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Figure S1, related to Figure 1. Details on data set and validation of methods to show that 

imaging and bead application does not disturb plant growth and that beads do stick to the 

leaf surface. 

(A) 3D leaf width of all samples in the data set over time. The green and blue lines 

represent the original batch of plants that were imaged, with a set of plants being imaged from 

DAS7-12 (green lines) and a set of plants being imaged from DAS12-19 (blue lines). The orange 

lines represent a secondary batch, grown a few weeks later in the same conditions. The data from 

this secondary batch was matched to the growth curves of the original data set (see Supplemental 

Materials and Methods for more information). 

 (B) To investigate the effect of daily imaging on leaf growth, we compared the 3D width 

of leaves that underwent bead application at DAS7 and daily imaging under brightfield and 

fluorescent light until DAS12 (N=14), to DAS12 leaves grown concurrently in the same 

conditions that had not been previously imaged (N=12). Error bars represent the 95% confidence 

interval. A Mann-Whitney U test reveals that there is no significant difference in the leaf width 

of the two groups (U=67.0, Z=-0.874, P=0.382), confirming that particle application and imaging 

does not disturb leaf growth. 

(C) Fluorescent particles were applied to the leaves of a strain of Arabidopsis that has 

green fluorescent vasculature (AtSuc2prom:GFP), and leaves were imaged at two time points 

two days apart. Here we show three samples, and highlight the position of a few beads from one 

time point to the next by coloured circles. The particles remain in the same relative positions 

compared to the vasculature, demonstrating that they remain fixed to the leaf surface and move 

with it as the tissue expands. We used fluorescent red beads which still fluoresced weakly under 

the GFP filter, since the vasculature fluorescence was very weak compared to and overpowered 

by the yellow fluorescent beads. Scale bars represent 1mm.  
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Figure S2, related to Figure 1. Details of the automated leaf-outlining software. 

(A) The leaf outline is extracted from the brightfield multi-focus mopntage image. In this 

example we show a leaf at DAS11.  

(B) We first apply the Matlab stdfilt function (built-in Matlab functions are cited in italics 

throughout) from the Image Processing Toolbox to the brightfield multi-focus image (A), which 

returns at each pixel the local standard deviation of the image (in a window of 9x9 pixels). Areas 

outside of the leaf typically have low standard deviation as they are mostly dark, and out of focus 

(i.e. there are no sharp changes in pixel values). Areas within the leaf have higher standard 

deviation due to the texture and shininess of cells on the leaf surface, and standard deviation is 



4 

 

especially high at the boundary between the leaf and surrounding soil as the soil is much darker 

than the leaf surface, giving a large jump in pixel values at the leaf perimeter.  

(C) A new binary image is created from areas where standard deviation (B) meets a 

minimum threshold (5.0), giving the outlines and some regions of the surface of any leaves in the 

image. The imdilate function is applied to smooth edges slightly and link any regions of the 

outline that are not connected. 

(E) The program uses the left and right petiole coordinates to create a line that segments 

the image along the petiole; the region that does not contain the leaf tip is cropped out. A line 

with the left and right petiole coordinates as end points is added to the binary leaf image, to close 

the leaf outline along the petiole. To eliminate other leaves in the image or small objects in the 

soil, we apply the bwconncomp function, which identifies objects in an image based on pixel 

interconnectivity. The largest object in the image is the leaf in question, and all other objects are 

discarded. 

(F) Now we apply the imfill function to fill in all enclosed areas in the image, to produce 

a single object corresponding to the entire leaf surface, followed by the imerode function to 

shrink the leaf object slightly since it was expanded slightly when the imdilate function was 

applied in an earlier step.  

(G) We then apply the bwmorph function with the ‘erode’ operation to leave only the 

outline of the leaf object. The bwtraceboundary function can now be applied to extract x,y-

coordinates of this image. This line is plotted on the original brightfield image for the user to 

verify.  

On our computers this software computes and displays the predicted leaf outline in under 

3 seconds. 
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Figure S3, related to Figure 2. Spatial maps of sample numbers used in the calculation of 

the mean maps and the relative standard error (RSE) of the RG maps.   

 (A) Number of samples used to compute the mean values at each point on the mean 

spatial maps, coloured according to the scale shown on the right. 

(B) Relative standard error (RSE) of the mean RG maps, coloured according to the scale 

shown on the right. RSE is expressed as a percentage, e.g. if the error at a point is 30% RSE and 

the mean growth at the same point is 20% RG, the RG at that point is 20±6% (30% of 20% is 

6%).  
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Figure S4, related to Figure 6. Analyses of spatiotemporal patterns and error of p and q, 

the scaling factors along the maximal and minimal direction of growth, respectively. 

