Supporting Information

Temperature Dependence of Carbonyl Backbone Dynamics in Chicken Villin Headpiece Subdomain

Liliya Vugmeyster^{*1}, Dmitry Ostrovsky²

¹Department of Chemistry and Environment and Natural Resources Institute, University of Alaska at Anchorage, 3211 Providence Drive, Anchorage AK, 99508. Corresponding author, email: <u>aflv@uaa.alaska.edu</u>. Telephone: (907) 786-4709. Fax: (907) 786-4607

²Department of Mathematical Sciences, University of Alaska at Anchorage, 3211 Providence Drive, Anchorage AK, 99508

S1. The analysis of behavior of the order parameters and internal correlation times as a function of τ_e/τ_c values using synthetic data sets.

In order to analyze the influence of the value of the τ_e/τ_c ratio on the stability of the fitted values of the order parameter and internal correlation times we have done the following analysis using synthetic R_I , $R_{C'/C'-C\alpha}$ and $R_{C'/C'-N}$ rates.

First, synthetic R_I , $R_{C'/C'C\alpha}$ and $R_{C'/C'N}$ rates were created with the use of the spectral density functions given by sEq. (1) of the main text for $S^2 = 0.6$, 0.8, 0.9 and $\tau_{e'}/\tau_c$ values between 0.1 and 0.5. $C_{iso} = 175$ and $\theta = 155^\circ$. We then fitted these synthetic rates with the χ^2 minimization procedure, taking "experimental" errors as 3%, 5%, and 7% of the average values for R_I , $R_{C'/C'C\alpha}$ and $R_{C'/C'N}$, respectively. These results are presented in Figure S1 for $S^2 = 0.8$.

For the results presented in Figure S2, the synthetic rates were altered by adding normally distributed random noise; we have used the standard deviations of 3%, 5%, and 7% of the average values of R_1 , $R_{C'/C'-C\alpha}$ and $R_{C'/C'-N}$, respectively. These standard deviations mimic actual experimental errors. Ten runs were done.

<u>Results:</u> fitted values of τ_e/τ_c reproduce input values with a reasonable accuracy only for the input values of τ_e/τ_c below a certain threshold. When no random noise in included the approximate thresholds are given by 0.45, 0.35 and 0.15 for S^2 of 0.6, 0.8, and 0.9, respectively. When the random noise is added, the thresholds change to about 0.3, 0.2 and 0.1 for S^2 of 0.6, 0.8, and 0.9, respectively. On the contrary, the fitted values of S^2 are stable for all values of τ_e/τ_c , regardless of whether the noise was added to the synthetic data. The simulated errors in S^2 values are also stable. Thus, we conclude that neither the stability of the fitted S^2 values nor their errors depend on the quality of τ_e fits and, therefore, can be well-defined even for those experimental situations which do not allow for a reliable determination of the internal correlation times.

Figure S1. Fitted internal correlation times and order parameters as a function of τ_e/τ_c ratio for $S^2 = 0.8$. No random noise is included in the synthetic R_I , $R_{C'/C'-C\alpha}$ and $R_{C'/C'-N}$ relaxation rates.

Figure S2. Fitted internal correlation times and order parameters as a function of τ_e/τ_c ratio for $S^2 = 0.8$. Synthetic relaxation rates R_I , $R_{C'/C'-C\alpha}$ and $R_{C'/C'-N}$ were generated with random noise as specified in the description above.

S2. Experimental R_1 , $R_{C'/C'C\alpha}$ and $R_{C'/C'N}$ rates.

