"Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase"

Liu et al. 2012

Supplemental data:

Supplementary Table 1 – Data collection and refinement statistics

a	Human SQS (Native)				Human SQS/ZA-A	Y248A CrtM	Y248A CrtM/ZA-A
Crystals	[Form I]	[Form II]	[Form III]	[Form IV]	[Form IV]		
PDB ID code	3VJ8	3VJ9	3VJA	3VJB	3VJC	3VJD	3VJE
molecules/ ASU	1	1	2	6	6	1	2
Data Collection							
Radiation source	NSRRC-BL13B1	NSRRC BL13 B1	NSRRC BL13 B1	NSRRC BL13B1	NSRRC BL13B1	SPring-8 BL44XU	SPring-8 BL44XU
Space group	P212121	P212121	P21	<i>P</i> 2 ₁	$P2_{1}$	P3221	P3121
Unit cell a, b, c (Å)	36.35, 93.87, 108.55	51.78, 76.66, 82.50	52.0, 82.34, 77.18	85.61, 153.86, 91.52	85.87, 153.15, 91.86	79.59, 79.59, 90.76	80.18, 80.18, 185.41
β(°)			91.57	91.68	91.72		
Resolution (Å) ^a	30-1.52 (1.57-1.52)	30-1.52 (1.57-1.52)	30-1.77 (1.83-1.77)	30-2.05 (2.12-2.05)	30-1.89 (1.96-1.89)	30-1.48 (1.53-1.48)	30-2.12 (2.20-2.12)
No. of reflections	57879 (5662)	51144 (5041)	62838 (6177)	144874 (13406)	187887 (18760)	55684 (5523)	39844 (3907)
Completeness (%)	99.4 (98.4)	99.5 (99.3)	98.3 (97.8)	98.5 (91.4)	99.4 (99.2)	99.7 (100)	99.5 (99.9)
Redundancy	7.1 (6.7)	8.0 (8.1)	4.9 (4.8)	3.9 (3.7)	3.7 (3.6)	9.2 (9.3)	9.0 (9.0)
R _{merge} (%)	3.3 (30.9)	4.5 (50.9)	6.1 (48.9)	7.7 (40.2)	6.0 (47.2)	4.9 (58.0)	7.1 (48.5)
$\mathrm{I/}_{\sigma}\left(\mathrm{I}\right)$	50.3 (5.4)	40.9 (4.1)	25.3 (3.8)	20.8 (3.6)	20.8 (2.3)	50.3 (4.2)	33.6 (4.8)
Refinement							
Reflections (work)	54872 (7789)	48484 (6971)	59604 (8490)	137577 (18416)	178388 (25845)	52719 (7632)	37663 (5423)
Reflections (free)	2933 (423)	2598 (356)	3180 (431)	7255 (967)	9431 (1376)	2820 (418)	1992 (280)
$R_{ m work}$ (%)	16.4 (17.9)	16.0 (15.6)	16.5 (17.4)	16.9 (19.8)	14.8 (18.3)	16.2 (14.9)	20.5 (21.0)
$R_{\rm free}$ (%)	19.6 (21.8)	21.4 (21.9)	23.3 (28.2)	22.7 (25.8)	19.7 (25.5)	20.6 (20.2)	25.4 (30.5)
Bond lengths (Å)	0.007	0.007	0.007	0.007	0.007	0.007	0.007
Bond angles (°)	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Mean B-values (Å ²) / No).						
Protein atoms	24.3 / 2705	23.0 / 2705	30.0 / 5404	53.7 / 15962	37.6 / 16139	23.5 / 2428	47.7 / 4770
Compound atoms					34.9 / 294	32.7 / 10	50.1 / 98
Ions		39.3 / 2	35.8 / 2		36.4 / 32		
Water molecules	44.7 / 335	42.7 / 459	48.3 / 568	56.1 / 926	42.5 / 1390	40.4 / 335	59.3 / 167
Ramachandran plot (%)							
Favored	98.5	98.8	98.6	97.0	98.4	98.6	98
Allowed	1.5	1.2	1.4	3.0	1.6	1.4	2

Supplementary Table 2 - Hydrogen bonds between ZA-A and human SQS or S. aureus CrtM	1
residues	

ZA-A	human SQS	S. aureus CrtM Y248A
bicyclic core		
0-2		Arg ⁴⁵ (NH2)
C-3 COOH	Arg ⁵² (NH1); Arg ⁷⁷ (NH2); Lys ¹¹⁷ (NZ)	Arg ⁴⁵ (NH1); Arg ²⁶⁵ (NH2)
C-4 OH	Thr ⁵⁰ (O); Arg ⁷⁷ (NH1)	His ¹⁸ (O)
C-4 COOH	Arg ⁵² (N; NE)	Lys ²⁰ (N; NZ); Arg ¹⁷¹ (NH1)
C-5 COOH	Ser ⁵¹ (OG); Ser ⁵³ (N); Tyr ⁷³ (OH)	Ser ¹⁹ (OG); Ser ²¹ (N); Tyr ⁴¹ (OH)
C-7 OH		Asn ¹⁶⁸ (ND2)
O-8		
C-1 alkyl side chain		
OAc	Val ¹⁷⁵ (O)	
C-6 acyl side chain		
ester group		Arg ¹⁷¹ (NH2)

Supplementary Table 3 - Hydrophobic interactions between ZA-A and human SQS or *S. aureus* CrtM residues

