CuH-Catalyzed Enantioselective 1,2-Reductions of α,β-Unsaturated Ketones

Supporting Information

Ralph Moser, Žarko V. Bošković, Christopher S. Crowe and Bruce H. Lipshutz*

Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 <u>lipshutz@chem.uscb.edu</u>

Table of Contents

I.	General Information	S2
II.	Optimization conditions for regio- and stereocontrolled 1,2-reductions	S3-S9
III.	Synthesis of α -substituted α , β -unsaturated ketones	S10-S13
IV.	Addition to Table 2	S14
V.	CuH catalyzed asymmetric 1,2-reductions of α -substituted enones	S15-S21
VI.	Tandem 1-pot asymmetric 1,2-reduction of an enone followed by 1,4-reduction of an enoate	S22
VII.	Characterization data	S23-S70

I. General Information

Unless otherwise noted, all reactions were performed in oven-dried glassware under an atmosphere of argon. Low temperature reactions were cooled in an acetone or isopropanol bath, hold at the indicated temperature using a cryostat. DEMS (Alfa Aesar, Stock # A10153) was used as received without further purification. THF was freshly distilled from benzophenone-sodium ketyl. Et₂O (anhydrous, Fisher, Stock # E138-20) was used as received. Analytical thin layer chromatography (TLC) was performed using Silica Gel 60 F₂₅₄ plates (Merck, 0.25 mm thick). The developed chromatogram was analyzed by UV lamp (254 nm) or aqueous potassium permanganate (KMnO₄). Flash chromatography was either performed in glass columns using Silica Flash[®] P60 (SiliCycle, 40-63 µm), or on pre-packed SINGLE StEPTM columns (standard silica, Thomson) using a BIOTAGE SP-4[®] system. GCMS data was recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). As capillary column a HP-5MS cross-linked 5% phenylmethylpolysiloxanediphenyl column (30 m x 0.250 mm, 0.25 micron, Agilent Technologies) was employed. Helium was used as carrier gas at a constant flow of 1 mL/min. Retention times (t_R) refer to the following temperature program: 50°C for 5 min; heating rate 20°C/min; 300°C for 20 min; injection temperature 250°C; detection temperature 280°C. ¹H and ¹³C spectra were recorded at 22°C on a Varian UNITY INOVA Avance 400 MHz or a Varian UNITY INOVA 500 MHz. Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.27) ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz), and integration. Chemical shifts of ¹³C NMR spectra are reported in ppm from the central peak of $CDCl_3$ (77.23 ppm) on the δ scale. High resolution mass analyses were obtained using a VG70 double-focusing magnetic sector instrument (VG Analytical) for EI and a PE Sciex QStar Pulsar quadrupole/TOF instrument (API) for ESI.

II. Optimization conditions for regio- and stereocontrolled 1,2-reductions

Optimization procedure for the enantioselective CuH-catalyzed 1,2-reduction of α -substituted enones:

A conical 3 mL microwave vial containing a conical stir bar was charged with fine powdered Cu(OAc)₂ •H₂O (0.5 mg, 3 mol %, 3 µmol) and ligand (3 mol %, 3 µmol). The vial was capped with a rubber septum and placed under an Argon atmosphere, 0.2 mL solvent was added via syringe. At rt, silane (0.3 mmol) was introduced and stirred for 10 min. The vial was then placed into a pre-cooled acetone bath at the indicated temperature and stirred for an additional 5 min. The substrate (16 mg, 0.1 mmol) was subsequently introduced *via* syringe. The side of the reaction vial was rinsed with Et₂O (2 x 50 µL). Conversion was monitored by TLC and the reaction was quenched at the indicated temperature after the indicated time by the addition of 0.5 mL sat. NH₄F/MeOH. The reaction vial was taken out of the cooling bath and warmed to rt. After filtration through SiO₂, the solvent was evaporated *in vacuo* and the crude reaction mixture was analyzed by NMR and purified by column chromatography on silica gel. The purified product was analyzed by analytical HPLC on a chiral stationary phase for the determination of *ee*.

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	ee [%] (HPLC)	exp.
R = Ph	(R)-SEGPHOS	THF	-25	30 (96 h)	trace	19	80	RM610
R = ^{<i>i</i>} Pr	(R)-iPr-SEGPHOS	THF	-25	5 (96 h)	n.d.	< 5	4	RM614
PR ₂ = -P	(<i>R</i>)-MP2-SEGPHOS	THF	-25	30 (<i>96 h</i>)	trace	19	59	RM612
$PR_2 = -P$ Ph	(<i>R</i>)-P3-SEGPHOS	THF	-25	40 (96 h)	trace	21	62	RM613
R = -{	(R)-DM-SEGPHOS	THF	-25	100 (<i>8 h</i>)	trace	70	81	RM611
R = -ŧ OMe	(R)-DTBM-SEGPHOS	THF	rt	> 90 (4.5 h)	trace	78	75	RM588
`t-Bu			-25	100 (5.5 h)	1	87	86	RM592
			-50	100 (11 h)	trace	86	89	RM623
			-78	0 (36 h)	-	-	-	RM599

3 mol % Cu(OAc)_2 \cdot H_2O 3 mol % L* 3 eq DEMS solvent (.3 M), temp.

O OH + Ph Ph'

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
R = -\$ OMe	(R)-DTBM-SEGPHOS	THF	rt	> 90 (4.5 h)	trace	78	75	RM588
t-Bu			-25	100 (5.5 h)	1	87	86	RM592
			-50	100 (11 h)	trace	86	89	RM623
			-78	0 (36 h)	-	-	-	RM599
		toluene	-25	20 (21 h)	trace	5	n.d.	RM604
		DCM	-25	10 (21 h)	trace	1	n.d.	RM605
		hexanes	-25	40 (21 h)	trace	20	90	RM606
		DMF	-25	0 (21 h)	-	-	-	RM607
		MeOH	-25	0 (21 h)	-	-	-	RM608

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
R = -ŧ	(R)-DTBM-SEGPHOS	MTBE	-25	100 (9 h)	trace	86	88	RM617
t-Bu		2-MeTHF	-25	< 10 (21 h)	trace	< 5	n.d.	RM618
		CPME	-25	100 (21 h)	2	83	85	RM619
		DME	-25	100 (9 h)	3	81	83	RM620
		Et ₂ O	-25	100 (6 h)	2	83	91	RM609
			-35	25 (<i>80 h</i>)	trace	12	87	RM674
			-50	< 5 (26 h)	n.d.	n.d.	n.d.	RM669
			-78	< 5 (26 h)	n.d.	n.d.	n.d.	RM671
	(S)-DTBM-SEGPHOS	Et ₂ O	-25	100 (5 h)	trace	87	88	RM703

