ILMN_1695585$	rs1873914	G/C	0.9321	9.84e-208	no	_	_	_	_
12q13.2	trans	RPS26P35	$ILMN_{-}1677697$	rs1873914	$\mathrm{G/C}$	0.8964	6.54 e- 146	no	_	-	_	_
12q13.2	cis	SUOX	ILMN_2383455	rs1873914	$\mathrm{G/C}$	-0.0456	5.49e-15	yes	-0.05598	NA	1.48e-04	3.47e-17
12q13.2	cis	SUOX	ILMN_1803745	rs705702	A/G	-0.0691	1.04e-18	yes	-0.06086	0.97	1.83e-04	9.69e-21
12q13.2	cis	STAT2	$\rm ILMN_1690921$	rs871130	C/T	-0.2005	4.10e-18	yes	-0.16924	1.00	1.11e-03	2.18e-19
12q13.3	cis	RBMS2	$\rm ILMN_1755411$	rs7313074	A/G	0.1666	1.95e-70	yes	0.17501	1.00	2.49e-03	8.14e-71
12q13.3	cis	STAT6	$\rm ILMN_1763198$	rs324019	G/A	0.2867	6.61e-143	yes	t	_	_	_
12q13.3	cis	TSPAN31	$\rm ILMN_{-}1725079$	rs12368653	G/A	0.0504	7.91e-13	yes	0.02885	NA	2.27e-02	5.87e-13
12q13.3	cis	FAM119B	ILMN_1723846	rs4646536	A/G	0.2780	5.69e-156	yes	0.31147	NA	8.18e-66	2.37e-218
12q13.3	cis	TSFM	ILMN_2097954	rs10877019	C/T	-0.0476	7.68e-19	yes	-0.04434	1.00	3.55e-05	1.44e-21
12q24.12	cis	C12 or f24	ILMN_2180371	rs2238149	T/C	-0.0510	9.69e-11	yes	-0.04557	0.97	7.45e-03	2.09e-11
12q24.12	cis	ALDH2	$\rm ILMN_1793859$	rs10744777	T/C	0.1005	1.29e-15	yes	0.10706	0.82	1.19e-08	8.19e-22
12q24.12	cis	TMEM116	ILMN_2052871	rs7114	A/G	0.1130	7.05e-31	yes	0.12726	1.00	1.03e-13	7.26e-42
12q24.12	cis	MAPKAPK5	ILMN_2322935	rs12579336	A/G	0.1150	1.41e-12	yes	0.08411	1.00	2.22e-02	1.00e-12

Supplementary Table 2. (continued)

Region	c/t	Gene	Probe	SNP	Alleles	$\operatorname{Fold}^{\operatorname{G}}$	$\mathbf{p}^{\mathbf{G}}$	CTS?	$\operatorname{Fold}^{\operatorname{C}}$	r^2	$\mathbf{p}^{\mathbf{C}}$	$\mathbf{p}^{\mathbf{O}}$
13q32	cis	CLYBL	ILMN_1663538	rs17656454	A/G	-0.0850	1.67e-14	yes	-0.10080	NA	2.56e-06	1.95e-18
13q32	cis	<i>GPR183</i>	ILMN_2168217	rs7325697	C/T	-0.0846	6.83e-11	yes	-0.22196	0.95	2.05e-04	4.61e-13
16p13.13	cis	DEXI	ILMN_1738866	rs3901386	T/C	0.1137	3.78e-38	yes	0.09734	NA	1.76e-07	6.84e-43
16p13.13	trans	LOC642755	ILMN_1655244	rs3893660	A/G	0.0742	2.64e-25	no	_	-	_	_
16p13.13	trans	LOC 642755	ILMN_1793287	rs3893660	A/G	0.1135	1.94e-33	no	—	_	_	_
16p13.13	cis	LITAF	ILMN_1713934	rs11646660	C/T	-0.1832	7.49e-09	yes	-0.11659	NA	6.16e-02	1.04e-08
16p11.2	cis	<i>CCDC101</i>	ILMN_1684789	rs231976	C/G	0.1261	3.85e-59	yes	0.10751	0.98	6.15e-15	3.98e-71
16p11.2	cis	<i>CCDC101</i>	ILMN_1701477	rs7193402	T/C	-0.0822	6.99e-32	yes	-0.08333	NA	2.90e-12	2.01e-41
16p11.2	cis	TUFM	ILMN_1738369	rs8049439	T/C	0.1695	5.07e-65	yes	0.16078	NA	2.35e-20	2.31e-82
16p11.2	cis	SPNS1	ILMN_1681016	rs8045689	T/C	0.2630	2.36e-111	yes	0.16594	NA	1.14e-15	7.81e-124
17q12	cis	CRKRS	ILMN_1707448	rs4404103	A/G	-0.1290	4.18e-14	yes	-0.11365	NA	1.60e-09	3.49e-21
17q12	cis	PGAP3	ILMN_1805636	rs9675194	C/T	0.0457	2.27e-09	yes	0.04701	1.00	1.39e-03	8.64e-11
17q21.2	cis	SMARCE1	ILMN_1747857	rs11078951	G/T	0.1206	2.41e-60	yes	0.11209	1.00	3.72e-13	1.50e-70
18p11.21	cis	CEP192	ILMN_1703754	rs6505770	C/T	0.0858	8.24e-25	yes	0.08339	NA	5.40e-09	3.36e-31
18q22.2	cis	CD226	ILMN_1687825	rs1790947	G/T	-0.1200	6.96e-16	yes	-0.00594	1.00	2.95e-01	7.61e-15
19p13.2	cis	ICAM4	ILMN_1681296	rs2569702	T/C	-0.1659	1.03e-25	yes	-0.27639	0.96	3.18e-25	3.77e-48
19p13.2	cis	ICAM3	ILMN_2212763	rs2304240	G/A	0.1999	2.26e-23	yes	0.25110	NA	4.00e-24	9.66e-45
19q13.32	cis	FKRP	ILMN_2368617	rs2871987	C/T	0.0683	3.05e-22	yes	0.05070	NA	6.61e-06	1.26e-25

