
eAppendix to On the Nondifferential Misclassification

of a Binary Confounder

Result 2 For A, and C binary, the partial control result holds for the effect of treat-

ment on the treated on the RD, RR, and OR scales.

Proof: We will show that EC′|A=1[Y |A = 1]=E[Y |A = 1]=E[Y1|A = 1] and that

EC′|A=1[Y |A = 0] is between E[Y |A = 0] and E[Y0|A = 1]. It then follows immediately

that the observed adjusted effect is between the crude and true effects on the RD,

RR, and OR scales. First, note that E[Y1|A = 1] = E[Y |A = 1] by the consistency

assumption, and

EC′|A=1[Y |A = 1] = E[Y |A = 1, C′ = 1]P [C′ = 1|A = 1] + E[Y |A = 1, C′ = 0]P [C′ = 0|A = 1]

= E[Y |A = 1]

We now prove that EC′|A=1[Y |A = 0] is between E[Y |A = 0] and E[Y0|A = 1]. It is

enough to show that E[Y0|A = 1]−EC′|A=1[Y |A = 0] and EC′|A=1[Y |A = 0]−E[Y |A = 0]

have the same sign, where

E[Y0|A = 1]− EC′|A=1[Y |A = 0]

= (E[Y |A = 0, C = 1]− E[Y |A = 0, C = 0])

× ({E[C|A = 1, C′ = 1]− E[C|A = 0, C′ = 1]}E[C′|A = 1]

+ {E[C|A = 1, C′ = 0]− E[C|A = 0, C′ = 0]} (1− E[C′|A = 1]))
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and

EC′|A=1[Y |A = 0]− E[Y |A = 0]

= (E[Y0|A = 1]− E[Y |A = 0])−
(

E[Y0|A = 1]− EC′|A=1[Y |A = 0]
)

= (E[Y |A = 0, C = 1]− E[Y |A = 0, C = 0]) (E[C|A = 1]− E[C|A = 0])

− (E[Y |A = 0, C = 1]− E[Y |A = 0, C = 0])

× ({E[C|A = 1, C′ = 1]− E[C|A = 0, C′ = 1]}E[C′|A = 1]

+ {E[C|A = 1, C′ = 0]− E[C|A = 0, C′ = 0]} (1− E[C′|A = 1]))

= (E[Y |A = 0, C = 1]− E[Y |A = 0, C = 0])

× (E[C|A = 0, C′ = 1] {E[C′|A = 1]− E[C′|A = 0]}

−E[C|A = 0, C′ = 0] {E[C′|A = 1]− E[C′|A = 0]})

Then, it is enough to show that

{

E[C|A = 1, C ′ = 1]− E[C|A = 0, C ′ = 1]
}

E[C ′|A = 1]

+
{

E[C|A = 1, C ′ = 0]− E[C|A = 0, C ′ = 0]
} (

1− E[C ′|A = 1]
)

(1)

and

E[C|A = 0, C ′ = 1]
{

E[C ′|A = 1]− E[C ′|A = 0]
}

−E[C|A = 0, C ′ = 0]
{

E[C ′|A = 1]− E[C ′|A = 0]
}

(2)

have the same sign. We will prove this by showing that (1) and (2) are simultaneously

either maximized or minimized at 0.

We consider two cases: e ≥ 1 − f and e ≤ 1 − f , where e is sensitivity and f is

specificity. In the first case E[C|A = a, C ′] is increasing in C ′ for all a, while in the
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second case it is decreasing in C ′ for all a, with equality in both cases when e = f = 0.5.

We now prove that E[C|A = 1] ≤ E[C|A = 0] ⇐⇒ E[C ′|A = 1] ≤ E[C ′|A = 0]

when e ≥ 1 − f . That E[C|A = 1] ≤ E[C|A = 0] ⇐⇒ E[C ′|A = 1] ≥ E[C ′|A = 0]

when e ≤ 1− f follows by a similar argument. Note that

E[C ′|A = 1] = E[C|A = 1]e+ (1−E[C|A = 1]) (1− f)

and

E[C ′|A = 0] = E[C|A = 0]e+ (1−E[C|A = 0]) (1− f)

are both convex combinations of e and (1 − f). If E[C|A = 1] > E[C|A = 0], then

E[C|A = 1] : (1− E[C|A = 1]) > E[C|A = 0] : (1− E[C|A = 0]) and E[C ′|A = 1] will

be closer to e and therefore greater than E[C ′|A = 0]. If E[C|A = 1] < E[C|A = 0],

the reverse relationship holds and E[C ′|A = 1] < E[C ′|A = 0].