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
R = -{	(<i>S</i>)-3,5-Xyl- MeO-BIPHEP	THF	-25	100 (<i>21 h</i>)	trace	83	85	RM593
Υ.		Et ₂ O	-25	100 (8.5 h)	trace	96	89	RM740
R = -{	(<i>S</i>)-3,5-iPr- MeO-BIPHEP	THF	-25 to <i>rt</i>	< 5 (22 h)	n.d.	n.d.	n.d.	RM736
`i-Pr		Et ₂ O	-25 to <i>rt</i>	< 5 (20 h)	n.d.	n.d.	n.d.	RM742
R = -{-{	(<i>S</i>)-3,4,5-Me- MeO-BIPHEP	THF	-25	100 (<i>8 h</i>)	trace	76	84	RM615
Ň		Et ₂ O	-25	100 (8.5 h)	trace	95	91	RM741
			-45	< 5 (28 h)	n.d.	n.d.	n.d.	RM747
R = -ŧ-Bu -OMe	(<i>R</i>)-3,5-tBu-4-MeO- MeO-BIPHEP	THF Et₂O	-25	100 (5 h)	trace	98	89	RM737
		2	-25		liace	55	90	
			-45	< 1U (36 h)	trace	5	80	HM748

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	ee [%] (HPLC)	exp.
R = Ph, R' = <i>t</i> -Bu	SL-J002-1	THF	rt	100 (4.5 h)	trace	90	50	RM590
		Et ₂ O	-25	70 (<i>32 h</i>)	trace	43	69	RM594
R = Cy, R' = Ph	SL-J004-1	Et ₂ O	-25	40 (<i>20 h</i>)	trace	33	42	ZB3-208
R = Ph, R' = 3,5-Xylyl	SL-J005-1	Et ₂ O	-25	100 (20 h)	trace	81	52	ZB3-209
R = 3,5-CF ₃ Ph, R' = 3,5-Xylyl	SL-J008-1	Et ₂ O	-25	100 (20 h)	trace	82	3	ZB3-210
$R = 4$ - $CF_3Ph, R' = t$ - Bu	SL-J011-1	Et ₂ O	-25	40 (20 h)	trace	31	57	ZB3-211
R = 3,5-Me-4-MeO, R' = <i>t</i> -Bu	SL-J013-1	Et ₂ O	-25	100 (20 h)	trace	81	54	ZB3-212
R = 2-Furyl, R' = 3,5-Xylyl	SL-J015-1	Et ₂ O	-25	100 (40 h)	4	85	9	RM724
R = 1-Naphtyl, R' = 3,5-Xylyl	SL-J404-1	Et ₂ O	-25	100 (26 h)	trace	89	25	RM725
R = 3,5-Me-4-MeO, R' = 2-Tolyl	SL-J425-1	Et ₂ O	-25 to <i>rt</i>	100 (38 h)	trace	86	10	RM726
R = <i>t</i> -Bu, R' = Ph	SL-J502-1	Et ₂ O	-25	100 (40 h)	trace	87	27	RM727
R = t-Bu, $R' = 2$ -Tolyl	SL-J505-1	Et ₂ O	-25 to <i>rt</i>	15 <i>(38 h)</i>	trace	10	3	RM728

3 mol % Cu(OAc)_2 \cdot H₂O 3 mol % L* 3 eq DEMS solvent (.3 M), temp.

OH + Ph Ph′

Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
3,3'-Me-Monphos	Et ₂ O Et ₂ O	-25 rt	10 (<i>12 h</i>) 30 (<i>7 h</i>)	trace trace	7 20	n.d. 2	ZB3-201 ZB3-205
(<i>S,R,R</i>)-N(CPhHMe) ₂	Et ₂ O	-25	0 (12 h)	-	-	-	ZB3-202

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
	(<i>R</i>)-BINAP	THF	-25	100 (<i>60 h</i>)	trace	91	73	RM704
PPh ₂ PPh ₂	(<i>S</i>)-H8-BINAP	THF	-25	85 (60 h)	trace	75	67	RM715
PPh ₂ PPh ₂	(<i>R</i>)-[2.2]-Phanephos	THF	-25	20 (96 h)	n.d.	13	57	RM616
Ar ₂ P PAr ₂	(S)-(-)-DM-TUCKUP (Ar = 3,5-Xylyl)	THF	-25 to <i>rt</i>	10 (72 h)	n.d.	n.d.	n.d.	RM709

 $\begin{tabular}{|c|c|c|c|c|c|c|} \hline Bisphosphine ligands \end{tabular} Ph & \hline & 0 & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ and }\% \end{tabular} L^* & O & \hline & 3 \mbox{ and }\% \end{tabular} L^* & O & \hline & 3 \mbox{ and }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 3 \mbox{ mol }\% \end{tabular} L^* & O & \hline & 0 \end{tabular} L^* & O & O \end{tabular} L^* & O$

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
Ph ₂ P PPh ₂	(-)-TetraMe-BITIOP	THF	-25 to <i>rt</i>	15 (72 h)	n.d.	n.d.	n.d.	RM710
PPh ₂ PPh ₂	(<i>S</i>)-(-)-Bitianp	THF	-25	90 (60 h)	trace	81	62	RM714
PPh ₂ N E	(<i>S,R</i>)-Me-BoPhoz	THF	-25 to <i>rt</i>	60 (<i>28 h</i>)	10	55	38	RM713
	(-)-DANP	THF	-25	50 (<i>60 h</i>)	trace	25	n.d.	RM716

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
$F \rightarrow 0$ $F \rightarrow 0$ $F \rightarrow 0$ $F \rightarrow 0$ PPh_2 PPh_2	(<i>R</i>)-DifluorPhos	THF	-25 to <i>rt</i>	100 (<i>72 h</i>)	trace	91	67	RM706
	(<i>R</i>)-SynPhos	THF	-25	100 (<i>16 h</i>)	trace	87	77	RM705

	Ligand	solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
MeO PPh ₂ MeO PPh ₂ MeO OMe		THF	-25 to <i>rt</i>	15 (72 h)	trace	13	14**	RM707
CI MeO PAr ₂ PAr ₂ CI	Ar = -₹	THF	-25	100 (<i>16 h</i>)	trace	91	77	RM708
MeO MeO PAr ₂ MeO PAr ₂ OMe	CTH-(<i>R</i>)-Xylyl-P-Phos Ar = -१	THF	-25 to <i>rt</i>	100 (22 h)	4	90	77	RM738

** = quality and source of ligand unknown

Use of PMHS as hydride source instead did not improve *ee*.