Supplementary Table 2. (continued)

Region	c/t	Gene	Probe	SNP	Alleles	$\operatorname{Fold}^{\operatorname{G}}$	$\mathbf{p}^{\mathbf{G}}$	CTS?	$\operatorname{Fold}^{\operatorname{C}}$	r^2	$\mathbf{p}^{\mathbf{C}}$	p ^O
19q13.32	cis	PRKD2	ILMN_1753805	rs2871987	C/T	0.0667	3.87e-16	yes	0.06808	NA	2.05e-08	4.30e-22
19q13.32	cis	SLC1A5	ILMN_1707720	rs8105903	A/C	0.0762	4.22e-20	yes	0.02417	NA	2.00e-01	3.98e-19
20p13	cis	_	ILMN_1841622	rs8182997	T/C	-0.0986	6.58e-10	no	_	-	_	_
20p13	cis	SIRPD	ILMN_1769886	rs2243603	G/C	0.0870	3.41e-22	yes	0.11855	1.00	3.71e-07	8.25e-27
22q12.2	cis	NEFH	ILMN_1705153	rs165734	C/T	0.1216	2.34e-40	yes	0.09644	1.00	8.43e-06	2.05e-43
22q12.2	cis	NIPSNAP1	ILMN_1805916	rs2530670	C/G	0.0456	2.21e-14	yes	0.03288	1.00	3.14e-02	2.49e-14
22q12.2	cis	UCRC	ILMN_2366714	rs131298	G/A	0.0845	3.52e-17	yes	0.08495	0.96	3.50e-15	8.89e-30
22q12.2	cis	MTMR3	ILMN_1803925	rs12537	C/T	0.0820	5.11e-37	yes	0.08171	NA	2.95e-10	1.61e-44
22q12.2	cis	MTMR3	ILMN_1739641	rs16987156	C/T	0.1369	1.99e-26	yes	0.10234	1.00	4.40e-07	6.56e-31
22q12.2	cis	MTMR3	ILMN_2380605	rs16987156	C/T	0.1097	1.52e-09	yes	0.10492	1.00	2.35e-05	1.14e-12
Xp22.2	cis	TLR8	ILMN_1657892	rs9780736	G/A	0.1125	2.06e-29	yes	0.07805	NA	4.35e-07	7.31e-34
Xq28	cis	FAM3A	ILMN_1808356	rs7879049	A/G	0.1612	1.14e-35	yes	0.19278	NA	9.23e-12	1.12e-44

Supplementary Table 2. (continued)

Supplementary Table 3. Colocalisation results comparing monocyte expression signals in GHS/Cardiogenics with T1D association. G-C indicates whether the probe is found in Cardiogenics (otherwise 'no probe'), whether there appears a significant effect in Cardiogenics (otherwise 'n/sig'), and finally whether the signal colocalises with GHS ('yes' or 'no'). T1 and T2 indicate the traits under test - monocyte expression in GHS or Cardiogenics (CTS), or T1D in WTCCC, T1DGC or both cohorts combined (T1D). nSNP is the number of SNPs included in the regressions of each trait. Both the asymptotic (p asymp) and positive predictive p (ppp) values are shown for individual tests. pT1 and pT2 are the overall p values for all the SNPs in the regressions of T1 and T2 respectively. p is a final combined p value for colocalisation for monocyte expression and T1D risk, either a Fisher's combined p value of the ppp for GHS-WTCCC and CTS-T1DGC, or the minimum of the GHS vs WTCCC, T1DGC and T1D ppp when GHS and Cardiogenics signals do not colocalise. T1D-expression colocalisation tests, *i.e.* whether increased expression correlates with T1D susceptibility ('+') or protection ('-') in GHS vs WTCCC. † indicates cases where only one SNP is required to capture both the eQTL and T1D signal. In this case, the data are consistent with the null and a formal colocalisation test is neither needed nor possible.

