Table S1: Statistical analysis of prion infectivity shown in Fig. 2A, B and C. Mantel-Haenszel common odds ratio (c.o.r.) estimate is given with a 95% confidence interval comparing number of negative wells at each dilution (10⁻⁴ to 10⁻⁸) of a sample in the SCEPA. P-values indicate statistical difference to control. Statistical analysis of the differences of efficiency between drugs was only performed for PTAA, pHTAA and pFTAA. Analysis of all molecules would require a Bonferroni correction that would decrease statistical significance.

Fig. 2A	µg ml⁻¹	p-values	conf. interval for c.o.r.
Control to PTAA	300	p < 0.001	
Control to pHTAA	300	p < 0.001	
Control to pFTAA	300	p < 0.001	
Control to PBAT	300	p < 0.001	
Control to POMT	300	p < 0.001	
Control to POWT	300	p < 0.001	
pHTAA vs PTAA	300	p = 0.450	1.69(0.61-4.67)
pFTAA vs PTAA	300	p = 0.005	0.13(0.03-0.50)
pFTAA vs pHTAA	300	p = 0.001	10(2.66-37.64)

Fig. 2B	µg ml⁻¹	p-values	conf. interval for c.o.r.
Control to pFTAA	900	p < 0.0001	
	300	p = 0.002	0.07(0.01-0.36)
	150	p = 0.004	0.15(0.04-0.52)
	75	p = 0.047	0.32(0.12-0.87)

Fig. 2C	µg ml⁻¹	p-values	conf. interval for c.o.r.
Control to PTAA	5000	p < 0.0001	
	900	p < 0.0001	

300	p < 0.0001	
150	p < 0.0001	
100	p < 0.0003	0.16(0.06-0.43)
10	p = 0.081	0.34(0.12-0.99)

Table S2: Comparison of infectivities of samples described in Fig. S7A. Differences were computed by using a Mantel-Haenszel Chi-square test for comparing number of negative wells at each dilution $(10^{-4} \text{ to } 10^{-8})$ of a sample in the SCEPA.

Plate n°:	1	2	3	4
	-	_	-	-
Infectivity (log TCI ₅₀ g ⁻¹)	7 91	6.83	8.05	7 80
	7.01	0.00	0.00	1.00
		n < 0.001	n = 0.398	p = 0.826
		p < 0.001	p = 0.000	p = 0.020
1			1 89(0 62-5 79)	0 78(0 29-2 15)
I			1.03(0.02-0.73)	$0.70(0.23^{-2}.13)$
2			n < 0.001	n < 0.001
2			p < 0.001	p < 0.001
				n = 0.178
				p = 0.170
3				0.30(0.13-1.24)
5				0.03(0.13 - 1.24)
		•		

Plate n°:	1	2
PTAA (μ g ml ⁻¹ l):	0	10
Infectivity (log TCI ₅₀ g ⁻¹):	8.05	7.78

 Table S3: Infectivity of samples described in Fig. S7B.

The difference between the non- and PTAA-treated samples was computed by using a Mantel-Haenszel Chi-square test for comparing the number of negative wells at each dilution $(10^{-4} \text{ to } 10^{-8})$ of a sample in the SCEPA: p = 0.551 (n.s.) and conf. interval for c.o.r.: 0.58(0.17-1.92).

Dilution	of	brain	(Clinical TSE/total inoculated)	Mean incubation period
homogenate ^a				(days)
10 ⁻³			4/4	77.8 ± 1.3
10 ⁻⁴			5/5	56.4 ± 23.5
10 ⁻⁵			4/4	95 ± 5.8
10 ⁻⁶			4/4	105.8 ± 8.4
10 ⁻⁷			3/4	96, 107, 247, >249
10 ⁻⁸			0/4	>253
10 ⁻⁹			0/4	>253
10 ⁻¹⁰			1/4	70, >253

Table S4: Summary of end-point titrations of RML6 inoculums in tga20 mice

^a Dilutions were started from a 10% brain homogenate.

