eAppendix to On the Nondifferential Misclassification
of a Binary Confounder

Result 2 For A, and C binary, the partial control result holds for the effect of treat-

ment on the treated on the RD, RR, and OR scales.

Proof: We will show that Ecia—[Y[A = 1]=E[Y|A = 1]=E[Y;|A = 1] and that
Ecia=1[Y|A = 0] is between E[Y|A = 0] and E[Y;|A = 1]. It then follows immediately
that the observed adjusted effect is between the crude and true effects on the RD,
RR, and OR scales. First, note that E[Y;|A = 1] = E[Y|A = 1] by the consistency

assumption, and

Ecja=1lY[A=1]

E[Y|[A=1,0' =1]P[C' =1|A=1] + E[Y|A=1,C" = 0]P[C’ = 0|A = 1]

— E[Y|A=1]

We now prove that Ecra—1[Y|A = 0] is between E[Y|A = 0] and E[Yp|A = 1]. It is
enough to show that E[Yy|A = 1]—Ecra=1[Y|A = 0] and Ecrja=1[Y|A = 0]—-E[Y'|A = 0]

have the same sign, where

EYo|A=1] - Ec/ja=1[Y[A=0]
— (B[Y|A=0,C=1] - E[Y|A=0,C = 0))
< ({B[C|A = 1,¢" = 1] — E[C|A = 0,C" = 1]} E[C']A = 1]

+{E[C]A=1,0"=0] - E[C]A=0,C" = 0]} (1 - E[C"|A = 1]))



and

Eerjama[Y|A=0] - E[Y]|A=0]

= (B[Yo|A=1]~E[Y|4=0]) - (B[YoA = 1] - Forja-alY]A = 0])

= (E[Y|A=0,0=1]—E[Y|A=0,C =0]) (E[C|A = 1] — E[C|A = 0])
—(E[Y|A=0,C =1] - E[Y|A=0,C =0])
x ({E[C|A=1,C" = 1] — E[C|A =0,C" = 1]} E[C"|A = 1]
+{E[C|A=1,C" = 0] - E[C|A=0,C" = 0]} (1 - E[C"|A = 1]))

= (E[Y|A=0,C=1—E[Y|A=0,C =0))
x (E[C|A=0,C" = 1]{E[C"|A = 1] — E[C"|A = 0]}

_E[C|A=0,0" = 0] {E[C'|A = 1] — E[C"|A = 0]})
Then, it is enough to show that

{E[C|IA=1,0"=1] - E[C|A=0,C"=1]} E[C'|A = 1]

+{E[C|A=1,C"=0]- E[C|A=0,C" =0]} (1 - E[C'|A =1]) (1)
and

E[C|A=0,C"=1]{E[C'|A=1] - E[C'|A=0]}

—E[C|A=0,C"=0]{E[C'|A=1] - E[C'|A = 0]} (2)

have the same sign. We will prove this by showing that (1) and (2) are simultaneously
either maximized or minimized at 0.
We consider two cases: e > 1 — f and e < 1 — f, where e is sensitivity and f is

specificity. In the first case E[C|A = a,(C’] is increasing in C’ for all a, while in the



second case it is decreasing in C” for all a, with equality in both cases when e = f = 0.5.
We now prove that E[C|A = 1] < E[C|A = 0] <= E[C'|A = 1] < E[C'|A = (]
when e > 1 — f. That E[C|A = 1] < E[C|A = 0] <= E[C'|A = 1] > E[C'|A = (]

when e < 1 — f follows by a similar argument. Note that

E[C'"|A=1]=E[C|A=1le+ (1 —E[C|A=1])(1—f)

and

E[C'|[A=0]=E[C|A=0le+ (1= E[C|A=0])(1—f)

are both convex combinations of e and (1 — f). If F[C|A = 1] > E[C|A = 0], then
E[CIA=1]:(1-E[C|A=1])> E[C|A=0]: (1 - FE[C|A=0]) and E[C'|A = 1] will
be closer to e and therefore greater than E[C'|A = 0]. If E[C|A = 1] < E[C|A = 0],
the reverse relationship holds and E[C'|A = 1] < E[C"|A = 0].