ZA-A	human SQS	S. aureus CrtM Y248A
C-1 alkyl side chain		
C1'		
C2'		
C3'-exo-double bond	Asp ⁸⁰ (CG; CB), Arg ⁷⁷ (CD)	Asp ⁴⁸ (CB; CG)
C4'-OAc group	Met ¹⁵⁰ (SD); Met ¹⁵⁴ (CE)	Leu ¹⁰⁷ (CD1; CD2)
C5'	Tyr ⁷³ (CD2; CE2)	Tyr ⁴¹ (CE1)
C5'-methyl group	Tyr ⁷³ (CD2; CE2; CZ; CG)	Tyr ⁴¹ (CD1; CE1; CG; CZ); Cys ⁴⁴ (CB)
C6'	Val ¹⁷⁹ (CG1); Tyr ⁷³ (CA)	Val ¹³⁷ (CG1)
C6'-phenyl ring	Phe ⁵⁴ (CG; CD1; CD2), Tyr ⁷³ (CD2; CA; CB), Val ¹⁷⁹	Phe ²² (CE2); Phe ²⁶ (CE2); Tyr ⁴¹ (CD1; CA; CB); Val ¹³⁷
	(CG1), Phe ²⁸⁸ (CZ)	(CG1); Leu ¹⁴¹ (CD1);
C-6 acyl side chain		
C1'	Ser ⁵³ (CB)	Phe ²² (CE2)
C2'	Ser ⁵³ (CB), Phe ⁵⁴ (CE1; CB)	Phe ²² (CE2; CD2; CZ); Ser ²¹ (CB)
C3'	Ser ⁵³ (CB)	Ser ²¹ (CB;CZ)
C4'		Ser ²¹ (CB)
C4'-methyl group	Ser ⁵³ (CB), Pro ²⁹² (CB; CA), Leu ²¹¹ (CD2; CB);	Leu ¹⁶⁴ (CD2)
	Met ²⁹⁵ (SD); Val ³²² (CG2)	
C5'	Met ²⁹⁵ (CB)	Phe ²² (CE1); Leu ¹⁶⁴ (CD2); Ile ²⁵¹ (CD1)
C6'		lle ²⁴⁷ (CG2)
C6'-methyl group	Met ²⁹⁵ (CB); Leu ²¹¹ (CD2)	Phe ²² (CE1); Leu ¹⁶⁴ (CD2); Ala ²⁴⁴ (C; CA); Ala ²⁴⁸ (CA;
		CB); Ile ²⁴⁷ (C; CB; CG2)
C7'	Met ²⁹⁵ (C), Ala ²⁹⁶ (CA; CB)	
C8'	Leu ²¹¹ (CD2; CB), Thr ²¹⁴ (CG2; CB), Ala ²⁹⁶ (CA; CB);	Ala ²⁵ (CB); Ala ²⁴⁴ (CA)
	Asn ²¹⁵ (CG)	

Supplementary Figure 1 - Structure-based sequence alignment of conserved regions of SQS proteins with S. *aureus* **CrtM.** The human, rat, *A. thaliana, S. cerevisiae* SQS and *S. aureus* CrtM sequences were aligned using PSI-Blast with manual adjustment. The secondary structural elements were assigned by the X-ray structures of human SQS and CrtM. Strictly conserved residues are highlighted in black, homologous amino acids are shaded in gray. Regions I, II, and III shows moderate similarities to the CrtM sequence. The two conserved aspartate-rich motifs located in regions I and III are boxed in red. Tyr²⁴⁸ of CrtM is indicated by an asterisk.

Supplementary Figure 2 - (A) A ribbon model for the asymmetric unit of crystal form IV, which belongs to space group $P2_1$ and contains two trimers of human SQS (31-370). The chains of the human SQS (31-370) hexamer are shown with different colors. (B) A close-up view of the trimeric packing unit. The various conformations of α K due to the effects of crystal packing are highlighted in a box. (C) Human SQS displayed according to the B-factor putty using PyMOL (Red high B-factor to Blue: low B-factor). Two flexible regions in various crystal forms of human SQS are highlighted. The region ³¹⁵KIRKGQAVTLMMD³²⁷ (red arrow) in crystal form IV showing a diverse conformation from the others, has the highest B-factor.

Supplementary Figure 3 - ZA-A binding mode. (A) Stereoview of the ZA-A binding site. The ZA-A molecule (Chain A) is shown as a stick model superimposed on the corresponding $2F_0-F_c$ electron density maps, which are contoured at 1.0 σ (gray mesh). The bicyclic core, C-1 alkyl side chain, and C-6 acyl side chain of ZA-A are shown in gray, marine, and green, respectively. Residues near the bicyclic core are shown as thin sticks (palecyan). Residues lining the S1 site for ZA-A C-1 alkyl side chain (blue) (B) and the C site for ZA-A C-6 acyl side (green) (C) binding are indicated. The ZA-A is shown as a ball-and-stick model.

Supplementary Figure 4 - Overall structure of the Y248A CrtM/ZA-A complex. (A) Two monomers in the Y248A CrtM asymmetric unit are shown in a cylinder diagram. (B) The densities in the $2F_0-F_c$ maps (contoured at 1.0 σ) for the ZA-A in both monomers were well-defined. (C) Comparison of the crystal structures of Y248A CrtM/ZA-A and Y129A CrtM/PSPP. The bound conformation of ZA-A (green carbons) is overlaid on that of PSPP (yellow carbons). Residues lining the pocket are shown as wire models (orange carbons).