Now we turn our attention to the minima and maxima of expressions (1) and (2);

we will find the extreme values with respect to E[C|A,C ′]. The derivative of (2) with

respect to E[C|A = 0, C ′ = 1] is E[C ′|A = 1] − E[C ′|A = 0] and the derivative with

respect to E[C|A = 0, C ′ = 0] is − {E[C ′|A = 1]− E[C ′|A = 0]}. Therefore (2) is

monotonic in both E[C|A = 0, C ′ = 1] and E[C|A = 0, C ′ = 0], and furthermore it is

non-decreasing in one and non-increasing in the other. Therefore, the unconstrained

extrema occur at E[C|A = 0, C ′ = 1] = 1 and E[C|A = 0, C ′ = 0] = 0, and at

E[C|A = 0, C ′ = 1] = 0 and E[C|A = 0, C ′ = 0] = 1. But we know that when e ≥ 1−f

these conditional expectations are constrained to be nondecreasing in C ′; therefore the

constrained extrema occur at E[C|A = 0, C ′ = 1] = 1 and E[C|A = 0, C ′ = 0] = 0 and

at E[C|A = 0, C ′ = 1] =E[C|A = 0, C ′ = 0] = 1. On the other hand, when e ≤ 1 − f
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these conditional expectations are constrained to be nonincreasing in C ′ and therefore

the constrained extrema occur at E[C|A = 0, C ′ = 1] = 0 and E[C|A = 0, C ′ = 0] = 1

and at E[C|A = 0, C ′ = 1] =E[C|A = 0, C ′ = 0] = 1.

When E[C|A = 0, C ′ = 1] = E[C|A = 0, C ′ = 0], (2) equals 0. If E[C ′|A = 1] <

E[C ′|A = 0], then this is the maximum of (2) if e ≥ 1−f and the minimum if e ≤ 1−f .

If E[C ′|A = 1] > E[C ′|A = 0] then (2) is maximized at 0 if e ≤ 1 − f and minimized

at 0 if e ≥ 1− f .

To find the extrema of (1), we restrict our attention to the case where E[C ′|A =

0] < E[C ′|A = 1] and e ≥ 1− f . We will show that (1) is also minimized at 0. Because

(1) is equal to

E[C|A = 1]− E[C|A = 0, C′ = 1]P [C′ = 1|A = 1]− E[C = 1|A = 0, C′ = 0]P [C′ = 0|A = 1]

proving that it is minimized at 0 is equivalent to proving that

E[C|A = 0, C ′ = 1]P [C ′ = 1|A = 1] + E[C = 1|A = 0, C ′ = 0]P [C ′ = 0|A = 1] (3)

is maximized at E[C|A = 1]. We will maximize (3) with respect to e and f .

Let D = E[C|A = 0] and B = E[C|A = 1].

E[C|A = 0, C ′ = 1]P [C ′ = 1|A = 1]− E[C = 1|A = 0, C ′ = 0]P [C ′ = 0|A = 1]

= D

(

e
Be+ (1−B)(1− f)

De+ (1−D)(1 − f)
+ (1− e)

1− {Be+ (1−B)(1− f)}

1− {De+ (1−D)(1− f)}

)

(4)

If e ≥ 1− f , then D ≤ B and (4) is increasing in e (the derivative with respect to e is
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positive), so in order to maximize it we set e = 1. Now (4) reduces to D B+(1−B)(1−f)
D+(1−D)(1−f) ,

which is increasing in f (the derivative with respect to f is positive) and is therefore

maximized at f = 1. At e = f = 1,
∑

C′ E[C|A = 0, C ′]P [C ′|A = 1] = E[C|A = 1].

Therefore, (1) is minimized at 0.

That (1) is minimized at 0 when E[C ′|A = 0] < E[C ′|A = 1] and e ≤ 1 − f , and

that it is maximized at 0 when E[C ′|A = 0] < E[C ′|A = 1] and e ≥ 1 − f or when

E[C ′|A = 0] > E[C ′|A = 1] and e ≤ 1− f , follow by analogous arguments.

Result 3 For A and C binary, if sensitivity+specificity ≥ 1 then the bias of the ob-

served adjusted effect of treatment on the treated decreases with increasing sen-

sitivity and specificity. If in addition E[Y |A,C] is monotonic in C, then the

bias of the observed adjusted average treatment effect decreases with increasing

sensitivity and specificity.

Proof: Under monotonicity, EC′ [Y |A = a] lies between E[Ya] and E[Y |A = a] for

a = 0, 1. We will show that EC′[Y |A = 1] and EC′ [Y |A = 0] move further from

E[Y |A = a] and closer to E[Ya] as e and f increase. The result follows immediately.

When e + f ≥ 1, the signs of ∂
∂e
EC′[Y |A = 1] and ∂

∂f
EC′ [Y |A = 1] depend only

on the sign of {E[Y |A = 1, C = 1] − E[Y |A = 1, C = 0]}{E[A|C = 0] − E[A|C =

1]}.When E[Y |A,C] and E[A|C] are both either non-increasing or non-decreasing in C

this product is negative (or 0) and EC′ [Y |A = 1] is non-increasing in e and f , i.e. as e

and f increase EC′ [Y |A = 1] moves closer to E[Y1] and farther from E[Y |A = 1]. (Recall

that E[Y1] ≤ E[Y |A = 1] when both conditional expectations are either non-increasing

or non-decreasing in C.) When one of E[Y |A,C] and E[A|C] is non-increasing and

the other non-decreasing then the product is non-negative and EC′ [Y |A = 1] is non-
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increasing in e and f , which again entails that as e and f increase EC′ [Y |A = 1] moves

closer to E[Y1] and further from E[Y |A = 1].

The proof that EC′ [Y |A = 0] approaches E[Y0] as e and f increase is similar.
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