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Figure S1, related to Figure 1. Details on data set and validation of methods to show that
imaging and bead application does not disturb plant growth and that beads do stick to the
leaf surface.

(A) 3D leaf width of all samples in the data seéotime. The green and blue lines
represent the original batch of plants that weraged, with a set of plants being imaged from
DAS7-12 (green lines) and a set of plants beinggadadrom DAS12-19 (blue lines). The orange
lines represent a secondary batch, grown a few sviagdr in the same conditions. The data from
this secondary batch was matched to the growthesuot’the original data set (see Supplemental
Materials and Methods for more information).

(B) To investigate the effect of daily imaging leaf growth, we compared the 3D width
of leaves that underwent bead application at DA®Vdaily imaging under brightfield and
fluorescent light until DAS12 (N=14), to DAS12 less/grown concurrently in the same
conditions that had not been previously imaged @=Error bars represent the 95% confidence
interval. A Mann-Whitney U test reveals that ther@o significant difference in the leaf width
of the two groups (U=67.0, Z=-0.874, P=0.382), aomihg that particle application and imaging
does not disturb leaf growth.

(C) Fluorescent particles were applied to the lsafea strain of Arabidopsis that has
green fluorescent vasculature (AtSuc2prom:GFP) |@es were imaged at two time points
two days apart. Here we show three samples, aindidiigthe position of a few beads from one
time point to the next by coloured circles. Thetiohes remain in the same relative positions
compared to the vasculature, demonstrating thgtrémaain fixed to the leaf surface and move
with it as the tissue expands. We used fluoreseshbeads which still fluoresced weakly under
the GFP filter, since the vasculature fluorescemas very weak compared to and overpowered

by the yellow fluorescent beads. Scale bars reptdsam.



Figure S2, related to Figure 1. Details of the automated leaf-outlining softwar e.

(A) The leaf outline is extracted from the brightfl multi-focus mopntage image. In this
example we show a leaf at DAS11.

(B) We first apply the Matlaktdfilt function (built-in Matlab functions are cited italics
throughout) from the Image Processing Toolbox &hkhghtfield multi-focus image (A), which
returns at each pixel the local standard deviaticthe image (in a window of 9x9 pixels). Areas
outside of the leaf typically have low standardidggn as they are mostly dark, and out of focus
(i.e. there are no sharp changes in pixel valuegas within the leaf have higher standard

deviation due to the texture and shininess of callthe leaf surface, and standard deviation is
3



especially high at the boundary between the ledfsamrounding soil as the soil is much darker
than the leaf surface, giving a large jump in piaues at the leaf perimeter.

(C) A new binary image is created from areas wistaadard deviation (B) meets a
minimum threshold (5.0), giving the outlines anthearegions of the surface of any leaves in the
image. Thamdilate function is applied to smooth edges slightly ant &ny regions of the
outline that are not connected.

(E) The program uses the left and right petiolerdmates to create a line that segments
the image along the petiole; the region that de¢sontain the leaf tip is cropped out. A line
with the left and right petiole coordinates as poihts is added to the binary leaf image, to close
the leaf outline along the petiole. To eliminateestleaves in the image or small objects in the
soil, we apply thdwconncomp function, which identifies objects in an image édhsn pixel
interconnectivity. The largest object in the imagéhe leaf in question, and all other objects are
discarded.

(F) Now we apply themfill function to fill in all enclosed areas in the ineagp produce
a single object corresponding to the entire ledbse, followed by thémerode function to
shrink the leaf object slightly since it was expaahdlightly when théndilate function was
applied in an earlier step.

(G) We then apply thewmor ph function with the ‘erode’ operation to leave otitg
outline of the leaf object. THawtraceboundary function can now be applied to extract x,y-
coordinates of this image. This line is plottedtiom original brightfield image for the user to
verify.

On our computers this software computes and displag predicted leaf outline in under

3 seconds.
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Figure S3, related to Figure 2. Spatial maps of sample numbers used in the calculation of
the mean maps and therelative standard error (RSE) of the RG maps.
(A) Number of samples used to compute the meamegadt each point on the mean

spatial maps, coloured according to the scale stmwthe right.

(B) Relative standard error (RSE) of the mean R@aneoloured according to the scale

shown on the right. RSE is expressed as a perasragay if the error at a point is 30% RSE and

the mean growth at the same point is 20% RG, thaRGat point is 20£6% (30% of 20% is
6%).
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Figure $4, related to Figure 6. Analyses of spatiotemporal patternsand error of pand q,
the scaling factor s along the maximal and minimal direction of growth, respectively.