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
12q24.12	ILMN_2052871	TMEM116	no	1.01e-23	GHS	WTCCC	-	4	1.76e-13	5.58e-13	2.62e-39	5.75e-15
					GHS	T1DGC	+	4	4.62e-14	1.75e-13	1.59e-39	9.57e-14
					GHS	T1D	-	5	2.49e-24	1.01e-23	3.37e-40	1.51e-24
					GHS	CTS	+	5	5.03e-04	8.36e-04	1.76e-41	1.11e-21

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
12q24.12	ILMN_2180371	C12 orf 24	yes	3.91e-22	GHS	WTCCC	+	6	7.66e-12	1.99e-11	1.20e-69	5.36e-13
					CTS	T1DGC	+	3	8.13e-14	3.61e-13	7.48e-22	4.10e-14
					GHS	CTS	+	5	6.35e-01	6.07 e- 01	4.92e-53	5.56e-16
12q24.12	ILMN_1793859	ALDH2	yes	6.81e-20	GHS	WTCCC	-	3	1.77e-11	6.11e-11	6.28e-19	4.46e-15
					CTS	T1DGC	+	2	5.68e-12	2.27e-11	1.62e-11	2.55e-15
					GHS	CTS	+	2	5.56e-02	1.12e-01	4.60e-22	8.57e-11
12q13.2	$\rm ILMN_1690921$	STAT2	yes	5.06e-15	GHS	WTCCC	+	4	6.58e-10	2.18e-09	7.01e-17	1.82e-09
					CTS	T1DGC	-	4	5.94e-08	6.17e-08	3.50e-08	5.01e-12
					GHS	CTS	+	4	1.91e-02	2.98e-02	2.90e-16	3.07e-08
18p11.21	ILMN_1703754	<i>CEP192</i>	yes	1.39e-12	GHS	WTCCC	-	4	1.38e-05	3.31e-05	4.65e-174	4.23e-05
					CTS	T1DGC	-	5	4.69e-10	1.33e-09	2.13e-30	1.39e-09
					GHS	CTS	+	3	2.73e-02	4.71e-02	5.77e-176	1.27e-30
22q12.2	ILMN_1739641	MTMR3	no	1.70e-12	GHS	WTCCC	+	2	5.44e-05	2.14e-04	3.82e-28	1.92e-04
					GHS	T1DGC	-	2	1.49e-09	8.40e-09	7.80e-29	5.07 e-09
					GHS	T1D	-	2	2.48e-13	1.70e-12	8.51e-29	1.93e-12
					GHS	CTS	+	2	1.24e-03	3.81e-03	1.61e-27	8.47e-10
12q24.12	ILMN_2322935	MAPKAPK5	no	3.68e-12	GHS	WTCCC	-	5	9.14e-08	1.33e-07	1.42e-10	1.84e-14
					GHS	T1DGC	-	4	2.70e-12	3.68e-12	1.46e-12	3.21e-14
					GHS	T1D	-	7	8.72e-09	2.48e-09	1.68e-09	1.61e-23
					GHS	CTS	+	4	1.18e-03	1.77e-03	1.76e-11	3.13e-05

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
16p13.13	ILMN_1713934	LITAF	yes	2.00e-11	GHS	WTCCC	+	2	9.06e-09	4.97e-08	5.33e-09	2.87e-08
					CTS	T1DGC	+	4	7.42e-06	1.39e-05	3.79e-06	7.59e-06
					GHS	CTS	+	3	1.45e-01	1.96e-01	8.00e-20	9.08e-07
22q12.2	ILMN_1805916	NIPSNAP1	no	1.14e-10	GHS	WTCCC	+	2	1.56e-05	7.25e-05	2.07e-14	8.25e-05
					GHS	T1DGC	+	2	4.27e-08	1.74e-07	3.17e-14	4.25e-09
					GHS	T1D	+	3	3.88e-11	1.14e-10	1.95e-13	5.35e-12
					GHS	CTS	+	3	2.07e-04	3.99e-04	9.61e-14	8.31e-05
22q12.2	$\rm ILMN_1705153$	NEFH	yes	1.39e-09	GHS	WTCCC	+	3	1.12e-03	2.53e-03	1.55e-58	9.17e-04
					CTS	T1DGC	+	2	4.87e-09	2.23e-08	2.37e-14	8.59e-10
					GHS	CTS	+	2	6.52 e- 01	6.37 e- 01	2.32e-69	3.51e-18
22q12.2	$\rm ILMN_1803925$	MTMR3	yes	9.34e-09	GHS	WTCCC	-	4	7.67e-03	1.25e-02	2.37e-42	1.43e-03
					CTS	T1DGC	-	4	1.33e-08	3.30e-08	7.26e-11	2.63e-09
					GHS	CTS	+	2	5.89e-01	6.06e-01	3.68e-42	4.33e-10
22q12.2	ILMN_2380605	MTMR3	yes	1.04e-08	GHS	WTCCC	+	3	1.62e-04	4.16e-04	1.98e-11	2.54e-04
					CTS	T1DGC	-	3	4.75e-07	1.11e-06	5.43e-10	1.02e-08
					GHS	CTS	+	4	5.83e-02	7.54e-02	9.28e-11	1.11e-08
20p13	ILMN_1769886	SIRPD	yes	1.33e-07	GHS	WTCCC	-	4	1.21e-03	2.44e-03	9.58e-25	2.02e-03
					CTS	T1DGC	-	2	5.33e-07	2.75e-06	4.64e-08	2.88e-06
					GHS	CTS	+	4	3.90e-02	5.59e-02	5.99e-29	3.80e-11