error

0.06

0.13

0.06

0.08

0.12

0.06

0.11

0.14

0.07

0.06

0.07 0.43

0.09

0.06

0.06

0.05

0.06

0.16

0.13

0.06

0.05 0.14

0.07

0.05

0.07

0.05

0.07

0.20

0.05

2 °C					
residue	R_1	error	$R_{C'/C'-C\alpha}$	error	$R_{C'/C'-N}$
41	0.887	0.039	-1.12	0.06	0.26
42	0.777	0.027	-1.10	0.09	1.00
43	0.725	0.010	-1.37	0.06	0.62
45	0.782	0.018	-1.25	0.09	0.86
47	0.756	0.007	-1.40	0.13	0.98
48	0.729	0.025	-1.11	0.06	0.76
49	0.707	0.019	-1.43	0.09	0.79
50	0.773	0.028	-1.35	0.12	0.80
51	0.788	0.026	-1.00	0.09	0.57
54	0.781	0.015	-1.14	0.07	0.68
55	0.844	0.018	-1.45	0.10	0.63
56	0.809	0.013	-1.32	0.11	1.22
57	0.833	0.032	-1.55	0.17	0.91
58	0.743	0.029	-1.34	0.09	0.59
59	0.763	0.025	-1.21	0.06	0.70
62	0.787	0.024	-1.29	0.06	0.78
63	0.769	0.019	-1.30	0.05	0.57
64	0.808	0.015	-1.64	0.19	0.56
65	0.734	0.035	-1.53	0.09	0.96
66	0.831	0.030	-1.29	0.08	0.69
67	0.790	0.024	-1.17	0.08	0.65
68	0.741	0.034	-1.35	0.13	0.84
69	0.773	0.022	-1.31	0.09	0.67
70	0.796	0.012	-1.08	0.08	0.66
71	0.755	0.019	-1.31	0.09	0.76
72	0.751	0.019	-1.11	0.07	0.64
73	0.778	0.022	-0.97	0.11	0.66
74	0.750	0.027	-1.10	0.17	0.82
75	0.802	0.014	-1.04	0.05	0.42

 $6 \, ^{\circ}\mathrm{C}$

residue	R_1	error	$R_{C'/C'-C\alpha}$	error	$R_{C'/C'-N}$	error
41	1.013	0.012	-1.03	0.06	0.74	0.11
42	0.888	0.014	-1.06	0.06	0.51	0.05
43	0.874	0.015	-1.00	0.04	0.51	0.03
45	0.875	0.015	-1.06	0.05	0.53	0.05
47	0.894	0.017	-0.98	0.06	0.67	0.05
48	0.856	0.012	-0.76	0.03	0.59	0.03
49	0.781	0.017	-0.97	0.05	0.63	0.05
50	0.922	0.016	-1.24	0.09	0.53	0.11
51	0.886	0.031	-0.92	0.09	0.44	0.04
54	0.873	0.033	-1.05	0.05	0.44	0.04
55	0.987	0.021	-0.91	0.05	0.55	0.04
56	0.884	0.028	-1.24	0.04	0.47	0.09
57	0.938	0.017	-0.81	0.05	0.60	0.05
58	0.877	0.021	-1.06	0.05	0.56	0.06
59	0.849	0.009	-1.00	0.04	0.48	0.04

62	0.888	0.013	-1.09	0.04	0.60	0.04
63	0.886	0.025	-1.08	0.06	0.45	0.05
64	0.878	0.028	-0.93	0.09	0.56	0.07
65	0.878	0.012	-1.11	0.06	0.46	0.05
66	0.921	0.021	-1.01	0.05	0.52	0.04
67	0.886	0.018	-0.94	0.05	0.53	0.03
68	0.870	0.021	-1.20	0.11	0.57	0.08
69	0.894	0.011	-1.03	0.05	0.56	0.04
70	0.900	0.013	-0.91	0.05	0.56	0.03
71	0.865	0.011	-0.95	0.04	0.50	0.04
72	0.906	0.018	-0.90	0.05	0.58	0.04
73	0.888	0.008	-0.75	0.03	0.58	0.07
74	0.844	0.011	-0.97	0.12	0.49	0.06
75	0.855	0.010	-0.86	0.04	0.24	0.03