(A-B) To illustrate patterns in the scaling fagprandq at the leaf base and tip over
time, we compute and plot the average of the valuédse bottom and top quarter (as shown in
the diagram) of the mean spatial mapd@f) andq (B) for each DAS.

(C-D) We assess the gradient shapes by comparngaibbes op (C) org (D) in a small
window at the center to those in a small windowhatsame lateral position at the side of the
spatial map of each sample (as illustrated in tagrdm). If the gradient has a downward
curving shape, the values in the center will bénbighan those at the sides, and the center-to-
side ratio will thus be greater than one, with m&trengly curving gradients having higher
center-to-side ratios, and vice versa. N=12-20oHars represent the 95% confidence interval.

(E-F) Spatial maps of the relative standard elRS8E), expressed as a percentage, of the
mean maps gb (E) andg (F). RSE values are plotted by colour accordinthéocolour scales on
the right.
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Figure S, related to Figure 7. Error and variance maps of anisotropy and growth
direction, and maps of therotation of growth direction within thetissue over time with
associated error maps.

(A) Spatial maps of the relative standard errd8ERof the mean maps of anisotropy,
where RSE values are expressed as a percentagéosted according to the colour scale on the
right.

(B-C) Circular variance maps of the mean direcobgrowth (B) and angles of tissue
rotation (C), where the circular variance valuesotted according to the colour scales on the
right. Values closer to zero represent low variaamag values closer to 1 represent high variance.

(D) To assess if or how the maximal direction dvgth rotates within the tissue over
time, we compare the direction of growth withiniage of tissue at two successive periods of
growth while taking into account changes in thewtation of the tissue itself. We calculate this
by 62 t0 13— 011 10 2—V11 1o t2 Wheredy, 1o 131S the direction of maximal growth from tini2to t3, 6y,
to131S IS the direction of maximal growth from tirtieto t2, and¥u 1 12iS the rotation of the
tissue from timel to t2. Thus, in the maps shown, the lines represent hewntaximal direction
of growth rotates within the tissue in that arempared to growth over the previous time period.
A horizontal line indicates zero rotation, i.e.tth@ maximal direction of growth remains fixed
within the tissue.

(E) Circular variance maps of the mean angles tattian of the direction of growth (D),
where values closer to zero represent low variandevalues closer to 1 represent high variance.

Circular variance values are plotted by colour aditg to the colour scales on the right.



Figure S6, related to Figure 1. Digitally
cropping leaf trichomes from wild type
Arabidopsis thaliana ecotype Columbia.

(A) We first convert the depth map from
pixel values to step numbers, by dividing by the
difference in pixel values between shades of grey
in the depth map. Next we apply trengefilt
function from the Image Processing Toolbox,
with a window size of 25. This returns a map of
the range of step numbers in a window of 25x25
pixels. Aside from trichomes, the leaf surface is
smooth, and at no point on a glabrous leaf does a
neighboring area of the leaf change in height by
more than one level. Trichomes, however, jut out
from the surface steeply, and will be several steps
above the leaf surface in that area. Therefore,
areas where the range of step numbers is greater
than 1 correspond to the boundary between the
leaf surface and trichomes.

(B-C) We create a new binary image from
these areas where the range is greater than 1, and
then apply a similar series of steps as in the
extraction of the leaf outline: we appiydilate to
dilate these areas slightly in case there are any
unclosed trichome boundariesffill to fill in each
enclosed areamerode to shrink the areas back
down slightly (to offset the previous dilation),
thenbwmorph with the ‘remove’ option to leave

only the outlines of each area. Tiveconncomp
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function is applied to identify each outline assparate object, and thweitraceboundary
function is applied to extract the x,y-coordinadégach object. These outlines are then plotted
in pink on the depth map (B) and multifocus (C) gador the user to verify (with the leaf
outline plotted in green). There is an option fog tiser to add more areas manually if needed. Z-
values in the encircled trichome areas are not wéesh reconstructing the leaf surface in 3D —
the program will interpolate the height in theseasrbased on the height of the surrounding
surface.

(D) The 3D reconstruction of the leaf surface afittethomes have been deleted (and the
height values are smoothed, as explained in thel8omental Materials and Methods) is shown.