	3 O 3	mol % Cu(OAc) ₂ · H ₂ mol % (<i>R</i>)-DTBM-SE	20 GPHOS	0	o I	Ή
Ph	3 3	eq PMHS olvent (.3 M), temp.	Ph	+	Ph	
solvent	temp. [°C]	convn. [%] (<i>time</i>) (TLC)	1,4-reduction (isolated yield)	1,2-reduction (isolated yield)	<i>ee</i> [%] (HPLC)	exp.
THF	-25	100 (<i>9 h</i>)	trace	82	82	RM621
Et ₂ O	-25	100 (<i>16 h</i>)	trace	72	86	RM622

III. Synthesis of α -substituted α , β -unsaturated ketones

General procedure for the synthesis of a-substituted enones (unoptimized conditions). To a 50 mL round bottom flask was added 20 mL of glacial acetic acid and 2 mL of sulfuric acid. A ketone was introduced followed by the addition of an aldehyde. The vial was capped with a rubber septum and stirred overnight at rt. The mixture was then diluted with diethylether and neutralized with saturated aq. sodium bicarbonate and extracted three times with diethylether. The organic layer was separated and washed with water and then brine, and dried over anhydrous MgSO4. The solvent was evaporated in *vacuo* and the product isolated by silica gel column chromatography using EtOAc in hexanes 3% to 8% gradient.

(E)-2-Methyl-1-phenylpent-1-en-3-one(3)¹

Following the general procedure for α -substituted enones, using 3-pentanone (11 mmol, 1.1 equiv) and benzaldehyde (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 1.18 (t, *J* = 7.2 Hz, 3H), 2.07 (d, *J* = 0.8 Hz, 3H), 2.85 (q, *J* = 7.2 Hz, 2H), 7.31-7.38 (m, 1H), 7.39-7.42 (m, 4H), 7.53 (s, 1H).

(*E*)-3-benzylidenepentan-2-one (4)

Following the general procedure for α -substituted enone, using 2-pentanone (11 mmol, 1.1 equiv) and benzaldehyde (10 mmol, 1 equiv); spectra matches previously reported data.²

(E)-3-Benzylideneoctan-2-one (5)

Following the general procedure for α -substituted enones, using 2-octanone (11 mmol, 1.1 equiv) and benzaldehyde (10 mmol, 1 equiv); 1 H NMR (400 MHz, CDCl₃): δ 0.88 $\begin{bmatrix} 1 \\ C_5H_{11} \end{bmatrix}$ (t, J = 6.8 Hz, 3H), 1.27–1.34 (m, 4H), 1.43–1.47 (m, 2H), 2.40–2.50 (m, 5H), 7.34– 7.47 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 14.2, 22.6, 26.4, 26.5, 29.0, 32.2, 128.7, 128.7, 129.4, 136.0, 139.6, 143.3, 200.5; HRMS(EI) calcd. for $C_{15}H_{20}O(M^+)$: 216.1514, found: 216.1520.

(E)-3,4-Diphenylbut-3-en-2-one (6)⁵

Pd(dtbpf)Cl₂ (7 mg, 5 mol %, 0.011 mmol) was dissolved in 1 ml (0.22 M) of THF followed by the addition of Et_3N (66 mg, 0.66 mmol, 3 equiv.), 3-bromo-4-phenyl-3-buten-2-one (0.22 mmol, 50 mg), phenylboronic acid (0.44 mmol, 2 equiv., 54 mg), and water (0.1 ml), and stirred at room temperature until the full consumption of the bromide. Product was isolated using column chromatography (6 % ethyl acetate in

hexanes) yielding title compound as crystalline solid in 95% yield (190 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 7.02–7.04 (m, 2H), 7.14–7.22 (m, 5H), 7.39–7.42 (m, 3H), 7.65 (s, 1H).

(Z)-3-Bromo-4-phenyl-3-buten-2-one $(7)^3$

Prepared according to a previously published procedure.⁴

¹H NMR (400 MHz, CDCl₃): δ 2.60 (s, 3H), 7.43-7.45 (m, 3H), 7.86-7.88 (m, 2H), 8.03 (s, 1H).

(*E*)-3-Methylnon-3-en-2-one (8)

Followi mmol, 1

Following the general procedure for α -substituted enones, using 2-butanone (20 mmol, 10 equiv) and hexanal (2 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.2 Hz, 3H), 1.30–1.35 (m, 4H), 1.42-1.51 (m, 2H), 1.76 (s, 3H),

2.20-2.27 (m, 2H), 2.31 (s, 3H), 6.63 (t, J = 7.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 11.3, 14.2, 22.7, 25.6, 28.5, 29.3, 31.8, 137.8, 144.3, 200.2; HRMS(EI) calcd. for C₁₀H₁₈O (M⁺): 154.1358, found: 154.1361.

(*E*)-4-(4-Methoxyphenyl)-3-methyl-3-buten-2-one (9)⁵

Following the general procedure for α -substituted enones, using 2-butanone (11 mmol, 1.1 equiv) and 4-methoxybenzaldehyde (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 2.45 (s, 3H), 3.85 (s, 3H), 6.94 (d, J = 8 Hz, 2H), 7.41 (d, J = 8 Hz, 2H), 7.47 (s, 1H).

(E)-4-(3-Methoxyphenyl)-3-methyl-3-buten-2-one $(10)^{1}$

Following the general procedure for α -substituted enones, using 2-butanone (11 mmol, 1.1 equiv) and 3-methoxybenzaldehyde (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 2.05 (s, 3H), 2.46 (s, 3H), 3.83 (s, 3H), 6.89 (dd, J = 8.4 Hz, 1H), 6.94 (t, J = 1.6 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 8 Hz, 1H), 7.49 (s, 1H).

(*E*)-3-Methyl-4-(4-methylphenyl)-3-buten-2-one $(11)^{1}$

Following the general procedure for α -substituted enones, using 2-butanone (11) mmol, 1.1 equiv) and 4-tolualdehyde (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 2.38 (s, 3H), 2.46 (s, 3H), 7.22 (d, J = 8 Hz, 2H), 7.34 (d, J= 8.4 Hz, 2H), 7.50 (s, 1H).