 (A-B) To illustrate patterns in the scaling factors p and q at the leaf base and tip over 

time, we compute and plot the average of the values in the bottom and top quarter (as shown in 

the diagram) of the mean spatial map of p (A) and q (B) for each DAS. 

(C-D) We assess the gradient shapes by comparing the values of p (C) or q (D) in a small 

window at the center to those in a small window at the same lateral position at the side of the 

spatial map of each sample (as illustrated in the diagram). If the gradient has a downward 

curving shape, the values in the center will be higher than those at the sides, and the center-to-

side ratio will thus be greater than one, with more strongly curving gradients having higher 

center-to-side ratios, and vice versa. N=12-20. Error bars represent the 95% confidence interval. 

(E-F) Spatial maps of the relative standard error (RSE), expressed as a percentage, of the 

mean maps of p (E) and q (F). RSE values are plotted by colour according to the colour scales on 

the right. 
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Figure S5, related to Figure 7. Error and variance maps of anisotropy and growth 

direction, and maps of the rotation of growth direction within the tissue over time with 

associated error maps. 

 (A) Spatial maps of the relative standard error (RSE) of the mean maps of anisotropy, 

where RSE values are expressed as a percentage and plotted according to the colour scale on the 

right. 

 (B-C) Circular variance maps of the mean direction of growth (B) and angles of tissue 

rotation (C), where the circular variance values are plotted according to the colour scales on the 

right. Values closer to zero represent low variance and values closer to 1 represent high variance.  

 (D) To assess if or how the maximal direction of growth rotates within the tissue over 

time, we compare the direction of growth within a piece of tissue at two successive periods of 

growth while taking into account changes in the orientation of the tissue itself. We calculate this 

by θt2 to t3 – θt1 to t2 –Ψt1 to t2, where θt2 to t3 is the direction of maximal growth from time t2 to t3, θt2 

to t3 is is the direction of maximal growth from time t1 to t2, and Ψt1 to t2 is the rotation of the 

tissue from time t1 to t2. Thus, in the maps shown, the lines represent how the maximal direction 

of growth rotates within the tissue in that area compared to growth over the previous time period. 

A horizontal line indicates zero rotation, i.e. that the maximal direction of growth remains fixed 

within the tissue. 

(E) Circular variance maps of the mean angles of rotation of the direction of growth (D), 

where values closer to zero represent low variance and values closer to 1 represent high variance. 

Circular variance values are plotted by colour according to the colour scales on the right. 
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Figure S6, related to Figure 1. Digitally 

cropping leaf trichomes from wild type 

Arabidopsis thaliana ecotype Columbia. 

(A) We first convert the depth map from 

pixel values to step numbers, by dividing by the 

difference in pixel values between shades of grey 

in the depth map. Next we apply the rangefilt 

function from the Image Processing Toolbox, 

with a window size of 25. This returns a map of 

the range of step numbers in a window of 25x25 

pixels. Aside from trichomes, the leaf surface is 

smooth, and at no point on a glabrous leaf does a 

neighboring area of the leaf change in height by 

more than one level. Trichomes, however, jut out 

from the surface steeply, and will be several steps 

above the leaf surface in that area. Therefore, 

areas where the range of step numbers is greater 

than 1 correspond to the boundary between the 

leaf surface and trichomes.  

(B-C) We create a new binary image from 

these areas where the range is greater than 1, and 

then apply a similar series of steps as in the 

extraction of the leaf outline: we apply imdilate to 

dilate these areas slightly in case there are any 

unclosed trichome boundaries, imfill to fill in each 

enclosed area, imerode to shrink the areas back 

down slightly (to offset the previous dilation), 

then bwmorph with the ‘remove’ option to leave 

only the outlines of each area. The bwconncomp 
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function is applied to identify each outline as a separate object, and the bwtraceboundary 

function is applied to extract the x,y-coordinates of each object. These outlines are then plotted 

in pink on the depth map (B) and multifocus (C) image for the user to verify (with the leaf 

outline plotted in green). There is an option for the user to add more areas manually if needed. Z-

values in the encircled trichome areas are not used when reconstructing the leaf surface in 3D – 

the program will interpolate the height in these areas based on the height of the surrounding 

surface. 

(D) The 3D reconstruction of the leaf surface after trichomes have been deleted (and the 

height values are smoothed, as explained in the Supplemental Materials and Methods) is shown. 