Now we turn our attention to the minima and maxima of expressions (1) and (2);
we will find the extreme values with respect to E[C|A, C’]. The derivative of (2) with
respect to E[C|A = 0,C" = 1] is E[C'|A = 1] — E[C’'|A = 0] and the derivative with
respect to F[C|A = 0,C" = 0] is —{E[C'|A=1] — E[C'"|A =0]}. Therefore (2) is
monotonic in both E[C]A = 0,C" = 1] and E[C|A = 0,C" = 0], and furthermore it is
non-decreasing in one and non-increasing in the other. Therefore, the unconstrained
extrema occur at E[C|A = 0,C" = 1] = 1 and E[C|A = 0,C" = 0] = 0, and at
E[C|A=0,C"=1]=0and E[C|]A=0,C" = 0] = 1. But we know that when e > 1— f
these conditional expectations are constrained to be nondecreasing in C’; therefore the
constrained extrema occur at E[C|A=0,C"=1] =1 and E[C|A=0,C"=0] =0 and
at E[C]A=0,C"=1] =E[C]A =0,C"=0] = 1. On the other hand, when e <1 — f



these conditional expectations are constrained to be nonincreasing in C’ and therefore
the constrained extrema occur at E[C|A=0,C"=1] =0and E[C|A=0,C"=0] =1
and at E[C|]A=0,C"=1]=E[C|A=0,C"=0] = 1.

When E[C|A =0,C" =1] = E[C|A =0,C" = 0], (2) equals 0. If E[C'|A =1] <
E[C"|A = 0], then this is the maximum of (2) if e > 1— f and the minimum ife < 1— f.
If E[C"|A =1] > E[C'|A = 0] then (2) is maximized at 0 if e < 1 — f and minimized
at 0ife>1—f.

To find the extrema of (1), we restrict our attention to the case where E[C'|A =
0] < E[C'|A=1] and e > 1 — f. We will show that (1) is also minimized at 0. Because

(1) is equal to
E[C|A=1] - E[C|A=0,0' =1]P[C" = 1|A=1] — E[C = 1|A = 0,C" = 0]P[C" = 0]A = 1]
proving that it is minimized at 0 is equivalent to proving that
E[C|A=0,C"=1|P[C"=1|A=1]+E[C=1|A=0,C"=0|P[C' =0[A=1] (3)

is maximized at E[C|A = 1]. We will maximize (3) with respect to e and f.

Let D = E[C|A=0] and B = E[C|A =1].

E[C|A=0,0" =1|P[C' = 1|/A=1] - E[C = 1|A=0,C" = 0]P[C" = 0|4 = 1]

_ D<6Be+(1—B)(1—f) 1—{Be+(1—B)(1—f)}>
De+ (1 —D)(1— f) 1—{De+(1-D)(1-f)}

+(1—e) (4)

If e>1— f, then D < B and (4) is increasing in e (the derivative with respect to e is



DB+(1—B)(1—f)

positive), so in order to maximize it we set e = 1. Now (4) reduces to DT D)T)

which is increasing in f (the derivative with respect to f is positive) and is therefore
maximized at f = 1. Ate= f =1, % . E[C|A=0,C'P[C'|A =1] = E[C|A =1].
Therefore, (1) is minimized at 0.

That (1) is minimized at 0 when E[C'|A = 0] < E[C'|A =1] and e < 1 — f, and
that it is maximized at 0 when E[C'|A = 0] < E[C'|A = 1] and e > 1 — f or when
E[C'|A=0] > E[C'|A=1] and e < 1 — f, follow by analogous arguments.

Result 3 For A and C binary, if sensitivity+specificity > 1 then the bias of the ob-
served adjusted effect of treatment on the treated decreases with increasing sen-
sitivity and specificity. If in addition E[Y|A,C] is monotonic in C, then the
bias of the observed adjusted average treatment effect decreases with increasing

sensitivity and specificity.

Proof: Under monotonicity, Ec/[Y|A = a] lies between E[Y,] and E[Y|A = a] for
a = 0,1. We will show that Ex/[Y|A = 1] and Ex[Y|A = 0] move further from
E]Y|A = a] and closer to E[Y,] as e and f increase. The result follows immediately.
When e + f > 1, the signs of ZEx[V[A = 1] and (%EC’[Y|A = 1] depend only
on the sign of {E[Y|A =1,C = 1] - E[Y|A = 1,C = 0]}{E[A|C = 0] — E[A|C =
1]}.When E[Y|A, C] and E[A|C] are both either non-increasing or non-decreasing in C'
this product is negative (or 0) and Ec[Y|A = 1] is non-increasing in e and f, i.c. as e
and f increase Ec/[Y|A = 1] moves closer to E[Y;] and farther from E[Y|A = 1]. (Recall
that F[Y;] < E[Y|A = 1] when both conditional expectations are either non-increasing
or non-decreasing in C.) When one of E[Y|A, (] and E[A|C] is non-increasing and

the other non-decreasing then the product is non-negative and Ee[Y]A = 1] is non-



increasing in e and f, which again entails that as e and f increase Eo/[Y|A = 1] moves
closer to E[Y;] and further from E[Y|A = 1].

The proof that Ec/[Y|A = 0] approaches E[Yp] as e and f increase is similar.