(E)-3-Methyl-4-(4-trifluoromethylphenyl)-3-buten-2-one (12)

Following the general procedure for α -substituted enones, using 2-butanone (11 mmol, 1.1 equiv) and 4-(trifluoromethyl)-benzaldehyde (10 mmol, 1 equiv) used as aldehyde; ¹H NMR (400 MHz, CDCl₃): δ 2.04 (s, 3H), 2.48 (s, 3H), 7.49-7.51 (m, 3H), 7.66 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 13.2, 26.1, 124.1 (g, ${}^{1}J_{CF} = 270$ Hz), 125.6 (g, ${}^{3}J_{CF} = 4$ Hz), 129.9 (g, ${}^{2}J_{CF} = 32$ Hz), 130.0, 137.8, 139.6,

139.7, 200.1; HRMS(EI) calcd. for $C_{12}H_{11}F_{3}O(M^{+})$: 228.0762, found: 228.0759.

(E)-3-Methyl-4-(4-nitrophenyl)-3-buten-2-one $(13)^6$

Following the general procedure for α -substituted enones, using 2-butanone (11 mmol, 1.1 equiv) and 4-nitrobenzaldehvde (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 2.05 (s, 3H), 2.49 (s, 3H), 7.51 (s, 1H), 7.55 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 5.2 Hz, 2H).

(E)-4-(6-Bromobenzo-1,3-dioxol-5-yl)-3-methyl- 3-buten-2-one (14)

Following the general procedure for α -substituted enones, using 2-butanone (11 mmol, 1.1 equiv) and 6-bromopiperonal (10 mmol, 1 equiv); ¹H NMR (400 MHz, CDCl₃): δ 1.92 (d, J = 1.6 Hz, 3H), 2.47 (s, 3H), 6.29 (s, 2H), 6.84 (s, 1H), 7.10

(s, 1H), 7.50 (d, J = 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.0, 26.1, 102.3, 110.2, 113.1,$ 116.1, 129.1, 138.2, 139.2, 147.3, 148.7, 200.1; HRMS(EI) calcd. for C₁₂H₁₁BrO₃ (M⁺): 281.9892, found: 281.9899.

2-Methyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (17)⁷

Step 1: 1,3-Cyclohexanedione (5.6 g, 50 mmol) was dissolved in 5 M NaOH (2 g in 10 mL H₂O, 50 mmol) followed by the addition of methyl iodide (16.33 g, 115 mmol, 2.3 equiv) and was refluxed overnight. Product was isolated as a crystalline solid (1.28 g, 20 % yield).⁸

Step 2: 2-Methyl-1,3-cyclohexanedione (214 mg, 1.7 mmol) was dissolved in 10 mL of DCM (0.17 M), followed by the addition of pyridine (268 mg, 3.4 mmol, 2 equiv), and upon cooling to -78 °C, triflic anhydride (575 mg, 2.04 mmol, 1.2 equiv) was added dropwise. The mixture was warmed to 0 °C and stirred until the consumption of the starting material. Product was isolated using column chromatography (gradient 6-8 % EtOAc in hexanes).⁹ ¹H NMR (400 MHz, CDCl₃): δ 1.86 (t, *J* = 2 Hz, 3H), 2.05–2.12 (m, 2H), 2.47–2.51 (m, 2H), 2.72–2.76 (m, 2H).

^a Reactions were carried out on 0.25 mmol scale in 0.5 mL Et₂O. Isolated yields after column chromatography are given in parentheses. *Ee*'s were determined by chiral HPLC or chiral GC analysis. ^b 1,4-Reduction product was isolated in 24% yield. ^c Low conversion after 17 h.

V. CuH catalyzed asymmetric 1,2-reductions of α-substituted enones

General procedure for the enantioselective CuH-catalyzed 1,2-reduction of α -substituted enones using (*R*)-DTBM-SEGPHOS (*GP1*):

A conical 3 mL microwave vial containing a conical stir bar was charged with fine powdered Cu(OAc)₂ •H₂O (1.3 mg, 3 mol %, 7.5 µmol) and (*R*)-DTBM-SEGPHOS (8.8 mg, 3 mol %, 7.5 µmol). The vial was capped with a rubber septum and placed under an Argon atmosphere, 0.4 mL Et₂O was added via syringe. At rt, DEMS (120 µL, 0.75 mmol) was introduced, resulting in a brown solution after 10 min. The vial was then placed into a pre-cooled acetone bath at -25 °C and stirred for an additional 5 min. Liquid substrates (0.25 mmol) were subsequently introduced *via* syringe; solid substrates (0.25 mmol) were added all at once. The side of the reaction vial was rinsed with Et₂O (2 x 50 µL). After TLC confirmed full conversion, the reaction was quenched at -25 °C by the addition of 0.5 mL sat. NH₄F/MeOH. The reaction vial was taken out of the cooling bath and warmed to rt. After filtration through SiO₂, the solvent was evaporated *in vacuo* and the crude reaction mixture purified by column chromatography on silica gel.

General procedure for the enantioselective CuH-catalyzed 1,2-reduction of α -substituted enones using (S)-3,4,5-Me-MeO-BIPHEP (*GP2*):

A conical 3 mL microwave vial containing a conical stir bar was charged with fine powdered Cu(OAc)₂ •H₂O (1.3 mg, 3 mol %, 7.5 μ mol) and (*S*)-3,4,5-Me-MeO-BIPHEP (5.6 mg, 3 mol %, 7.5 μ mol). The vial was capped with a rubber septum and placed under an Argon atmosphere, Et₂O (0.4 mL) was added *via* syringe. At rt, DEMS (120 μ L, 0.75 mmol) was introduced, resulting in a brown solution after 40 min. The vial was then placed into a pre-cooled acetone bath at -25 °C and stirred for an additional 5 min. Liquid substrates (0.25 mmol) were subsequently introduced *via* syringe, while solid substrates (0.25 mmol) were added all at once. The side of the reaction vial was rinsed with Et₂O (2 x 50 μ L). After TLC confirmed full conversion, the reaction was quenched at -25 °C by the addition of 0.5 mL sat. NH₄F/MeOH. The reaction vial was taken out of the cooling bath and warmed to rt. After filtration through SiO₂, the solvent was evaporated *in vacuo* and the crude reaction mixture purified by column chromatography on silica gel. (S)-(+)-3-Methyl-4-phenyl-but-3-en-2-ol.^{10,11}

OH Using *GP1*: TLC: $R_f = 0.24$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 39.8 mg (98% yield); colorless viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 1.37 (d, J = 6.5 Hz, 3H), 1.62 (br, 1H), 1.89 (s, 3H), 4.39 (q, J = 6.5 Hz, 1H), 6.52 (s, 1H), 7.20-7.35 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 13.61, 22.00, 73.88, 124.61, 126.61, 128.32, 129.16, 137.83, 141.80; HRMS(EI) calcd. for C₁₁H₁₄O (M⁺) 162.1045, found: 162.1041; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes, 1.0 mL/min, t_R = 9.3 and 10.6 min, 91% *ee*; $[\alpha]_{589}^{20} = +6.2$ (c = 0.34, CHCl₃) (lit. $[\alpha]_{589}^{20}$ = -7.0 (c = 0.27, CHCl₃) for (R)-enantiomer)¹⁴.