AXis units are in mm.
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DAS Test statistic RG p q

7 VA -4.633 -4.165 -6.838
Asymp. Sig. (2-tailed) .000 .000 .000
8 VA -5.147 -4.589 -6.713
Asymp. Sig. (2-tailed) .000 .000 .000
9 z -5.47G -5.376 -7.129
Asymp. Sig. (2-tailed) .000 .000 .000
10 VA -2.544 -.63F -6.204
Asymp. Sig. (2-tailed) .011 .528 .000
11 z -1.79 2770 -2.342
Asymp. Sig. (2-tailed) .073 .006 .019
12 z -.55¢ -1.05¢  -789
Asymp. Sig. (2-tailed) .576 .290 430
13 z -3.297 5679  -3.667
Asymp. Sig. (2-tailed) .001 .000 .000
14 z -.614 -1.61f 1113
Asymp. Sig. (2-tailed) .539 .107 .266
15 VA -.366' -.906' -2.54%
Asymp. Sig. (2-tailed) .714 .365 .011
16 z -3.11% 296  -2.662
Asymp. Sig. (2-tailed) .002 .003 .008
17 z - 749 -.640 -1.600
Asymp. Sig. (2-tailed) .454 522 .110
18 z -1.619 3432 -1.210
Asymp. Sig. (2-tailed) .105 .001 226

a. Based on negative ranks.

b. Based on positive ranks.

Table S1, related to Figure 5. Testing the gradient shapes of RG, p, and g at each time
point.

To statistically assess the gradient shapes ol$&v&G,p andg, we compared the
values in a small window at the center to thosa small window at the same longitudinal
position at the sides of each single sample leatiamap (refer to diagram in Figure S4C-D),
with a Wilcoxon signed-rank test. If the observedvature of the gradients are significant, the

12



difference between the values at the center williggeificantly different from the values at the

sides. Asymp. Sig. refers to asymptotic signifi@anc
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SUPPLEMENTAL MATERIALSAND METHODS

Moredetails and techniques on particle application

If the droplet of particle solution does not futlgver the leaf surface, this can be
resolved by adding a small amount of the more autnated solution to the droplet, and then
overlaying it with a tiny piece of tissue, whichlMdreak the spherical shape of the droplet and
force the solution to spread out across the leaftissue is removed after it has dried
(approximately 60 minutes).

We generally apply the particles to both of thstftivo rosette leaves of the chosen
plants, and then select the leaf with the bestg@rtoverage for further imaging. If the
dispersion or concentration of particles is notldéhe particles can be pushed around on the
leaf surface with a small piece of wet tissue tpriove dispersion, blotted with the tip of a moist
tissue to remove some patrticles in concentatedsaoedlotted with the tip of a tissue dipped in
the more concentrated solution to add particlesptose areas. However, because mechanical
stimulation is known to affect growth (Chehab et 2009), these manipulations are kept to a

minimum, and if good particle coverage is not gaadhieved, the plant is discarded.

Details on settings for microscopy and image acquisition

There are several settings on the microscope andrea(Leica DFC350) that can be
adjusted to optimize the images obtained. As oxppsure to light could potentially alter plant
growth, we are always conscious of choosing sedtihgt also minimize the intensity and
duration of light exposure. We use the lowest lewaglbrightfield light intensity, adjusting the
brightness as needed, from 10 to 30, and the loeest of fluorescent light intensity, adjusting
the brightness from 6.3 to 100%. The 2.0x objedeves is used for smaller leaves (up to around
DAS15) and the 1.0x lens is used for the largerdsa

The z-stack is acquired by taking a series of imageegular vertical intervals within the
focal range of the specimen, which is set manuajlgetting the bottom of the range to where
the lowest point of the leaf is just out of focusldhe top end to where the highest point of the

leaf is just out of focus. The regular verticakinal size is referred to as the step size, and is
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optimal when it is small enough to capture the teatature and shape in 3D (which is
important for generating a clear montage imageaaudrate depth map) without being
redundant and causing unneccessary longer expoftire plant under the microscope lights. A
visual assessment of the depth map quality is rfradethe confidence map, in which grayscale
values ranging from black to white represent 0-1@@%uracy (Figure 1C). The step size can be
set automatically by the Leica® software’s “Optimigtep size” option, which adjusts with the
2D size (zoom) of the specimen, or it can be edtaranually to obtain the desired vertical
resolution. For fluorescence images (for whichdbpth map is not used), the step size can be
increased to shorten the leaves’ exposure to tioedbcent light, since we do not use the depth
map of the fluorescence stack.