	µg ml ^{−1}	p-values	conf. interval for mean ratio
mock + H_2O to mock			
+ PTAA ¹	0 to 300	p = 0.001	1.21(1.12-1.30)
Control to PTAA ¹	300	p < 0.001	8.95(6.57-12.20)
	100	p < 0.001	6.50(4.89-8.65)
	10	p = 0.004	1.97(1.37-2.82)
	1	p = 0.348	1.23(0.74-2.04)
Control to POMT ¹	300	p < 0.001	9.80(7.21-13.33)
	100	p < 0.001	3.27(2.30-4.67)
	10	p = 0.015	1.75(1.17-2.63)
	1	p = 0.374	1.15(0.81-1.62)
Control to pHTAA ¹	300	p < 0.001	3.14(2.25-4.38)
	100	p = 0.007	2.21(1.37-3.55)
	10	p = 0.057	1.49(0.86-2.25)
	1	p = 0.737	0.95(0.69-1.32)
Control to pFTAA ¹	300	p < 0.001	3.79(2.66-5.41)
	100	p < 0.001	3.86(2.57-5.80)
	10	p = 0.003	2.39(1.56-3.68)
	1	p = 0.028	1.55(1.07-2.25)

 Table S5: Statistical analysis of the data presented in Fig. 2D.

PTAA to POMT ²	All conc.	p = 0.078	1.20(0.66-1.01)
PTAA to pHTAA ²	All conc.	p < 0.001	0.51(0.42-0.63)
PTAA to pFTAA ²	All conc.	p = 0.017	0.79(0.64-0.97)
POMT to pHTAA ²	All conc.	p < 0.001	0.62(0.51-0.77)
POMT to pFTAA ²	All conc.	p = 1.000	1.04(0.78-0.85)

pHTAA to pFTAA ²	All conc.	p < 0.001	1.53(1.24-1.89)	7
¹ P-values represent	the statistical	difference between	non- (control) and LCP-treated	RML6

samples. The first lane of the table describes the difference between non-treated (mock) and PTAA-treated non-infected brain homogenate from CD1 mice. Differences were computed by using a T- test comparing the \log_{10} RLU signals in the MPA.

² P-values represent statistical difference between groups of four concentrations of each LCP compared as groups by using a two-tailed independent sample T-test (equal variances assumed) comparing log₁₀ RLU signal in the MPA.

Table S6: Statistical analysis of the data shown in Fig. S10. The difference between MPA signals for untreated CD1 brain homogenate (mock) and PTAA-treated CD1 brain homogenate and for untreated RML6 (control) and PTAA-treated RML6 were computed by using a T- test comparing log₁₀ RLU signal in the MPA.

	bead treatment	p-values	conf. interval for mean ratio
CD1+H ₂ O to CD1+PTAA	No	p = 0.339	1.08(0.90-1.31)
CD1+H ₂ O to CD1+H ₂ O	Yes	p = 0.004	1.29(1.12-1.49)
CD1+PTAA to CD1+PTAA	Yes	p = 0.024	1.24(1.04-1.48)
RML+PTAA to RML+PTAA	Yes	p = 0.992	1.00(0.69-1.45)
Control to RML+H ₂ O	Yes	P = 0.274	1.10(0.91-1.32)

Fig. 4B ¹	p-values	Conf. interval for c. o. r.
Non-treated (21 DIV)	p = 0.007	-1.71(-2.35 to -1.07)
PPS 0.3 µg ml ^{−1}	p = 0.012	1.99(-2.96 to -1.03)
PTAA 60 µg ml ⁻¹	p < 0.001	-3.32(-3.62 to -3.01)
PTAA 6 µg ml ^{−1}	p = 0.001	-2(-2.19 to -1.81)
PTAA 1 µg ml⁻¹	p = 0.106	-0.66(-1.66 to 0.34)
PTAA 0.1 μg ml ⁻¹	p = 0.695	-0.13(-1.36 to 1.10)
PTAA 0.01 μg ml ⁻¹	n/a	n/a

Fig. 4C ²	p-values	95% c.i. of difference
Untreated (21 DIV)	p < 0.0001	-228.7(-309.8 to -147.6)
PPS 0.3 µg ml⁻¹	p < 0.0001	216.9(135.8 to 298.0)
PTAA 60 μg/ml	p < 0.0001	236.1(155.0 to 317.1)
PTAA 6 μg/ml	p < 0.0001	233.9(152.8 to 315.0)
PTAA 1 μg/ml	p < 0.0001	229.0(147.9 to 310.1)
PTAA 0.1 μg/ml	p < 0.0001	199.4(118.4 to 280.5)
PTAA 0.01 μg/ml	n/s	-46.9(-128.0 to 34.18)

Fig. 4D ³	p-values	95% c.i. of difference
Untreated (21 DIV)	p < 0.001	-41.79(-66.96 to -16.62)
PPS 0.3 µg ml⁻¹	p < 0.001	37.56(12.39 to 62.73)
PTAA 60 µg ml ⁻¹	p < 0.001	42.94(17.77 to 68.11)
PTAA 6 µg ml⁻¹	p < 0.001	40.57(15.40 to 65.74)
PTAA 1 µg ml⁻¹	p < 0.001	35.09(9.917 to 60.26)

PTAA 0.1 µg ml⁻¹	p < 0.001	26.51(1.36 to 51.70)
PTAA 0.01 μg ml ⁻¹	p = 0.450	12.11(-13.06 to 37.28)

¹ Statistical analysis of prion infectivity using a Mantel-Haenszel Chi-square test with Bonferroni correction comparing TCI₅₀ difference to control (COCS homogenates from untreated cultures harvested after 42 dpi).

