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A Computational Issues

The models described in the Section 2 are necessarily complex to account for the size and complexity of

the data set. This raises reasonable concerns about computational feasibility, especially because many

competing methods are slow even in the single-level case. To dispel these concerns we present key seg-

ments of code from two implementations, a likelihood-based approach in R and a Bayesian approach in

WinBUGS, of our method for longitudinal functional regression. We also provide overview of the benefits

and drawbacks of each. Complete code for each is available online, and the likelihood-based approach is

implemented as the lpfr function in the refund package, available on CRAN.

For simplicity, the code given below assumes Gaussian outcomes and subject-specific random inter-

cepts, with the I subjects observed J times each. The functional coefficient is modeled using a large spline

basis with explicit penalty. Straightforward alterations to the basic code presented here allow for more

complex models.

A.1 Likelihood-based R Implementation

Because LPFR takes advantage of standard mixed effects models to express longitudinal functional mod-

els, we can take advantage of standard mixed effects software to fit such models. Here, we use the gam

function in the mgcv package (Wood, 2006) to fit functional models using the following code:

# evaluate the M matrix using numeric integration; assumes

# t is observed over an even grid

M.mat <- t(psi) %*% phi *(max(s) - min(s))/(length(s)-1)
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# compute the CM matrix

CM <- C[,1:Kw] %*% M.mat

# the following code creates the design matrices so that

# the gam function performs the correct estimation

Z.int=matrix(rep(c(rep(1, J), rep(0, I*J)), I), nrow=length(Y), ncol=I)

X = cbind(1, CM, Z.int)

# create the penalty matrices for the random effects

D1 = diag(c(rep(0, 1+2), rep(1, kb-2), rep(0, N_subj)))

D2 = diag(c(rep(0, 1+Kw), rep(1, N_subj)))

# fit the longitudinal functional regression model

fit = gam(Y˜X-1, paraPen=list(X=list(D1, D2)), family=family, method="REML", ...)

The quantities I= I , J= J , M.mat= Mψφ, C= C, Y= Y , X= Z, Z1= Z1, Z2= Z2, and Z= Z, are as

defined in Section 2. We note that general scalar outcomes can be fit using the above code by altering the

family argument to the gam function.

This approach has several advantages, especially as compared to the WinBUGS implementation. The

first, and perhaps most important, is familiarity: R is commonly used among statisticians, and this imple-

mentation will be readily understood. Another advantage is that this code executes very quickly, so that

computation time is significantly shorter. However, this approach lacks the ability to jointly model the

exposure and the outcome, which can be significant in many situations.

A.2 Bayesian WinBUGS Implementation

WinBUGS is a powerful alternative when fitting mixed effects models, and as such can be used to imple-

ment the LPFR method. We note two minor changes that arise in this implementation: 1) we use a cubic

b-spline basis for γ(s) with a first order random walk prior to give better mixing properties; and 2) we

take advantage of the ability to jointly model the exposure and outcome models (2 and 3). Further, to

increase the computation efficiency of this implementation, we use a variation on the projection method
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described in Di et al. (2009). In particular, let

Aijk =
∫ 1

0
{Wij(s)− µ(s)}ψk(s)ds = cijk + ε′ijk

where ε′ijk includes the variance from the excluded dimension in the truncated Karhunen-Loéve decom-

position and the integrated measurement error. Note that Aijk can be estimated using numerical integra-

tion, and that by lettingAij = (Aij1, . . . , AijKw)T we can replace the exposure model 2 with

Aij = cij + ε′ij

cij ∼ N(0,Λ), ε′ij ∼ N(0, σ2
ε I),

(5)

These changes are implemented in the following code segment; note that we do not use the function

inprod to substantially reduce computation time, and that the quantity JxGam = Mψφg is updated once

per model iteration, outside the main loop over subjects.

model

{ # Start model

for (i in 1:I) { # Begin loop over subjects

for (j in 1:J) { # Begin loop over visits

Y[((i-1)*J+j)]˜dnorm(fitted.val[((i-1)*J+j)], tau_Y)

fitted.val[((i-1)*J+j)]<-alpha + u[i] + eta[((i-1)*J+j)]

eta[((i-1)*J+j)]<-C[((i-1)*J+j),1]*JxGam[1]+C[((i-1)*J+j),2]*JxGam[2]+

C[((i-1)*J+j),3]*JxGam[3]+C[((i-1)*J+j),4]*JxGam[4]+

C[((i-1)*J+j),5]*JxGam[5]+C[((i-1)*J+j),6]*JxGam[6]+

C[((i-1)*J+j),7]*JxGam[7]+C[((i-1)*J+j),8]*JxGam[8]+

C[((i-1)*J+j),9]*JxGam[9]+C[((i-1)*J+j),10]*JxGam[10]

for (k in 1:Kw) {# Begin loop over observations within subject and visit

A[((i-1)*J+j), k]˜dnorm(C[((i-1)*J+j),k], tau)

C[((i-1)*J+j),k]˜dnorm(0,ll[k])

} # End loop over observations within subject and visit

} # End loop over visits
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u[i]˜dnorm(0, tau_u)

} # End loop over subjects

for(l in 1:Kw){ # Begin loop over rows of M.mat matrix

JxGam[l]<-M.mat[l,1]*g[1]+M.mat[l,2]*g[2]+M.mat[l,3]*g[3]+

M.mat[l,4]*g[4]+M.mat[l,5]*g[5]+M.mat[l,6]*g[6]+

M.mat[l,7]*g[7]+M.mat[l,8]*g[8]+M.mat[l,9]*g[9]+

M.mat[l,10]*g[10]

} # End loop over rows of M.mat

for (i in 1:Kw){ # Begin loop over precisions of PC loadings

ll[i]˜dgamma(0.1,0.1)

lambda[i]<-1/ll[i]

} # End loop over precisions of PC loadings

for (l in 2:Kg){ # Begin loop over g coefficients

g[l]˜dnorm(g[l-1],tau_g)

}

... # Here are the prior distributions for non-functional covariates

}#End model

There are several important advantages that arise in this implementation. Most importantly, it al-

lows for the easy construction of posterior credible intervals. As noted above, the functional regression

literature has focused on estimation of functional coefficients, while very little attention has been paid

to confidence intervals. Even then, among papers using a penalized approach to estimation, confidence

intervals are generally empirical or bootstrap intervals. The direct computation of posterior credible in-

tervals therefore addresses a major need in the functional regression literature. Another advantage is

joint modeling, which accounts for the uncertainty in estimating the PC loadings; while in many cases

this variability in negligible, it can be very important in the presence of large measurement error or when
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the functional predictors are sparsely observed. That said, the WinBUGS implementation also has the

disadvantage that hyperparamters sometimes must be chosen with care for the program to successfully

execute.
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