Axis units are in mm.
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DAS Test statistic RG p q 

Z -4.633a -4.165a -6.838a 7 

Asymp. Sig. (2-tailed) .000 .000 .000 

Z -5.147a -4.589a -6.713a 8 

Asymp. Sig. (2-tailed) .000 .000 .000 

Z -5.470a -5.376a -7.129a 9 

Asymp. Sig. (2-tailed) .000 .000 .000 

Z -2.544a -.631a -6.204a 10 

Asymp. Sig. (2-tailed) .011 .528 .000 

Z -1.791b -2.770b -2.342b 11 

Asymp. Sig. (2-tailed) .073 .006 .019 

Z -.559b -1.059b -.789b 12 

Asymp. Sig. (2-tailed) .576 .290 .430 

Z -3.297b -5.679b -3.667b 13 

Asymp. Sig. (2-tailed) .001 .000 .000 

Z -.614b -1.611b -1.113b 14 

Asymp. Sig. (2-tailed) .539 .107 .266 

Z -.366a -.906a -2.545a 15 

Asymp. Sig. (2-tailed) .714 .365 .011 

Z -3.115b -2.961b -2.662b 16 

Asymp. Sig. (2-tailed) .002 .003 .008 

Z -.749b -.640b -1.600b 17 

Asymp. Sig. (2-tailed) .454 .522 .110 

Z -1.619b -3.432b -1.210b 18 

Asymp. Sig. (2-tailed) .105 .001 .226 

a. Based on negative ranks. 

b. Based on positive ranks. 

 

Table S1, related to Figure 5. Testing the gradient shapes of RG, p, and q at each time 

point. 

To statistically assess the gradient shapes observed for RG, p and q, we compared the 

values in a small window at the center to those in a small window at the same longitudinal 

position at the sides of each single sample leaf spatial map (refer to diagram in Figure S4C-D), 

with a Wilcoxon signed-rank test. If the observed curvature of the gradients are significant, the 
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difference between the values at the center will be significantly different from the values at the 

sides. Asymp. Sig. refers to asymptotic significance. 
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SUPPLEMENTAL MATERIALS AND METHODS 

 

More details and techniques on particle application 

If the droplet of particle solution does not fully cover the leaf surface, this can be 

resolved by adding a small amount of the more concentrated solution to the droplet, and then 

overlaying it with a tiny piece of tissue, which will break the spherical shape of the droplet and 

force the solution to spread out across the leaf; the tissue is removed after it has dried 

(approximately 60 minutes).  

We generally apply the particles to both of the first two rosette leaves of the chosen 

plants, and then select the leaf with the best particle coverage for further imaging. If the 

dispersion or concentration of particles is not ideal, the particles can be pushed around on the 

leaf surface with a small piece of wet tissue to improve dispersion, blotted with the tip of a moist 

tissue to remove some particles in concentated areas, or blotted with the tip of a tissue dipped in 

the more concentrated solution to add particles to sparse areas. However, because mechanical 

stimulation is known to affect growth (Chehab et al., 2009), these manipulations are kept to a 

minimum, and if good particle coverage is not easily achieved, the plant is discarded. 

 

Details on settings for microscopy and image acquisition 

There are several settings on the microscope and camera (Leica DFC350) that can be 

adjusted to optimize the images obtained. As over-exposure to light could potentially alter plant 

growth, we are always conscious of choosing settings that also minimize the intensity and 

duration of light exposure. We use the lowest levels of brightfield light intensity, adjusting the 

brightness as needed, from 10 to 30, and the lowest level of fluorescent light intensity, adjusting 

the brightness from 6.3 to 100%. The 2.0x objective lens is used for smaller leaves (up to around 

DAS15) and the 1.0x lens is used for the larger leaves. 

The z-stack is acquired by taking a series of images at regular vertical intervals within the 

focal range of the specimen, which is set manually by setting the bottom of the range to where 

the lowest point of the leaf is just out of focus and the top end to where the highest point of the 

leaf is just out of focus. The regular vertical interval size is referred to as the step size, and is 
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optimal when it is small enough to capture the leaf curvature and shape in 3D (which is 

important for generating a clear montage image and accurate depth map) without being 

redundant and causing unneccessary longer exposure of the plant under the microscope lights. A 

visual assessment of the depth map quality is made from the confidence map, in which grayscale 

values ranging from black to white represent 0-100% accuracy (Figure 1C). The step size can be 

set automatically by the Leica® software’s “Optimize step size” option, which adjusts with the 

2D size (zoom) of the specimen, or it can be entered manually to obtain the desired vertical 

resolution. For fluorescence images (for which the depth map is not used), the step size can be 

increased to shorten the leaves’ exposure to the fluorescent light, since we do not use the depth 

map of the fluorescence stack. 