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
22q12.2	ILMN_2366714	UCRC	yes	3.00e-07	GHS	WTCCC	-	4	1.92e-04	3.94e-04	5.19e-16	1.70e-04
					CTS	T1DGC	-	2	1.04e-05	4.01e-05	6.84e-20	5.07e-09
					GHS	CTS	+	4	3.16e-01	3.08e-01	3.20e-16	9.16e-18
20p13	$\rm ILMN_1841622$		no probe	5.39e-07	GHS	WTCCC	-	3	2.30e-04	5.96e-04	5.47e-26	7.06e-04
					GHS	T1DGC	+	2	5.23e-05	1.94e-04	2.84e-24	1.56e-06
					GHS	T1D	+	4	1.99e-07	5.39e-07	3.41e-25	6.58e-08
12q13.2	ILMN_2310703	RPS26	no	9.23e-07	GHS	WTCCC	+	4	3.54e-03	6.41e-03	0.00e+00	1.49e-10
					GHS	T1DGC	+	4	5.08e-03	8.97e-03	0.00e+00	1.01e-11
					GHS	T1D	+	4	1.69e-06	9.23 e- 07	0.00e+00	5.44e-23
					GHS	CTS	+	3	3.26e-07	1.62e-06	0.00e+00	8.58e-226
17q12	$\rm ILMN_1805636$	PGAP3	yes	1.21e-06	GHS	WTCCC	-	2	3.43e-04	9.12e-04	4.98e-09	9.92e-05
					CTS	T1DGC	+	2	1.66e-05	7.62e-05	4.75e-06	7.65e-05
					GHS	CTS	+	2	4.83e-03	1.25e-02	1.04e-08	1.95e-05
16p13.13	$\rm ILMN_1793287$	LOC 642755	no probe	1.54e-06	GHS	WTCCC	-	4	5.41e-03	9.07 e-03	2.66e-43	4.95e-07
					GHS	T1DGC	-	5	6.78e-07	1.54e-06	6.72e-46	1.37e-08
					GHS	T1D	-	4	9.95e-07	2.45e-06	6.68e-43	4.19e-14
12q13.2	$\rm ILMN_1677697$	RPS26P35	no probe	2.27e-06	GHS	WTCCC	+	4	3.43e-03	6.23e-03	0.00e+00	1.49e-10
					GHS	T1DGC	+	5	1.50e-02	2.27e-02	0.00e+00	4.07e-11
					GHS	T1D	+	3	5.36e-07	2.27e-06	0.00e+00	1.01e-23

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
17q12	ILMN_1707448	CRKRS	yes	3.23e-06	GHS	WTCCC	-	3	2.68e-04	7.26e-04	1.03e-13	9.20e-04
					CTS	T1DGC	+	3	1.05e-04	2.71e-04	3.19e-12	1.15e-04
					GHS	CTS	+	3	4.38e-01	4.53e-01	1.03e-13	3.15e-13
12q13.2	$\rm ILMN_1750636$	RPS26	no	3.25e-06	GHS	WTCCC	+	4	3.68e-03	6.64 e- 03	0.00e+00	1.49e-10
					GHS	T1DGC	+	5	1.63e-02	2.45e-02	0.00e+00	4.11e-11
					GHS	T1D	+	4	4.23e-06	3.25e-06	0.00e+00	6.58e-23
					GHS	CTS	+	4	9.63e-05	2.09e-04	0.00e+00	9.60e-290
12q13.2	$\rm ILMN_1726647$	LOC 650646	no probe	3.56e-06	GHS	WTCCC	+	4	3.18e-03	5.80e-03	0.00e+00	1.49e-10
					GHS	T1DGC	+	4	8.32e-03	1.42e-02	0.00e+00	1.01e-11
					GHS	T1D	+	4	3.87e-06	3.56e-06	0.00e+00	5.44e-23
12q13.2	$\rm ILMN_1695585$	RPS26P31	no probe	5.37e-06	GHS	WTCCC	+	5	4.29e-03	7.03e-03	0.00e+00	3.14e-10
					GHS	T1DGC	+	4	6.95e-03	1.20e-02	0.00e+00	1.01e-11
					GHS	T1D	+	4	2.56e-06	5.37e-06	0.00e+00	5.44e-23
12q13.2	ILMN_2209027	RPS26	no	7.10e-06	GHS	WTCCC	+	4	1.42e-03	2.71e-03	0.00e+00	6.57 e- 11
					GHS	T1DGC	+	4	6.30e-03	1.10e-02	0.00e+00	9.90e-12
					GHS	T1D	+	4	3.18e-06	7.10e-06	0.00e+00	6.58e-23
					GHS	CTS	+	5	2.76e-22	1.45e-21	0.00e+00	0.00e+00
12q13.2	$\rm ILMN_1737991$	RPS26	no probe	7.66e-06	GHS	WTCCC	+	5	4.05e-03	6.66e-03	0.00e+00	2.37e-10
					GHS	T1DGC	+	4	4.64e-03	8.25e-03	0.00e+00	1.01e-11
					GHS	T1D	+	4	1.83e-06	7.66e-06	0.00e+00	5.44e-23

