Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones

Melissa A. Scranton, Ashley Yee, Sang-Youl Park, and Linda L. Walling

SUPPLEMENTARY TABLES

Supplementary Table 1. Primers used for cloning of *AtLAP* cDNAs.

Locus	Gene	Primer name	Primer sequence ^A	
At2g24200	AtLAP1	LAP1-F	5'-AG <u>CATATG</u> ATGGCTCACACTCYCGGT-3'	
		LAP1-R	5'-AT <u>GCGGCCGC</u> TCACGAAGATGAATTCTTC-3'	
At4g30920	AtLAP2	LAP2-F	5'-G <u>CATATG</u> GC- TCATACAATCTCACACGC-3'	
		LAP2-R	5'-G <u>CTCGAG</u> TTAAGAAGAAGAATGGTTCTGT-3'	
^A Restriction enzyme sites for cloning of <i>AtLAP</i> cDNAs were incorporated into the forward (F) and reverse (R) primers. These sites are underlined and correspond to Ndel (LAP1-F, LAP2-F), Notl (LAP1-R), and Xhol (LAP2-R) sites.				

	CS Protection at 1:3	Lowest conc (µM) of Ndel Protection	% Luc Recovering at 1:3	
LAP-A	40-60%	1	14-20%	
LAP-N	40-60%	0.2	17%	
AtLAP1	0%	1	16%	
AtLAP2	N.D.	0.2	18-19%	

Supplementary Table 2. Summary of Chaperone Assays for Plant LAPs.

		CS Protection at 1:3	Lowest conc (µM) of Ndel Protection	% Luc Recovering at 1:3	Site Disruption	Hexamer Disruption
LAP-A	D347N	0%	1	17-18%	Zinc ion binding	no
Mutants	D347R	100%	0.2	~30%	Zinc ion binding	yes
	E429R	0%	0.4	~30%	Zinc ion binding	yes
	E429V	40-60%	1	17-18%	Zinc ion binding	no
	K354E	100%	0.2	40%	Catalysis	yes
	K354R	40-60%	1	17-18%	Catalysis	no
	R431A	40-60%	1	~22%	Catalysis	no
LAP-N	K357E	0%	0.2	13%	Catalysis	no
Mutants	K357R	N.D.	0.2	0%	Catalysis	no

Supplementary Table 3. Summary of Chaperone Assays for Tomato LAP-A and LAP-N mutants.

His ₆ -LAP-N enzyme	% Wild-type His ₆ -LAP-N enzyme activity
Wild-Type	100
K357E	0.35 ± 0.03
K357R	0.93 ± 0.07
K357L	0.7 ± 0.09
K357C	0.26 ± 0.11
K357M	1.47 ± 0.04
K357G	0.84 ± 0.07
K357T	0.28 ± 0.03
K357P	0.34 ± 0.13

Supplemental Table 4. Percent Wild-type His₆-LAP-N enzyme activity on Leu-AMC substrate

Purified His₆-LAPs (2160 ng) were assayed for activity towards Leu-AMC (1.58 μ M) in assay buffer (50 mM Tris-HCl, pH 8, 0.5 mM MnCl₂) in a total volume of 162 μ l. Activity assays proceeded for 30 min at 37°C. Rate of hydrolysis was determined and activity expressed as percent of wild-type His₆-LAP-N activity which was 0.24 \pm 0.01 μ mol mg⁻¹ min⁻¹ of protein (\pm SD).

SUPPLEMENTAL LEGENDS AND FIGURES

SUPPLEMENTARY FIGURE LEGENDS

FIGURE S1. **LAP-A protects NdeI from thermal inactivation in the absence of glycerol.** His₆-LAP-A was isolated and stored in the absence of glycerol. Restriction enzyme NdeI (1 U) was incubated in 1X restriction enzyme buffer 4 with or without His₆-LAP-A (0-2 μ M) for 90 min at 43°C. After thermal deactivation, 140 ng of plasmid DNA was added and digested for 90 min at 37°C. Control lanes show plasmid DNA only with supercoiled (SC) monomer and multimers and DNA after digestion with unheated NdeI. NdeI released a 4.6-kb and 0.2 kb fragment (not shown).

FIGURE S2. *Pisum sativum* Hsp18.1 protects NdeI from thermal inactivation. Restriction enzyme NdeI (1 U) was incubated alone or with 0.2-2 μ M His₆-LAP-A or PsHSP18.1 (Panel *A*) or protein A (Panel *B*). NdeI was heat denatured at 43°C and plasmid DNA was digested as described in Fig. 1. Control lanes show plasmid DNA only and DNA after digestion with unheated NdeI.