12 °C

residue	R_1	error	$R_{C'/C'-C\alpha}$	error	$R_{C'/C'-N}$	error
41	1.128	0.058	-0.77	0.05	0.26	0.05
42	0.985	0.026	-0.80	0.05	0.50	0.04
43	0.978	0.012	-0.89	0.03	0.45	0.03
45	0.969	0.013	-0.83	0.05	0.51	0.04
47	0.995	0.026	-0.85	0.06	0.55	0.04
48	0.970	0.006	-0.87	0.03	0.48	0.03
49	0.893	0.009	-0.87	0.05	0.51	0.05
50	0.950	0.030	-1.06	0.07	0.40	0.06
51	0.990	0.018	-0.84	0.08	0.38	0.03
54	0.964	0.019	-0.88	0.04	0.44	0.04
55	1.065	0.013	-0.89	0.05	0.51	0.04
56	0.968	0.026	-0.73	0.05	0.50	0.11
57	1.020	0.017	-0.92	0.05	0.58	0.04
58	0.999	0.026	-0.91	0.04	0.51	0.04
59	0.970	0.017	-0.97	0.04	0.45	0.03
62	0.962	0.018	-0.92	0.04	0.47	0.03
63	0.946	0.025	-0.93	0.04	0.43	0.04
64	1.008	0.016	-0.88	0.09	1.16	0.17
65	0.983	0.021	-0.85	0.04	0.34	0.14
66	0.988	0.012	-1.04	0.07	0.55	0.04
67	0.999	0.018	-0.84	0.04	0.52	0.03
68	0.935	0.041	-0.96	0.07	0.35	0.03
69	0.990	0.032	-0.91	0.04	0.42	0.04
70	0.993	0.025	-0.73	0.04	0.47	0.04
71	0.964	0.017	-0.87	0.04	0.43	0.03
72	0.993	0.003	-0.80	0.04	0.48	0.04
73	0.977	0.007	-0.94	0.06	0.41	0.05
74	0.919	0.029	-0.71	0.08	0.52	0.08
75	0.873	0.009	-0.78	0.03	0.21	0.04
16 °C						
residue	R_1	error	Rever	error	$R_{C'/C'-N}$	error
41	1.226	0.041	-0.69	0.06	0.32	0.05
42	1.063	0.017	-0.71	0.05	0.45	0.04

43	1.051	0.033	-0.85	0.04	0.39	0.03
45	1.022	0.029	-0.80	0.04	0.40	0.04
47	1.032	0.017	-0.77	0.05	0.48	0.06
48	1.074	0.014	-0.70	0.03	0.41	0.03
49	1.006	0.027	-0.86	0.05	0.42	0.05
50	1.043	0.015	-0.78	0.07	0.42	0.06
51	0.998	0.012	-0.72	0.07	0.38	0.03
54	1.073	0.016	-0.79	0.04	0.39	0.03
55	1.167	0.014	-0.73	0.05	0.39	0.06
56	1.078	0.014	-0.76	0.06	0.35	0.03
57	1.157	0.033	-0.62	0.04	0.39	0.03
58	1.049	0.022	-0.90	0.05	0.37	0.03
59	1.005	0.014	-0.82	0.05	0.55	0.05
62	1.078	0.019	-0.75	0.04	0.40	0.03
63	1.015	0.019	-0.84	0.05	0.34	0.03
64	1.064	0.030	-0.73	0.05	0.40	0.04
65	1.019	0.018	-0.88	0.04	0.16	0.02
66	1.060	0.016	-0.75	0.04	0.42	0.04
67	1.078	0.021	-0.76	0.04	0.41	0.04
68	0.993	0.055	-0.98	0.07	0.28	0.03
69	1.056	0.012	-0.80	0.05	0.44	0.04
70	1.069	0.029	-0.56	0.04	0.32	0.03
71	1.040	0.008	-0.72	0.04	0.52	0.05
72	1.111	0.028	-0.68	0.04	0.34	0.03
73	1.030	0.024	-1.07	0.08	0.58	0.06
74	0.950	0.009	-0.70	0.08	0.10	0.02
75	0.890	0.013	-0.72	0.03	0.21	0.02

22 '	^P C. $R_{C'/C'-N}$ rate	s are rep	ported for	the rela	xation d	lelay	of 80ms.	The rates	determined
froi	n the relaxation	n delay	of 60ms	agree wi	thin the	expe	erimental	errors.	