(*R*)-(+)-2-Methyl-1-phenyl-pent-1-en-3-ol.¹²

OH Using *GP2*: TLC: $R_f = 0.30$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 42.3 mg (96% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 0.94 (t, J = 8.0 Hz, 3H), 1.64-1.70 (m, 2H), 1.73 (br, 1H), 1.85 (s, 3H), 4.10 (t, J = 6.5 Hz, 1H), 6.48 (s, 1H), 7.19-7.34 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 10.28, 13.27, 28.10, 79.74, 126.18, 126.60, 128.30, 129.16, 137.80, 140.24; HRMS (EI) calcd. for C₁₂H₁₆O (M⁺): 176.1201, found 176.1201; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 2.5% IPA/hexanes, 1.0 mL/min, t_R = 15.3 and 16.9 min, 93% *ee*; $[\alpha]_{589}^{20} = +10.1$ (c = 0.37, CHCl₃) (lit. $[\alpha]_D^{20} = -10.67$ (c = 0.003, CHCl₃) for (*S*)-enantiomer)¹².

(S)-(+)-3-Ethyl-4-phenyl-but-3-en-2-ol.

Using *GP1*: TLC: $R_f = 0.29$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25 % EtOAc/hexanes; 41.3 mg (94% yield) colorless viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 1.13 (t, *J* = 7.5 Hz, 3H), 1.41 (d, *J* = 6.5 Hz, 3H), 1.56 (br, 1H), 2.25 (dt, *J* = 21.0, 7.5 Hz, 1H), 2.43 (dt, *J* = 21.5, 7.5 Hz, 1H), 4.43-4.48 (m, 1H), 6.56 (s, 1H), 7.21-7.36 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 14.16, 21.51, 22.77, 71.83, 124.18, 126.63, 128.42, 128.81, 137.89, 148.14; HRMS(EI) calcd. for C₁₂H₁₆O (M⁺): 176.1201, found 176.1197; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 2% IPA/hexanes, 0.5 mL/min, t_R = 40.2 and 42.3 min, 93% *ee*; [α]₅₈₉²⁰ = +8.8 (*c* = 0.93, CHCl₃).

(*R*)-(+)-3-Pentyl-4-phenyl-but-3-en-2-ol.¹³

Using *GP2*: TLC: $R_f = 0.13$ (10% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25 % EtOAc/hexanes; 50.1 mg (92% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 0.83-0.91 (m, 3H), 1.23-1.37 (m, 4H), 1.39 (d, *J* = 6.5 Hz, 1H), 6.55 (s, 1H), 7.18-7.27 (m, 3H), 7.36-7.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 14.20, 22.55, 22.76, 28.65, 29.02, 32.40, 71.92, 124.32, 126.54, 128.35, 128.79, 137.98, 147.03; HRMS(EI) calcd. for C₁₅H₂₂O (M⁺): 218.1671, found 218.1667; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 2% IPA/hexanes, 1.0 mL/min, t_R = 14.2 and 15.6 min, 90% *ee*; $[\alpha]_{589}^{20} = +15.8$ (*c* = 1.05, CHCl₃).

(*E*)-3,4-diphenylbut-3-en-2-ol.¹¹

Using *GP2*: Isolated by column chromatography using 6% EtOAc in hexanes as a clear oil; 48 mg (85% yield); ¹H NMR (400 MHz, CDCl₃): δ 1.30 (d, *J* = 6.4 Hz, 3H), 1.75 (broad s, 1H), 4.67 (q, *J* = 6.4 Hz, 1H), 6.69 (s, 1H), 6.91–7.37 (m, 10H); HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 4% IPA/hexanes; 0.5 mL/min, t_R= 22.9 and 24.5 min, 76 % *ee*.

(Z)-3-Bromo-4-phenylbut-3-en-2ol.

Using *GP2*: Isolated by column chromatography using 6% EtOAc in hexanes as a clear oil; 51 mg (91% yield); ¹H NMR (500 MHz, CDCl₃): δ 1.25 (s, 1H), 1.48 (d, *J* = 6 Hz, 3H), 4.49 (q, *J* = 6 Hz, 1H), 7.08 (s, 1H), 7.32 (t, *J* = 7 Hz, 1H), 7.37 (t, *J* = 7 Hz, 2H), 7.61 (d, *J* = 7 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 22.7, 73.8, 127.1, 128.3, 129.3, 129.3, 131.6, 135.3; HRMS(EI) calcd. for C₁₀H₉BrO (M⁺): 225.9993, found: 225.9983; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes; 0.5 mL/min, t_R= 14.0 and 15.1 min, 77 % *ee*.

(*S*)-(+)-3-Methylnon-3-en-2-ol.

OH Using *GP1*: TLC: $R_f = 0.17$ (10% EtOAc/hexanes, KMnO₄); column chromatography: Biotage, 0-10 % EtOAc/hexanes; 32.0 mg (82% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 0.89 (t, J = 7.5 Hz, 3H), 1.25 (d, J = 7.0 Hz, 3H), 1.27-1.38 (m, 6H), 1.53 (br, 1H), 1.62 (s, 3H), 1.98-2.02 (m, 2H), 4.20 (q, J = 6.5 Hz, 1H), 5.38-5.42 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 11.58, 14.26, 21.79, 22.78, 27.66, 29.40, 31.75, 73.67, 125.59, 138.48; HRMS(EI) calcd. for C₁₀H₂₀O (M⁺): 156.1514, found 156.1508; HPLC separation

conditions: CHIRALPAK AD-H, 210 nm, 1% IPA/hexanes, 1.3 mL/min, $t_R = 11.1$ and 11.8 min, 90% *ee*; $[\alpha]_{589}^{20} = +7.5$ (*c* = 0.27, CHCl₃).

(R)-(+)-4-(4-Methoxyphenyl)-3-methylbut-3-en-2-ol.¹⁴

OH Using *GP2*: TLC: $R_f = 0.23$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 47.0 mg (98% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.36 (d, *J* = 6.0 Hz, 3H), 1.86

(br, 1H), 1.88 (s, 3H), 3.82 (s, 3H), 4.37 (q, J = 5.5 Hz, 1H), 6.45 (s, 1H),

6.89 (d, J = 7.0 Hz, 2H), 7.23 (d, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 13.48, 21.92, 55.40, 73.98, 113.72, 124.12, 130.30, 130.36, 140.10, 158.23; HRMS(EI) calcd. for C₁₂H₁₆O₂ (M⁺): 192.1150, found 192.1143; HPLC separation conditions: CHIRALCEL OB-H, 254 nm, 10% IPA/hexanes, 1.0 mL/min, t_R = 8.5 and 12.5 min, 89% *ee*; $[\alpha]_{589}^{20} = +12.3$ (*c* = 1.52, CHCl₃) (lit. $[\alpha]_D^{20} = -16.7$ (*c* = 1.36, CHCl₃) for (*S*)-enantiomer)¹⁵.