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
12q13.2	ILMN_1678522	RPS26	no probe	8.32e-06	GHS	WTCCC	+	5	2.51e-03	4.24e-03	0.00e+00	2.37e-10
					GHS	T1DGC	+	4	6.40e-03	1.11e-02	0.00e+00	1.01e-11
					GHS	T1D	+	4	2.39e-06	8.32e-06	0.00e+00	5.44e-23
16p11.2	ILMN_1684789	<i>CCDC101</i>	yes	1.50e-05	GHS	WTCCC	+	4	4.75e-03	8.58e-03	2.02e-83	3.37e-03
					CTS	T1DGC	+	4	5.48e-05	1.18e-04	3.98e-19	1.64e-06
					GHS	CTS	+	2	4.52e-01	5.31e-01	1.87e-80	2.79e-19
16p11.2	$\rm ILMN_1738369$	TUFM	yes	2.01e-05	GHS	WTCCC	-	3	6.12e-03	1.24e-02	5.91e-82	4.66e-03
					CTS	T1DGC	-	3	4.21e-05	1.11e-04	1.03e-21	4.86e-07
					GHS	CTS	NA	1			1.60e-82	1.02e-23
16p11.2	ILMN_1681016	SPNS1	yes	2.07e-05	GHS	WTCCC	-	4	4.81e-02	7.16e-02	2.96e-95	3.48e-02
					CTS	T1DGC	-	3	7.07e-06	2.00e-05	3.04e-16	2.34e-06
					GHS	CTS	+	3	3.07e-01	3.74e-01	3.86e-175	8.44e-16
7p15.2	ILMN_1869943		no probe	2.56e-05	GHS	WTCCC	+	4	1.44e-01	1.92e-01	8.13e-120	1.92 e- 01
					GHS	T1DGC	-	4	1.05e-05	2.56e-05	1.10e-113	3.10e-05
					GHS	T1D	-	4	2.83e-04	5.99e-04	8.13e-120	7.99e-04
7p15.2	$\rm ILMN_1739582$	HOXA9	yes	3.33e-05	GHS	WTCCC	-	3	1.04e-01	1.53e-01	5.23e-24	4.78e-02
					CTS	T1DGC	-	4	6.31e-06	1.56e-05	7.84e-21	7.18e-06
					GHS	CTS	+	2	3.05e-01	4.12e-01	1.59e-25	1.56e-16

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
19q13.32	ILMN_1707720	SLC1A5	n/sig	1.17e-04	GHS	WTCCC	-	3	2.29e-02	3.83e-02	4.90e-25	1.51e-03
					GHS	T1DGC	+	4	8.73e-04	1.78e-03	8.80e-24	1.51e-03
					GHS	T1D	-	5	5.78e-05	1.17e-04	8.35e-27	3.35e-05
					GHS	CTS	+	3	3.82e-01	4.36e-01	1.84e-25	4.77e-03
12q13.2	ILMN_2383455	SUOX	yes	1.21e-04	GHS	WTCCC	-	4	1.79e-05	3.36e-05	1.97e-15	6.57e-11
					CTS	T1DGC	-	2	2.10e-01	2.87e-01	5.13e-04	8.66e-12
					GHS	CTS	+	2	3.14e-01	3.83e-01	2.85e-16	9.71e-04
12q13.2	$\rm ILMN_1740094$	BEND4	yes	1.35e-04	GHS	WTCCC	+	4	3.82e-03	6.85e-03	0.00e+00	1.49e-10
					CTS	T1DGC	+	3	6.82e-04	1.59e-03	2.69e-133	3.19e-12
					GHS	CTS	+	4	6.20e-03	1.07e-02	0.00e+00	3.25e-133
12q13.3	$\rm ILMN_1763198$	STAT6	yes	1.48e-04	GHS	WTCCC	+	4	3.48e-03	6.39e-03	1.05e-119	7.51e-03
					CTS	T1DGC	-	4	9.51e-04	1.87e-03	2.55e-97	2.23e-03
					GHS	CTS	+	4	7.92e-02	1.10e-01	1.90e-195	3.51e-99
Xp22.2	$\rm ILMN_1657892$	TLR8	yes	3.06e-04	GHS	WTCCC	-	3	1.83e-03	4.10e-03	1.12e-34	2.51e-03
					CTS	T1DGC	-	3	3.90e-03	6.46e-03	5.63e-08	7.02e-04
					GHS	CTS	+	3	5.81e-02	9.25e-02	2.65e-37	4.61e-08
12q13.3	ILMN_1755411	RBMS2	yes	4.15e-04	GHS	WTCCC	+	3	1.18e-03	2.72e-03	2.29e-110	2.58e-03
					CTS	T1DGC	-	2	8.49e-03	1.36e-02	8.70e-03	2.45e-03
					GHS	CTS	+	4	3.54 e- 02	5.31e-02	2.11e-114	2.17e-55