To visualize the fluorescent yellow particles we use a GFP filtercube (excitation filter BP 

470/40, dichromatic mirror 500, suppression filter BP 525/50), with the intensity of the 

fluorescent light source kept as low as possible. The camera settings for fluorescent images need 

to be determined on a case-by-case basis, as the best settings depend on the density of particle 

coverage, and the apparent brightness of the particles. The latter depends on the size of the 

particles and the relative size of the leaf; for example, a 29.6µm particle appears quite large and 

bright on a leaf at DAS15, but will appear much smaller and fainter (until the camera settings are 

adjusted) at DAS21 when the leaf is comparatively much larger. We find the lowest levels of 

fluorescent light intensity to be sufficient, with exposure times ranging from 700-900ms, and 

gamma correction and gain usually set around 0.55 and 3.2x respectively. The same camera 

settings can usually be used for the brightfield images as well. 

 

Computational details of the particle tracking algorithm 

For each particle on a leaf at time t1, the pattern-matching algorithm computes and 

records a “neighbour pattern” based on the n closest neighbouring particles; the default number 

of neighbours used in the pattern is three, but this can be changed by the user if desired. A 2D 

coordinate system is centered on the particle in question, and we compute the polar coordinates 

(radius, θ) of the n neighbouring particles within that coordinate system, through the Matlab 

cart2pol function (built-in Matlab functions are cited in italics throughout). We use the radius to 

compute the relative distance of each neighbour from the particle in question as the radius 
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divided by the 2D length of the leaf. θ gives the angle of the neighbour relative to the the particle 

in question. We store the relative distances of the neighbours in one matrix (Dt1) and their 

orientations in another (Ot1); each matrix has the dimensions p by n, where p is the number of 

particles on the leaf, and n is the number of neighbouring particles for which we store data. Each 

row p of Dt1 contains the relative distances of the n closest neighbours to particle p, and the 

corresponding indices of Ot1 contain their orientations. Data for neighbours is always stored by 

increasing distance from left to right; i.e. data for the closest neighbour is in the 1st column, data 

for the second closest neighbour is in the 2nd column, etc. 

This is repeated for all particles at t2. Now the neighbour pattern of each particle at time 

t1 is compared to the neighbour pattern of each of the particles at t2, based on the ratio of the 

relative distances and difference in orientation of the closest neighbours. Because growth is not 

uniform, we do not expect the pattern to remain exactly the same and we allow for some 

discrepancy. The default discrepancy permitted is 30% for the distance ratio and 0.15 radians for 

the angle difference, but these can be adjusted by the user if need be. When the neighbour pattern 

of a particle at t1 (p1) is sufficiently similar to the neighbour pattern of a particle in at t2 (p2), it 

is recorded as a potential match.  I.e.  

 

FOR p1 = 1 to the number of particles on the leaf at t1 

 FOR p2 = 1 to the number of particles on the leaf at t2 

  FOR n = 1 to the number of neighbours used 

dD(n)=Dt1(p1,n) / Dt2(p2,n)  

dO(n)=abs(Ot1(p1,n)-Ot2(p2,n)) 

  EndFOR 

IF max(dD) < 0.3 AND  max(dO) < 0.15 

 Particle p1 and p2 are recorded as a potential match 

   EndIF 

 EndFOR 

EndFOR 
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Additional checks at the end of the program will remove any matches where more than 

one potential match was identified, and otherwise saves the best match.  

It is usually possible to match an estimated 80-90% of the particles with this algorithm, 

with 100% accuracy most of the time. However, matches should be verified by the user, and if an 

insufficient number of matches were found, or an erroneous match found, there is an option to 

add or delete particles manually. 

Once most of the particles have been matched, their change in coordinates between the 

successive time points can be used to warp all of the t1 coordinates to t2 using piecewise 

transformations.  Such warping is done by grouping matched particles into vertices of non-

intersecting triangles using Matlab’s delaunay triangulation function. For each of these triangles, 

an affine transformation matrix is calculated based on the change in the vertex coordinates from 

time t1 to t2 using the cp2tform function, and is applied to the t1 particles making up the triangle 

and any that lie within it via the tformfwd function.  This is repeated for all triangles, and a 

second-order polynomial function, derived from all of the matched points, is applied to 

remaining particles around the perimeter that do not lie within any of the triangles (again using 

the cp2tform and tformfwd functions).  