(*R*)-(+)-4-(3-Methoxyphenyl)-3-methylbut-3-en-2-ol.¹⁵

Using *GP2*: TLC: $R_f = 0.19$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25 % EtOAc/hexanes; 46.6 mg (97% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.36 (d, *J* = 6.5 Hz, 3H), 1.85 (br, 1H), 1.88 (s, 3H), 3.80 (s, 3H), 4.36 (q, *J* = 6.5 Hz, 1H), 6.48 (s, 1H),

6.76-6.87 (m, 3H), 7.23-7.24 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 13.69, 21.95, 55.35, 73.75, 112.09, 114.73, 121.71, 124.40, 129.24, 139.24, 142.11, 159.51; HRMS(EI) calcd. for C₁₂H₁₆O₂ (M⁺): 192.1150, found 192.1147; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes, 1.0 mL/min, t_R = 16.9 and 20.9 min, 92% *ee*; [α]₅₈₉²⁰ = +9.7 (*c* = 1.33, CHCl₃).

(*R*)-(+)-3-Methyl-4-(*p*-tolyl)but-3-en-2-ol.

OH Using *GP2*: TLC: $R_f = 0.32$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 43.2 mg (98% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.38 (d, J = 6.5 Hz, 3H), 1.80 (br, 1H), 1.90 (s, 3H), 2.37 (s, 3H), 4.39 (q, J = 6.5 Hz, 1H), 6.50 (s, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 13.54, 21.33, 21.92, 73.94, 124.50, 129.00, 129.05, 134.88, 136.23, 141.00; HRMS(EI) calcd. for C₁₂H₁₆O (M⁺): 176.1201, found 176.1205; HPLC

separation conditions: CHIRALPAK AD-H, 254 nm, 2% IPA/hexanes, 1.0 mL/min, $t_R = 19.9$ and 23.3 min, 90% *ee*; $[\alpha]_{589}^{20} = +15.5$ (*c* = 0.54, CHCl₃).

(R)-(+)-3-Methyl-4-(4-(trifluoromethyl)phenyl)but-3-en-2-ol.

Using *GP2*: TLC: $R_f = 0.22$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 55.3 mg (96% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.39 (d, J = 6.5 Hz, 3H), 1.88 (br, 1H), 1.89 (br, 3H), 4.40 (q, J = 6.0 Hz, 1H), 6.56 (s, 1H), 7.36 (d, J = 8.5

Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 13.86, 22.07, 73.47, 122.98, 124.27 (q, ¹ $J_{C-F} = 270.1$ Hz), 125.01 (q, ³ $J_{C-F} = 3.9$ Hz), 128.30 (q, ² $J_{C-F} = 32.1$ Hz), 129.12, 141.34, 143.96; HRMS(EI) calcd. for C₁₂H₁₃F₃O (M⁺): 230.0918, found 230.0917; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 2% IPA/hexanes, 1.0 mL/min, t_R = 16.1 and 17.8 min, 93% *ee*; [α]₅₈₉²⁰ = +5.6 (*c* = 1.24, CHCl₃).

(*R*)-(+)-3-Methyl-4-(4-nitrophenyl)but-3-en-2-ol.¹⁴

OH Using *GP2*: TLC: $R_f = 0.30$ (50% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-50 % EtOAc/hexanes; 45.6 mg (88% yield) yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 1.40 (d, J = 6.5 Hz, 3H), 1.72 (br, 1H), 1.92 (s, 3H), 4.41 (q, J = 6.5 Hz, 1H), 6.61 (s, 1H), 7.42 (d, J = 8.0

Hz, 2H), 8.19 (d, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 14.31, 22.19, 73.33, 122.55, 123.69, 129.75, 144.84, 146.15; HRMS(EI) calcd. for C₁₁H₁₃NO₃ (M⁺): 207.0895, found 207.0902; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes, 1.0 mL/min, t_R = 18.3 and 20.4 min, 95% *ee*; [α]₅₈₉²⁰ = +1.2 (*c* = 0.45, CHCl₃).

(R)-(+)-4-(6-Bromobenzo[d][1,3]dioxol-5-yl)-3-methylbut-3-en-2-ol.

Using *GP1*: TLC: $R_f = 0.24$ (25% EtOAc/hexanes, UV + KMnO₄); column chromatography: Biotage, 0-25% EtOAc/hexanes; 50.9 mg (99% yield) colorless viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 1.37 (d, J = 7.0 Hz, 3H), 1.74 (s, 3H), 1.81 (br, 1H), 4.40 (q, J = 7.0 Hz, 1H), 5.98 (s, 2H), 6.41 (s, 1H), 6.74 (s,

1H), 7.03 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 13.45, 21.97, 73.14, 101.86, 110.45, 112.71, 115.08, 124.10, 130.95, 142.76, 147.05, 147.24; HRMS(EI) calcd. for C₁₂H₁₃BrO₃ (M⁺): 284.0048, found

284.0037; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes, 1.0 mL/min, t_R = 15.1 and 19.0 min, 62% *ee*; $[\alpha]_{589}^{20}$ = +3.5 (*c* = 0.74, CHCl₃).

(R)-(+)-1-(cyclohex-1-en-1-yl)ethanol.^{16,17}

OH Using *GP1*: TLC: $R_f = 0.22$ (30% Et₂O/pentane, KMnO₄); column chromatography: 0-30% Et₂O/pentane; 32.0 mg (82% yield) colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 1.26 (d, *J* = 6.5 Hz, 3H), 1.41 (br, 1H), 1.53-1.70 (m, 4H), 1.94-2.08 (m, 4H), 4.17 (q, *J* = 7.0 Hz, 1H), 5.67 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 21.72, 22.81, 22.87, 23.88, 25.10, 72.40, 121.76, 141.46; GC separation conditions: Restek RT-BetaDEXcst (30 x 0.25 x 0.25 µm), carrier gas hydrogen, 1.0 mL/min, inlet T = 250 °C, FID T = 270 °C, oven T = 115 °C, t_R = 41.6 and 44.2 min, 83 % *ee*; $[\alpha]_{589}^{20} = +19.7$ (*c* = 1.69, CHCl₃) (lit. $[\alpha]_D^{20} = -7.4$ (*c* = 2.6, CHCl₃) for (*S*)-enantiomer)¹⁶.