To visualize the fluorescent yellow particles we asGFP filtercube (excitation filter BP
470/40, dichromatic mirror 500, suppression fiB& 525/50), with the intensity of the
fluorescent light source kept as low as possibitee Gamera settings for fluorescent images need
to be determined on a case-by-case basis, as $hedigngs depend on the density of particle
coverage, and the apparent brightness of the [etiChe latter depends on the size of the
particles and the relative size of the leaf; foaraple, a 29.6um particle appears quite large and
bright on a leaf at DAS15, but will appear much Benand fainter (until the camera settings are
adjusted) at DAS21 when the leaf is comparativelgimlarger. We find the lowest levels of
fluorescent light intensity to be sufficient, wigliposure times ranging from 700-900ms, and
gamma correction and gain usually set around M853a2x respectively. The same camera

settings can usually be used for the brightfieldges as well.

Computational details of the particle tracking algorithm

For each particle on a leaf at tirtie the pattern-matching algorithm computes and
records a “neighbour pattern” based onrilodosest neighbouring particles; the default number
of neighbours used in the pattern is three, bgt¢hin be changed by the user if desired. A 2D
coordinate system is centered on the particle @stjon, and we compute the polar coordinates
(radius,0) of then neighbouring particles within that coordinate systéhrough the Matlab
cart2pol function (built-in Matlab functions are cited iralics throughout). We use the radius to

compute the relative distance of each neighboum fitte particle in question as the radius
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divided by the 2D length of the led@fgives the angle of the neighbour relative to tleegarticle
in question. We store the relative distances ohtighbours in one matrix () and their
orientations in another (€, each matrix has the dimensigmby n, wherep is the number of
particles on the leaf, andis the number of neighbouring particles for whied store data. Each
row p of Dy; contains the relative distances of thelosest neighbours to partiggeand the
corresponding indices ofiOcontain their orientations. Data for neighbouraligays stored by
increasing distance from left to right; i.e. datathe closest neighbour is in th& dolumn, data
for the second closest neighbour is in thfecBlumn, etc.

This is repeated for all particlestat Now the neighbour pattern of each particle at time
t1 is compared to the neighbour pattern of eacheptrticles at2, based on the ratio of the
relative distances and difference in orientatiothefclosest neighbours. Because growth is not
uniform, we do not expect the pattern to remairctyxdahe same and we allow for some
discrepancy. The default discrepancy permitted 3or the distance ratio and 0.15 radians for
the angle difference, but these can be adjustebéyser if need be. When the neighbour pattern
of a particle atl (pl) is sufficiently similar to the neighbour patternaparticle in at2 (p2), it
is recorded as a potential match. l.e.

FORpl = 1 to the number of particles on the leatflat
FORp2 = 1 to the number of particles on the leat?at
FORnN = 1 to the number of neighbours used
dD(n)=Du(p1.n) / Di(p2,n)
dO(n)=abs(Qu(p1,n)-Or(p2,n))
EndFOR
IF max(dD) < 0.3 AND max(dO) < 0.15
Particlepl andp2 are recorded as a potential match
EndIF
EndFOR
EndFOR
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Additional checks at the end of the program withoee any matches where more than
one potential match was identified, and otherwésees the best match.

It is usually possible to match an estimated 80-@@%he particles with this algorithm,
with 100% accuracy most of the time. However, mascshould be verified by the user, and if an
insufficient number of matches were found, or anregous match found, there is an option to
add or delete particles manually.

Once most of the particles have been matched, ¢hairge in coordinates between the
successive time pointan be used to warp all of tiiecoordinates té2 using piecewise
transformations Such warping is done by grouping matched particlEsvertices of non-
intersecting triangles using Matlaldslaunay triangulation function. For each of these triasgle
an affine transformation matrix is calculated bagedhe change in the vertex coordinates from
time t1 to t2 using thecp2tform function, and is applied to th& particles making up the triangle
and any that lie within it via thiéormfwd function. This is repeated for all triangles, and
second-order polynomial function, derived fromddlthe matched points, is applied to
remaining particles around the perimeter that ddiaavithin any of the triangles (again using
the cp2tform andtformfwd functions).