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
13q32	ILMN_1663538	CLYBL	yes	7.22e-04	GHS	WTCCC	+	4	3.62e-02	5.73e-02	1.64e-19	5.03e-02
					CTS	T1DGC	-	4	6.51e-04	1.19e-03	2.68e-14	2.70e-05
					GHS	CTS	+	4	2.05e-02	2.99e-02	1.96e-24	1.12e-13
16p13.13	$\rm ILMN_1655244$	LOC642755	no probe	1.01e-03	GHS	WTCCC	-	3	2.32e-01	2.78e-01	3.57e-29	4.22e-05
					GHS	T1DGC	-	4	5.50e-04	1.01e-03	1.33e-30	6.97 e- 08
					GHS	T1D	-	3	2.36e-02	3.92e-02	1.59e-24	7.30e-15
12q13.3	ILMN_1723846	FAM119B	yes	1.39e-03	GHS	WTCCC	-	2	4.37e-04	1.47e-03	1.02e-319	1.18e-03
					CTS	T1DGC	-	2	4.54e-02	9.58e-02	2.64e-136	2.26e-03
					GHS	CTS	+	2	7.54e-01	6.73e-01	1.95e-321	1.02e-135
19p13.2	ILMN_1681296	ICAM4	yes	1.45e-03	GHS	WTCCC	-	4	5.93e-02	8.68e-02	7.08e-48	6.75e-02
					CTS	T1DGC	-	4	8.63e-04	1.70e-03	0.00e+00	1.94e-03
					GHS	CTS	+	6	7.23e-02	8.71e-02	3.31e-46	1.30e-53
19p13.2	ILMN_2212763	ICAM3	yes	1.95e-03	GHS	WTCCC	+	4	1.13e-01	1.59e-01	7.16e-14	1.87e-01
					CTS	T1DGC	+	2	3.80e-04	1.29e-03	1.98e-30	2.70e-04
					GHS	CTS	+	3	1.92e-02	3.28e-02	5.08e-24	1.50e-29
16p13.13	ILMN_1738866	DEXI	yes	2.45e-03	GHS	WTCCC	-	3	9.92e-03	1.83e-02	7.81e-45	1.29e-07
					CTS	T1DGC	-	3	7.91e-03	1.45e-02	7.89e-08	4.32e-08
					GHS	CTS	+	3	1.43e-02	2.63e-02	8.67e-46	1.19e-09