(*R*)-2,4,4-Trimethylcyclohex-2-enol.¹⁸

Using *GP1*: Isolated by column chromatography using 5% EtOAc in hexanes as a clear oil; 31 mg (90% yield); ¹H NMR (400 MHz, CDCl₃): δ 0.92 (s, 3H), 0.99 (s, 3H), 1.35–1.41 (m, 1H), 1.46–1.55 (m, 2H), 1.67–1.73 (m, 1H), 1.74 (s, 3H), 1.83–1.91 (m, 1H), 3.93 (t, *J* = 4.8 Hz, 1H), 5.24 (s, 1H). GC separation conditions: CYCLOSIL-B column (30 x 0.25 x 0.25 µm), carrier gas hydrogen, 1.0 mL/min, inlet T = 250 °C, FID T = 270 °C, oven T = 70 °C, t_R = 37.5 and

38.3 min, 95% *ee*; $[\alpha]_{589}^{21} = +94.3$ (*c* = 0.79, CH₃OH) (lit. $[\alpha]_{589.3}^{21} = +80.7$ (*c* = 1.05, CH₃OH).¹⁹

3-Hydroxy-2-methylcyclohex-1-en-1-yl trifluoromethanesulfonate.²⁰

Using *GP1*: Isolated by column chromatography using 8% EtOAc in hexanes as a clear oil; 59 mg (90% yield); ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 18.7, 28.0, 31.2, ¹⁰CF₃ 69.5, 121.1 (q, *J* = 121 Hz), 128.3, 146.7; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 1% IPA/hexanes, 1.0 mL/min, t_R= 54.1 and 57.0 min,

86% ee.

(+)-trans-Pulegol.^{21,22}

OH Using *GP1*: ((*S*)-DTBM-SEGPHOS was used instead): $dr (cis:trans)^{23} = 21:79$; TLC: R_f ((+)-*cis*-pulegol) = 0.22, R_f ((+)-*trans*-pulegol) = 0.16 (20% Et₂O/pentane, KMnO₄); column chromatography: 10-20% Et₂O/pentane; 26.6 mg (69% yield of *trans*, 33.9 mg - 88% overall yield) white crystals; recrystallized from pentane; mp = 75.5-76.5 °C (crystallized from pentane; lit. mp = 76 °C)²¹; ¹H NMR (500 MHz, CDCl₃): δ 0.84-0.93 (m, 1H), 0.88 (d, *J* = 6.0 Hz, 3H), 1.11 (ddd, *J* = 14.0, 12.5, 3.0 Hz, 1H), 1.26 (br, 1H), 1.68 (d, *J* = 1.0 Hz, 3H), 1.71-1.77 (m, 1H), 1.75 (d, *J* = 2.0 Hz, 3H), 1.89-2.01 (m, 2H), 2.10-2.18 (m, 1H), 2.50 (dtd, *J* = 14.0, 3.5, 1.0 Hz, 1H), 4.85 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 19.95, 20.65, 22.36, 25.01, 26.40, 35.83, 42.55, 67.09, 125.68, 132.61; HRMS(EI) calcd. for C₁₀H₁₈O (M⁺): 154.1358, found 154.1362; [α]₅₈₉²⁰ = +102.1 (*c* = 0.37, CHCl₃; lit. [α]_D²⁰ = +100 (*c* = 1 in alcohol))²¹.

(S)-2-Methylenecycloheptanol.

HO

Using *GP2:* TLC: $R_f = 0.33$ (25% EtOAc/hexanes, KMnO₄ stain); column chromatography on silica gel using 5% EtOAc/hexanes; 25.8 mg (82%) yellowish oil; ¹H NMR (400 MHz, CDCl₃): δ 5.03 (t, J = 1.2 Hz, 1H), 4.90 (t, J = 1.2 Hz, 1H), 4.27 (dd, $J_I = 8$ Hz, $J_2 = 5.2$ Hz, 1H), 2.33–2.28 (m, 1H), 2.22–2.16 (m, 1H), 2.05–1.98 (m, 1H), 1.77–1.24 (m, 8H);²⁴

Enantiomeric excess and absolute stereochemistry were determined by Mosher ester analysis using the following procedure. 2-Methylenecycloheptanol (9.4 mg, 75 μ mol) and (*R*)-Mosher acid (48 mg, 205 μ mol) were dissolved in 1 mL (0.075 M) dichloromethane and stirred at rt until dissolved. Dicyclohexylcarbodiimide (50 mg, 242 μ mol) and *N*,*N*-dimethylaminopyridine (29 mg, 237 μ mol) were then added and the reaction progress was monitored by TLC until complete (3 h). The reaction mixture was diluted with Et₂O, partitioned with water, extracted 3x with Et₂O and the combined extracts dried over anhydrous MgSO₄. The solvent was evaporated *in vacuo* and the residue dissolved in CDCl₃ to determine *ee*: 78% by comparison of OMe resonances at 3.56 ppm and 3.54 ppm. Shielding of the methylene protons within the major isomer indicated that the absolute stereochemistry is *S*.²⁵

VI. Tandem 1-pot asymmetric 1,2-reduction of an enone followed by 1,4reduction of an enoate

A conical 3 mL microwave vial containing a conical stir bar was charged with fine powdered Cu(OAc)₂ •H₂O (1.3 mg, 3 mol %, 7.5 µmol) and (*R*)-DTBM-SEGPHOS (8.8 mg, 3 mol %, 7.5 µmol). The vial was capped with a rubber septum and the mixture placed under an atmosphere of Argon. Et₂O (0.4 mL) was added via syringe. At rt, DEMS (120 µL, 0.75 mmol) was introduced, resulting in a brown solution after 10 min. The vial was then placed into a pre-cooled acetone bath at -25 °C and stirred for additional 5 min. A pre-cooled solution of enone **1** (40.1 mg, 0.25 mmol) and enoate **21** (47.6 mg, 0.25 mmol) in Et₂O was slowly introduced *via* syringe. The side of the reaction vial was carefully rinsed with Et₂O (2 x 100 µL). After 5 h an aliquot of the reaction mixture was taken and GC/MS analysis confirmed full consumption of enoate **21**, as confirmed through GC/MS analysis after additional 5 h at -25 °C. The reaction was quenched at -25 °C by the addition of 0.5 mL sat. NH₄F/MeOH. The reaction vial was removed from the cooling bath and warmed to rt. After filtration through SiO₂, the solvent was evaporated *in vacuo* and the crude reaction mixture purified by column chromatography on silica gel (Biotage, 0-10% EtOAc/hexanes).