FIGURE S3. **PsHsp18.1 protects citrate synthase from thermal aggregation.** Citrate synthase (300 nM; CS) was incubated in 50 mM HEPES-KOH (pH 7.5), 5% glycerol, and 0 (\Box) or 900 nM His₆-LAP-A (**•**), PsHSP18.1 (**•**), or protein A (x) at 43°C for 60 min. Aggregation of CS was determined by measuring light scattering at 360 nm. Neither PsHSP18.1 (**•**) nor protein A (Δ) aggregated on their own. Data shown is representative of two independent experiments.

FIGURE S4. *Pisum sativum* Hsp18.1 aids in refolding of firefly luciferase. Luc $(1 \ \mu M)$ was heated at 42°C for 11 min with 1 μ M PsHsp 18.1 (•, Panel *A*), 3 μ M His₆-LAP-A (•, Panel *B*), 3 μ M protein A (x, Panel *B*), or no chaperone (\Box , Panels *A*-*B*) and then allowed to refold in rabbit reticulocyte lysate (RRL) in refolding buffer supplemented with 2 mM ATP. Percent activity corresponds to the relative luminescence compared to unheated luciferase. Measurements were taken for three technical replicates. Data is representative of at least 2 independent experiments.

FIGURE S5. LAP1 does not protect citrate synthase from thermal aggregation. Citrate synthase (300 nM; CS) was incubated in 50 mM HEPES-KOH (pH 7.5), 5% glycerol, and 0 (\blacktriangle) or 900 (\Box) nM His₆-LAP1 at 43°C for 60 min. Aggregation of CS was determined by measuring light scattering at 360 nm. LAP1 (Δ) did not aggregate on its own. Data shown is representative of two independent experiments.

FIGURE S6. **Oligomeric structure of LAP-A mutants.** *A*, Purified His₆-LAP-As (10 μ g) were fractionated on a native polyacrylamide gel (9% w/v). Protein bands were visualized by staining with Coomassie Brilliant Blue R-250. Masses of each multimer were determined as in Panel *B*. *B*, Purified wild-type and mutant His₆-LAP-As (10 μ g) were fractionated on a set of four native polyacrylamide gels (7.5-12% w/v). Molecular mass standards were chicken egg albumin (45 kDa); bovine serum albumin monomer (66 kDa) and dimer (132 kDa); and tomato His₆-LAP-A hexamer (357 kDa). LAP oligomer species masses were determined by their relative mobility and retardation coefficient as previously described (36).

FIGURE S7. **LAP-A active site point mutants protect a NdeI from thermal inactivation**. Restriction enzyme NdeI (1 U) was incubated alone or with 0.2-2 µM His₆-LAP-A, K354E, R431A, E429V, E429R, K354R, D347N, or D347R. NdeI was heat denatured and plasmid DNA was digested as described in Fig. 1. Control lanes show plasmid DNA only and DNA after digestion with unheated NdeI.

FIGURE S8. **Oligomeric structure of LAP-N mutants.** Purified His_6 -LAP-Ns (10 µg) were fractionated on a native polyacrylamide gel (9% w/v). Protein bands were visualized by staining with Coomassie Brilliant Blue R-250.

FIGURE S9. **LAP-N mutants protect NdeI from thermal inactivation**. Restriction enzyme NdeI (1 U) was incubated alone or with 0.2-2 μ M His₆-LAP-N, K357E, or K357R. NdeI was heat denatured at 43°C and plasmid DNA was digested as described in Fig. 1. Control lanes show plasmid DNA only and DNA after digestion with unheated NdeI.

FIGURE S10. LAP-N mutants do not protect CS from thermal aggregation Citrate synthase (300 nM; CS) was incubated in 50 mM HEPES-KOH (pH 7.5), 5% glycerol, and 0 (\Box) or 900 nM His₆-LAP-N (\blacksquare), K357E (\blacklozenge), or K357R (\blacktriangle) at 43°C for 60 min. Aggregation of CS was determined by measuring light scattering at 360 nm. K357E (\diamondsuit) had a small amount of aggregation on its own while K357R (\bigtriangleup) highly aggregated its own. Data shown is representative of two independent experiments.

FIGURE S11. LAP-N mutants have lower chaperone activity based on the Luc refolding assay. Luc $(1 \ \mu M)$ was heated for 11 min at 42°C with 3 μM His₆-LAP-N (\blacksquare), K357E (\blacklozenge), or K357R (\blacktriangle), or no chaperone (\Box) and then allowed to refold in rabbit reticulocyte lysate (RRL) in refolding buffer supplemented with 2 mM ATP. Percent activity corresponds to the relative luminescence compared to unheated luciferase. Measurements were taken for three technical replicates. Data is representative of at least two independent experiments.

Time (min)

Figure S11

Time (min)