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
12q13.3	ILMN_2097954	TSFM	n/sig	2.73e-03	GHS	WTCCC	+	2	9.21e-04	2.73e-03	5.38e-19	1.20e-03
					GHS	T1DGC	+	4	2.19e-01	2.32e-01	4.73e-18	1.37e-02
					GHS	T1D	+	3	2.66e-03	5.15e-03	8.35e-19	1.53e-04
					GHS	CTS	+	2	9.85e-02	1.83e-01	1.07e-19	4.54e-02
6q25.3	$\rm ILMN_1795937$	EZR	yes	4.86e-03	GHS	WTCCC	-	2	1.18e-02	2.88e-02	9.20e-09	1.15e-02
					CTS	T1DGC	-	3	9.64e-03	1.99e-02	6.37 e-07	2.22e-02
					GHS	CTS	+	4	3.95e-02	5.31e-02	7.10e-10	2.12e-07
19q13.32	ILMN_2368617	FKRP	yes	7.32e-03	GHS	WTCCC	-	4	1.72e-02	2.55e-02	2.29e-26	1.51e-03
					CTS	T1DGC	-	4	2.79e-02	3.59e-02	5.69e-10	2.71e-05
					GHS	CTS	+	4	9.48e-02	1.04e-01	3.73e-27	2.08e-13
Xq28	ILMN_1808356	FAM3A	yes	1.01e-02	GHS	WTCCC	+	4	6.32e-02	9.21e-02	8.16e-66	6.27 e- 02
					CTS	T1DGC	-	4	8.43e-03	1.44e-02	7.45e-34	5.73e-03
					GHS	CTS	+	5	6.77e-02	8.77e-02	7.68e-51	2.90e-22
12q13.2	ILMN_1803745	SUOX	yes	1.71e-02	GHS	WTCCC	-	3	1.96e-02	3.25e-02	1.56e-19	6.50e-08
					CTS	T1DGC	-	4	6.47 e- 02	7.53e-02	1.01e-07	8.08e-12
					GHS	CTS	+	4	1.84e-01	1.96e-01	2.79e-19	7.66e-08
12q13.3	ILMN_1725079	TSPAN31	n/sig	2.38e-02	GHS	WTCCC	+	3	8.07e-01	6.98e-01	1.25e-12	3.19e-01
					GHS	T1DGC	+	2	1.83e-01	2.61e-01	4.54e-13	2.13e-03
					GHS	T1D	+	3	1.39e-02	2.38e-02	2.19e-14	1.28e-04
					GHS	CTS	+	4	5.02e-01	4.93e-01	9.01e-14	7.62e-03

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
12p13.31	ILMN_1782729	CLECL1	no	8.04e-02	GHS	WTCCC	+	6	6.96e-02	8.93e-02	0.00e+00	1.06e-04
					GHS	T1DGC	+	2	3.70e-02	8.04e-02	0.00e+00	3.41e-02
					GHS	T1D	+	5	6.39e-02	8.59e-02	0.00e+00	5.99e-04
					GHS	CTS	+	3	3.18e-02	1.47e-06	0.00e+00	0.00e+00
2q11.2	$\rm ILMN_1775235$	AFF3	no	8.15e-02	GHS	WTCCC	+	2	4.38e-01	4.70e-01	5.39e-10	4.13e-05
					GHS	T1DGC	+	2	6.50e-01	5.94 e- 01	5.39e-10	3.81e-03
					GHS	T1D	+	3	5.72e-02	8.15e-02	2.58e-09	4.16e-08
					GHS	CTS	+	5	4.40e-03	7.03e-03	9.19e-09	1.51e-07
12q13.2	$\rm ILMN_1753440$	DCAF16	yes	1.09e-01	GHS	WTCCC	+	3	4.32e-01	4.71e-01	5.96e-41	5.36e-10
					CTS	T1DGC	+	5	3.45e-02	4.82e-02	9.70e-49	1.23e-10
					GHS	CTS	+	2	4.00e-01	4.82e-01	1.65e-41	3.97e-47
19q13.32	$\rm ILMN_1753805$	PRKD2	yes	1.14e-01	GHS	WTCCC	-	2	5.67 e- 01	5.77e-01	1.08e-29	3.37e-02
					CTS	T1DGC	-	4	2.98e-02	4.19e-02	2.29e-16	1.79e-05
					GHS	CTS	+	3	8.63e-01	7.50e-01	8.63e-30	5.26e-17
16p11.2	ILMN_1701477	<i>CCDC101</i>	yes	1.35e-01	GHS	WTCCC	+	2	3.17e-01	4.22e-01	6.43e-40	9.83e-02
					CTS	T1DGC	+	2	3.42e-02	7.07e-02	2.41e-13	7.43e-05
					GHS	CTS	+	3	7.87e-01	7.16e-01	3.46e-40	3.27e-13
17q21.2	$\rm ILMN_1747857$	SMARCE1	no	1.39e-01	GHS	WTCCC	-	4	1.20e-01	1.56e-01	3.11e-102	9.93e-06
					GHS	T1DGC	-	3	2.38e-01	3.04e-01	1.68e-102	1.77e-03
					GHS	T1D	-	3	9.32e-02	1.39e-01	1.68e-102	4.98e-08
					GHS	CTS	+	4	3.08e-04	6.10e-04	4.42e-104	4.63e-23

Supplementary Table 3. (continued)