		•	-		-	
residue	R_1	error	$R_{C'/C'-C\alpha}$	error	r <i>R_{C'/C'-N}</i>	error
41	1.245	0.058	-0.87	0.05	0.27	0.09
42	1.132	0.015	-0.58	0.03	0.29	0.02
43	1.118	0.015	-0.89	0.19	0.27	0.02
45	1.209	0.087	-0.59	0.07	0.38	0.02
47	1.124	0.014	-0.72	0.04	0.36	0.03
48	1.140	0.011	-0.55	0.02	0.38	0.03
49	1.051	0.015	-0.65	0.03	0.37	0.03
50	1.392	0.073	-0.58	0.02	0.32	0.03
51	1.161	0.012	-0.78	0.05	0.32	0.02
54	1.147	0.010	-0.61	0.02	0.35	0.02
55	1.295	0.024	-0.52	0.03	0.43	0.03
56	1.144	0.018	-0.66	0.02	0.24	0.03
57	1.193	0.017	-0.63	0.02	0.35	0.03
58	1.147	0.018	-0.57	0.05	0.28	0.02
59	1.101	0.016	-0.78	0.05	0.43	0.03
62	1.143	0.021	-0.58	0.03	0.35	0.02
63	1.086	0.020	-0.75	0.04	0.42	0.03
64	1.156	0.013	-0.60	0.03	0.36	0.03
65	1.141	0.018	-0.62	0.03	0.34	0.03
66	1.222	0.008	-0.73	0.03	0.45	0.03

67	1.131	0.013	-0.73	0.03	0.35	0.02
68	1.064	0.026	-0.71	0.03	0.38	0.04
69	1.236	0.210	-0.66	0.03	0.40	0.03
70	1.159	0.014	-0.60	0.03	0.32	0.02
71	1.055	0.060	-0.70	0.03	0.34	0.02
72	1.169	0.007	-0.75	0.03	0.37	0.02
73	1.096	0.011	-0.64	0.03	0.29	0.02
74	1.027	0.014	-0.41	0.04	0.29	0.03
75	0.943	0.005	-0.67	0.02	0.19	0.02

residue	θ , degrees
41	161.6 ± 2.5
42	148.8 ± 1.8
43	154.7 ± 1.1
45	151.8 ± 1.8
47	149.2 ± 1.2
48	147.0 ± 1.4
49	152.3 ± 2.0
50	156.7 ± 3.0
51	153.7 ± 2.0
54	154.0 ± 1.3
55	156.8 ± 2.2
56	156.9 ± 4.6
57	146.6 ± 2.2
58	155.9 ± 1.5
59	154.6 ± 1.5
62	152.9 ± 1.3
63	159.2 ± 1.8
64	154.2 ± 3.2
65	165.3 ± 4.8
66	153.5 ± 1.7
67	151.3 ± 1.5
68	160.9 ± 4.1
69	154.7 ± 1.8
70	147.9 ± 1.7
71	151.9 ± 1.7
72	150.2 ± 1.5
73	148.2 ± 2.6
74	154.8 ±7.0
75	166.0± 2.3

S3. Averaged fitted values of θ for those residues for which the data were obtained for at least three temperatures out of 2, 6, 12, and 16 °C..

S4. 13CO chemical shifts

res		8c	20c
	41	169.7	170.0
	42	175.5	175.5
	43	171.4	171.8
	44	176.7	176.7
	45	176.5	176.7
	46	175.1	175.3
	46	174.6	174.8
	48	176.9	177.2
	49	176.7	176.9
	50	174.8	174.8
	51	174.1	174.4
	52	170.2	170.4
	53	169.7	170.0
	54	173.0	173.2
	55	176.9	176.9
	56	173.4	173.7
	57	178.6	178.6
	58	174.6	174.1
	59	175.1	175.3
	60	173.4	173.4
	62	174.8	175.3
	63	175.8	175.8
	64	175.1	175.3
	65	175.3	175.5
	66	176.0	176.2
	67	176.2	176.2
	68	175.3	175.5
	69	176.7	176.9
	70	176.2	176.5
	71	177.2	177.2
	72	176.2	176.5
	73	174.1	174.4
	74	171.4	171.6
	75	172.3	172.3

SI5. Graphs of 1-*S* vs *T* for all residues for which the data were obtained for at least three temperatures out of 2, 6, 12, and 16 °C.