The result is perfect alignment of the matched particles and usually a very good 

alignment of the remaining un-matched particles on the leaf at t2. The remaining particles can 

now be matched according to the alignment, by finding the warped t1 particle which is the 

closest to each t2 particle. If necessary, additional matches can be manually added at this point in 

areas that are crowded or not well aligned. There are again a few checks in place that can be 

adjusted by the user if desired to increase the number of matches or increase the accuracy, 

including the maximum distance allowed between particles in order for them to be considered a 

match, and a minimum distance allowed between the top two matches (i.e. if there are potentially 

two matches for a particle, no match will be recorded). There is also an option to consider a 

match when it is not within the minimum distance but if there are no other possible matches 

nearby. 
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Digitally editing and modifying the leaf surface 

The depth map groups the image into regions that are most in focus at each z-step but in 

reality we know the curved leaf spans in-between the focal planes. To convert the depth map 

from a surface of flat steps to a more realistic continuously curved surface, it is “smoothed” 

using a square averaging window with dimensions of 50 pixels (on the 1041x1393 image) using 

the fspecial and imfilter functions. The leaf surface can now be described by a 3D grid, from a 

set of points fitted to the leaf shape with z-coordinates obtained from the smoothed depth map. 

The 3D leaf surface is then plotted and any aberrent areas can be edited by manually cropping 

out problem regions on the depth map and interpolating new z-values in those regions, although 

this procedure is usually only necessary when using leaves with trichomes (see Figure S5).  

 

Mathematical details on the computation of growth strain parameters in 3D 

Before the growth parameters for a given triangle can be computed, the 3D triangle 

coordinates must be rotated so that they can be described with 2D coordinates. The triangle is 

shifted so that one vertex lies at the origin, and the normal vector to a plane fit through the 

triangle is found using the cross product of two of the triangle points. The projection of the angle 

of this vector in the x-y plane (α) is obtained, and is essentially equal to the 2D angle between 

the normal and the positive x-axis. The triangle is rotated clockwise around the z-axis by the 

angle α, bringing the projection of the normal in the x-y plane in line with the positive x-axis. 

Consequently this puts the intersection of the triangle and the x-y plane along the y axis.  The 

angle between the normal and a vector along the z-axis (β) is now calculated using the dot 

product. The projection of the normal is in line with the x-axis, so if the triangle is now rotated 

around the y-axis by the angle β, the normal will become perfectly aligned with the z-axis in 3D. 

Consequently the triangle will now lie in the x-y plane.  This is repeated for both the time t1 and 

t2 triangles. 

Now growth from the two flattened triangles can be calculated according to the singular 

value decomposition, described by Goodall and Green (1986), of a transformation matrix, Tr, 

that mathematically describes the transformation of a triangle’s landmarks from t1 to t2. This 

will produce the scaling factors (p and q), the direction of maximal growth (θf), and the triangle 

rotation (ψf), of the flattened triangles. 
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Since the angles obtained are computed after the triangles are rotated on to the x-y plane, 

the actual direction of growth and rotation of tissue must be adjusted to account for this. To 

compute the overall rotation of the triangle, we apply a total transformation matrix (the t1 

flattening rotations, the rotations and scaling of growth, and the inverse of the t2 flattening 

rotations) to a unit vector laying along the positive x-axis. The resulting position of the vector 

gives the final angle of rotation the tissue experienced during growth, as measured from the 

positive x-axis. To align the direction of growth with the position of the triangle within the 3D 

leaf, we apply the inverse of the t1 flattening rotations to a unit vector in the direction of (θf).  

The resulting angles for the direction of growth and rotation of tissue have two 

components: the angle in the x-y plane, and the angle from the x-y plane. For the purposes of 

making deductions about growth signals, the relevant angle is the angle within the plane of the 

tissue. However this is complicated to visualize, since publications only allow for 2D images, or 

projections of 3D images, and since the leaf is fairly flat, we decided it was appropriate to just 

show the 2D projections of the angles. 

 

Shifting data using leaf area as an indicator of developmental stage 

Days after sowing may not necessarily reflect the growth stage of a leaf, as not all plants 

germinate at the same time. In order to group the data as accurately as possible, we sowed 

approximately 100 seeds, and of those that germinated, selected 24 which had fully opened 

cotyledons at DAS4 and first leaves of approximately the same size at DAS7, and randomly 

divided these into two sets. One half was followed from DAS7 to DAS12, and the second was 

followed from DAS12 to DAS19. Since the imaging did not affect the leaf growth, we are able to 

combine the two data sets to create a continuous standard growth curveof a 2D projection of the 

leaf areas. 

As leaves from the first data set grew, particles in fast growing areas became further 

apart, leading to less particle coverage at the base of DAS10-12 leaves. We therefore sowed an 

additional set of plants, which were imaged from DAS10 to DAS14. Due to variations in 

germination times, we wrote a program to automatically align each plant to the standard growth 

curve according to a weighted least squares fit of the leaf areas over time.  
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