Allylic alcohol **2** - TLC $R_f = 0.09$ (10% EtOAc/hexanes, UV + KMnO₄); 38.9 mg (96% yield) colorless viscous oil; HPLC separation conditions: CHIRALCEL OD-H, 254 nm, 5% IPA/hexanes, 1.0 mL/min, $t_R = 9.4$ and 10.5 min, 90% *ee*; spectral data matches previously reported data.²⁶

Ester **22** - TLC $R_f = 0.37$ (10% EtOAc/hexanes, UV + KMnO₄); 45.2 mg (94% yield) colorless viscous oil; HPLC separation conditions: CHIRALCEL OB-H, 206 nm, 1% IPA/hexanes, 1.0 mL/min, $t_R = 7.6$ and 9.4 min, 97% *ee*; spectral data matches previously reported data. 26

VII. Characterization data

- ¹ Yanagisawa, A.; Goudu, R.; Arai, T. Org. Lett. 2004, 6, 4281.
- ² Tanaka, J.;Kobayashi, H.; Kanemasa, S.; Tsuge, O. Bull. Chem. Soc. Jpn. 1989, 62, 1193.
- ³ Kim, K.-M.; Park, I.-H. *Synthesis* **2004**, 264.
- ⁴ Dieter, K. R.; Nice, L. E.; Velu E. S. *Tetrahedron Lett.* **1996**, *37*, 2377.
- ⁵ Lu, S.-M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 8920.
- ⁶ Tanaka, M.; Oota, O.; Hiramatsu, H.; Fujiwara, K. Bull. Chem. Soc. Jpn. 1988, 61, 2473.
- ⁷ Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3943.
- ⁸ Barrack, S. A.; Okamura, W. H. J. Org. Chem. **1986**, 51, 3201.
- ⁹ Mori, M. Bull. Chem. Soc. Jpn. 2004, 77, 1655
- ¹⁰ Chen, T.; Jiang, J.-J.; Xu, Q.; Shi, M. Org. Lett. 2007, 9, 865.
- ¹¹ Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J.; Zhao, Y.-K.; Zhou, B. Org. Lett. 2009, 11, 1437.
- ¹² Lurain, A. E.; Maestri, A.; Kelly, A. R.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 13608.
- ¹³ Zhang, X.; Lu, Z.; Fu, C.; Ma, S. Org. Biomol. Chem. 2009, 7, 3258.
- ¹⁴ Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng, J.-G. J. Org. Chem. 2005, 70, 3584.
- ¹⁵ Zagozda, M.; Plenkiewicz, J. Tetrahedron: Asymmetry 2006, 17, 1958.
- ¹⁶ Jacquet, O.; Legros, J.-Y.; Coliboeuf, M.; Fiaud, J.-C. *Tetrahedron* **2008**, *64*, 6530.
- ¹⁷ Due to volatility of the product, the reaction was performed on 1.00 mmol scale.
- ¹⁸ Mori, K.; Puapoomchareon, P. Liebigs Ann. Chem. 1991, 1053.
- ¹⁹ Ohkuma, T.; Hattori, T.; Ooka, H.; Inoue, T.; Noyori, R. Org. Lett. 2004, 6, 2681.
- ²⁰ Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. **2006**, 128, 6499.
- ²¹ Killen Macbeth, A.; Shannon, J. S. J. Chem. Soc. 1952, 4748.
- ²² *trans*-Stereochemistry was confirmed through X-ray analysis.
- ²³ Determined through ¹H NMR analysis of crude material.
- ²⁴ Masamune, T.; Sato, S.; Abiko, A.; Ono, M.; Murai, A. Bull. Chem. Soc. Jpn. **1980**, 53, 2895.
- ²⁵ (a) Hoye, T. R.; Jeffrey, C. J.; Shao, F. Nat. Protoc. 2007, 2, 2451. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
- ²⁶ Oi, S.; Taira, A.; Honma, Y.; Sato, T.; Inoue, Y. Tetrahedron: Asymmetry 2006, 17, 598.

	Potention Time	2: 254 nm, 4 nm				
500	Retention Time					
500		F	OH Ph		9.252	500
0						0
0	2	4	6	8	10	12
emic mi : 254 nm	xture h, 4 nm Results		Minutes			
emic mi : 254 nm	xture 1, 4 nm Results Retention Tin	ne	Minutes	Area		Area 40 3
emic mi : 254 nm	xture 1, 4 nm Results <u>Retention Tir</u> 9.4: 10.76	ne 52 60	Minutes 1868 1917	<u>Area</u> 37789 77710		Area 49.3 50.6
emic mi 254 nm	xture h, 4 nm Results <u>Retention Tin</u> 9.4: 10.70 Tota	ne 52 60 als	Minutes 1868 1917 3786	Area 87789 77710		Area 49.3 50.6
eemic mi : 254 nm	xture h, 4 nm Results <u>Retention Tin</u> 9.4: 10.76 Tota riment	ne 52 60 als	Minutes 1868 1917 3786	Area 37789 77710 55499		Area 49.3 50.6 100.0
ral exper : 254 nm	xture 1, 4 nm Results <u>Retention Tir</u> 9.4: 10.76 Tota riment 1, 4 nm Results	ne 52 60 als	Minutes 1868 1917 3786	Area 87789 77710 65499		Area 49.3 50.0
iral exper : 254 nm	xture h, 4 nm Results Retention Tin 9.4: 10.70 Tota riment h, 4 nm Results Retention Tin	ne 52 60 als	Minutes 1868 1917 3786	Area 87789 77710 655499 Area		Area 9.3 49.3 50.6 100.0 Area 9
iral exper : 254 nm	xture h, 4 nm Results Retention Tin 9.4: 10.70 Tota riment h, 4 nm Results Retention Tin 9.2: 10.40	ne 52 60 als ne 52 04	Minutes 1868 1917 3786 1258 59	Area 87789 77710 55499 Area 85252 91835		Area 49.3 50.0 100.0 Area 95.3 4.4

column: CHIRALCEL OD-H (serial ODH0CE-L1108), 0.46 x 25 cm conditions: 5% IPA/hexanes, 1.0 mL/min

column: CHIRALCEL OD-H (serial ODH0CE-L1108), 0.46 x 25 cm

'eak#	Ret. Time	Area	Area%	Height	Name	Conc.
1	37.543	40807	50.1468	2171		0.000
2	38.326	40568	49.8532	1840		0.000
Total		81375	100.0000	4011		