Region	Probe	Gene	G-C	р	T1	T2	$\operatorname{sign}(\eta)$	nSNP	p (asymp)	ppp	pT1	pT2
6q25.3	ILMN_1788223	RSPH3	yes	1.96e-01	GHS	WTCCC	+	3	2.17e-01	2.88e-01	2.42e-165	1.32e-01
					CTS	T1DGC	+	2	9.01e-02	1.69e-01	1.76e-26	3.53e-02
					GHS	CTS	+	4	8.55e-02	1.16e-01	2.36e-163	1.67e-65
13q32	ILMN_2168217	<i>GPR183</i>	yes	2.14e-01	GHS	WTCCC	-	4	2.75e-01	3.09e-01	1.07e-12	9.33e-02
					CTS	T1DGC	-	2	9.68e-02	1.77e-01	1.30e-05	4.51e-06
					GHS	CTS	+	5	2.58e-01	2.19e-01	7.31e-13	1.25e-05
10q23.31	ILMN_1718520	RNLS	yes	2.52e-01	GHS	WTCCC	+	3	9.77e-02	1.25e-01	2.21e-13	1.92e-02
					CTS	T1DGC	+	2	6.29e-01	5.48e-01	2.58e-07	1.11e-03
					GHS	CTS	+	3	5.99e-01	5.66e-01	7.92e-14	2.73e-05
18q22.2	$\rm ILMN_1687825$	CD226	n/sig	t	GHS	WTCCC	NA	1			2.14e-16	5.87 e-02
					GHS	T1DGC	-	2	2.82e-01	3.87 e- 01	1.01e-17	6.15e-06
					GHS	T1D	NA	1			2.14e-16	3.31e-07
					GHS	CTS	-	7	1.26e-01	1.56e-01	2.56e-15	1.64e-01

Supplementary Table 3. (continued)

Supplementary Information: confirmation of the CD226 monocyte eQTL

Genomic DNA and RNA extraction and cDNA synthesis

Genomic DNA (gDNA) and RNA samples from three individuals selected for heterozygosity at the T1D most associated CD226 SNP, rs763361, were extracted from unstimulated positively-selected CD14+ monocyte samples (Miltenyi Biotec) kindly provided by Paul Lyon. RNA samples were then cleaned-up using RNeasy kit with DNase treatment (QIAGEN) following the manufacturers' instructions. RNA purity and quality were assessed using Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano assay (Agilent Technologies, USA) according to manufacturers' instructions. Quantification of RNA was measured using Nanodrop 1000 spectrophotometer (Thermo Scientific). 1 µg of total RNA was used per reverse transcription reaction for synthesizing cDNA using the Superscript[™] III RT kit (Invitrogen). cDNA was primed with 1 μ l of 500 ng/ μ l oligo dT primer (18-mer). To control the absence of gDNA, a corresponding reverse transcriptase (RT)-negative control template was set up for each reverse transcription reaction without the addition of reverse transcriptase. The presence of gDNA in RT-negative samples was assessed by quantitative PCR and none of the samples were found to have gDNA contamination (data not shown).

Allele-specific gene expression analysis

Primers were designed against conserved sequences flanking the ASE reporter SNP, rs763361 (forward *CD226* primer 5'-CCCAATAACTATAGAAGTCCCATCTC-3' and reverse *CD226* primer 5'-GGTAGACCTTGGGTAGTGGAAA-3'). Both gDNA

and cDNA from the genotype-selected individuals were amplified using AmpliTaq Gold protocol (ABI) according to manufacturer's protocol using 2.5 mM MgCl₂ with an annealing temperature of 55°C. The PCR products were gel-purified using QIAquick Gel Extraction Kit (QIAGEN), then transformed into competent cells. Over 384 bacterial colonies were picked from the agar plates for each gDNA and cDNA samples and directly inserted into the AmpliTaq Gold PCR mix with 2.5 mM MgCl₂, T3 (5'an annealing temperature of 55°C and the recommended ATTAACCCTCACTAAAGGGA-3') and T7 (5'-TAATACGACTCACTATAGGG-3') primers. The colonies were then screened by sequencing using the reverse CD226 primer. The sequencing reactions were performed using Applied Biosystems' BigDye chemistry (version 3.1), resolved using an ABI 3730xl Analyzer and the number of sequences with the A or the G allele of rs763361 were counted. Statistical analysis was performed using a 2 x 2 contingency table to calculate two-tailed *P*-values.

Sample id	rs763361 3'UTR G>A	gDNA	cDNA	Mantel- Haenszel test
	Allele A (sus)	88 (52.1) 152 (43.6)	46 (30.5) 137 (38.4)	
C524	Allele B (prot)	81 (47.9) 197 (56.4)	105 (69.5) 220 (61.6)	
	<i>P</i> -value			1.04x10 ⁻³
C507	Allele A (sus)	81 (45.5)	66 (35.5)	

		145 (43.5)	114 (31.1)	
	Allele B (prot)	97 (54.5)	120 (64.5)	
		188 (56.5)	253 (68.9)	
	P-value			1.2x10 ⁻⁴
	Allele A (sus)	82 (45.3)	62 (42.8)	
		178 (48.2)	139 (37.1)	
C526	Allele B (prot)	99 (54.7)	83 (57.2)	
		191 (51.8)	236 (62.9)	
	<i>P</i> -value			5.79x10 ⁻³

Supplementary Table: CD14+ monocytes, *CD226* C-BASE ASE assay. Each cell shows n (%) with the top line operator 1 who used 192 colonies per sample and the bottom line operator 2 who used 384 colonies per sample. The p value shown is from the Mantel-Haenszel test which combines information over the two strata defined by operator.