The result is perfect alignment of the matchediglag and usually a very good
alignment of the remaining un-matched particleshenleaf at2. The remaining particles can
now be matched according to the alignment, by figdhe warpedl particle which is the
closest to eact? particle. If necessary, additional matches can aeually added at this point in
areas that are crowded or not well aligned. Thezeagain a few checks in place that can be
adjusted by the user if desired to increase thebeumf matches or increase the accuracy,
including the maximum distance allowed betweenig@ead in order for them to be considered a
match, and a minimum distance allowed betweendhdvwo matches (i.e. if there are potentially
two matches for a particle, no match will be reeald There is also an option to consider a
match when it is not within the minimum distance ibthere are no other possible matches

nearby.
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Digitally editing and modifying the leaf surface

The depth map groups the image into regions tleatrast in focus at each z-step but in
reality we know the curved leaf spans in-betweenftical planes. To convert the depth map
from a surface of flat steps to a more realistigticwously curved surface, it is “smoothed”
using a square averaging window with dimensionsOopixels (on the 1041x1393 image) using
thefspecial andimfilter functions. The leaf surface can now be descrilyeal 8D grid, from a
set of points fitted to the leaf shape with z-caoates obtained from the smoothed depth map.
The 3D leaf surface is then plotted and any abeeesas can be edited by manually cropping
out problem regions on the depth map and interpgjatew z-values in those regions, although

this procedure is usually only necessary when ugiages with trichomes (see Figure S5).

Mathematical details on the computation of growth strain parametersin 3D

Before the growth parameters for a given triangle lse computed, the 3D triangle
coordinates must be rotated so that they can bwided with 2D coordinates. The triangle is
shifted so that one vertex lies at the origin, grenormal vector to a plane fit through the
triangle is found using the cross product of twahaf triangle points. The projection of the angle
of this vector in the x-y plane) is obtained, and is essentially equal to the §leabetween
the normal and the positive x-axis. The triangleotated clockwise around the z-axis by the
anglea, bringing the projection of the normal in the ylgne in line with the positive x-axis.
Consequently this puts the intersection of thengi@ and the x-y plane along the y axis. The
angle between the normal and a vector along thesz® is now calculated using the dot
product. The projection of the normal is in lingwihe x-axis, so if the triangle is now rotated
around the y-axis by the anglethe normal will become perfectly aligned with thexis in 3D.
Consequently the triangle will now lie in the x4ape. This is repeated for both the titheand
t2 triangles.

Now growth from the two flattened triangles canché&ulated according to the singular
value decomposition, described by Goodall and G(&88&6), of a transformation matrixr,
that mathematically describes the transformatioa wiangle’s landmarks fromi to t2. This
will produce the scaling factorp &ndq), the direction of maximal growttd, and the triangle

rotation (), of the flattened triangles.
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Since the angles obtained are computed afteridregtes are rotated on to the x-y plane,
the actual direction of growth and rotation of tissnust be adjusted to account for this. To
compute the overall rotation of the triangle, welg@ total transformation matrix (th#
flattening rotations, the rotations and scalingaiwth, and the inverse of th2flattening
rotations) to a unit vector laying along the pesitk-axis. The resulting position of the vector
gives the final angle of rotation the tissue exgered during growth, as measured from the
positive x-axis. To align the direction of growtlithvthe position of the triangle within the 3D
leaf, we apply the inverse of thkflattening rotations to a unit vector in the diientof (&).

The resulting angles for the direction of growtld aotation of tissue have two
components: the angle in the x-y plane, and théedngm the x-y plane. For the purposes of
making deductions about growth signals, the relegagle is the angle within the plane of the
tissue. However this is complicated to visualize¢cs publications only allow for 2D images, or
projections of 3D images, and since the leaf Wyfdliat, we decided it was appropriate to just

show the 2D projections of the angles.

Shifting data using leaf area asan indicator of developmental stage

Days after sowing may not necessarily reflect tteevth stage of a leaf, as not all plants
germinate at the same time. In order to group #ia ds accurately as possible, we sowed
approximately 100 seeds, and of those that geretdnatlected 24 which had fully opened
cotyledons at DAS4 and first leaves of approximetieé same size at DAS7, and randomly
divided these into two sets. One half was folloviredh DAS7 to DAS12, and the second was
followed from DAS12 to DAS19. Since the imaging diot affect the leaf growth, we are able to
combine the two data sets to create a continuamslatd growth curveof a 2D projection of the
leaf areas.

As leaves from the first data set grew, partichefast growing areas became further
apart, leading to less particle coverage at the b&®AS10-12 leaves. We therefore sowed an
additional set of plants, which were imaged from3lA to DAS14. Due to variations in
germination times, we wrote a program to autombyiedign each plant to the standard growth

curve according to a weighted least squares tiv@leaf areas over time.
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