^{2, 3} Statistical analysis using a one-way ANOVA with Tukey's multiple comparison test.

Table S8: Statistical analysis of data shown in Fig. 4D using a one-way ANOVA with Tukey's

multiple comparison test.

Fig. 4D	p-value	95% c.i. of difference
PTAA 60 μg/ml	p < 0.05	47.70(0.65 to 94.75)

Table S9: Statistical analysis shown in Fig. 5 using a one-way ANOVA with Tukey's multiple

comparison test.

Fig. 5A	p-values	95% c.i. of difference
7 DIV	ns	-9(-108.8 to 90.80)
19 DIV	ns	-13.86(-113.7 to 85.94)
21 DIV	ns	-23.77(-123.6 to 76.03)
28 DIV	ns	-60.36(-160.2 to 39.44)
35 DIV	p < 0.001	-205.5(-305.3 to -105.7)
42 DIV	p < 0.001	-252.8(-352.6 to 153.0)
From 7 DIV	ns	-2.11(-101.9 to 97.68)
From 19 DIV	ns	-1.26(-101.1 to 98.54)
From 21 DIV	ns	0(-99.80 to 99.80)
From 28 DIV	ns	-0.49(-100.3 to 99.30)
From 35 DIV	ns	-0.04(-99.84 to 99.75)

Fig. 5B	p-values	95% c.i. of difference
7 DIV	n/s	0(-38 to 38)
19 DIV	n/s	-0.09(-38 to 38)
21 DIV	n/s	-0.95(-39 to 37)
28 DIV	n/s	-6.2(-44 to 32)
35 DIV	n/s	-16(-54 to 21)
42 DIV	p < 0.001	-54(-92 to -17)
45 DIV	p < 0.001	-113(-151 to -76)
49 DIV	p < 0.001	-114(-152 to -76)
56 DIV	p < 0.001	-114(-152 to -77)
From 7 DIV	n/s	-0.43(-38 to 37)

From 19 DIV	n/s	0(-38 to 38)
From 21 DIV	n/s	0(-38 to 38)
From 28 DIV	n/s	-4.6(-42 to 33)
From 35 DIV	n/s	-21(-59 to 17)
42 DIV vs. from 7 DIV	p < 0.001	54(16 to 92)
42 DIV vs. from 19 DIV	p < 0.001	54(17 to 92)
42 DIV vs. from 21 DIV	p < 0.001	54(17 to 92)
42 DIV vs. from 28 DIV	p < 0.01	50(12 to 87)
42 DIV vs. from 35 DIV	n/s	33(-4.5 to 71)

Fig. 5C	p-values	95% c.i. of difference
7 DIV	ns	44(-174 to 261)
19 DIV	ns	71(-146 to 289)
21 DIV	ns	67(-151 to 284)
28 DIV	ns	52(-165 to 270)
35 DIV	ns	162(-55 to 380)
42 DIV	ns	53(-165 to 270)
45 DIV	ns	107(-110 to 325)
49 DIV	ns	14(-203 to 232)
56 DIV	ns	88(-130 to 305)
From 7 DIV	ns	211(-6.6 to 428)
From 19 DIV	ns	196(-22 to 413)
From 21 DIV	p < 0.05	223(5.7 to 441)
From 28 DIV	ns	189(-28 to 407)
From 35 DIV	p < 0.05	236(18 to 453)
42 DIV vs. from 7 DIV	ns	158(59 to 376)

42 DIV vs. from 19 DIV	ns	143(-74 to 361)
42 DIV vs. from 21 DIV	ns	170(-47 to 388)
42 DIV vs. from 28 DIV	ns	136(-81 to 354)
42 DIV vs. from 35 DIV	ns	183(-34 to 400)

Statistical analysis using a one-way ANOVA with Tukey's multiple comparison test. Unless stated otherwise, time points are compared to the non-infected COCS. For 42 DIV vs. from 7 DIV, for instance, the value obtained for COCS harvested at 42 DIV is compared to the value obtained for COCS harvested at 42 DIV is compared to the value obtained for COCS harvested at 42 DIV.