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Appendix S4

Numerical implementation of the MCP

The contact process is a self-dual model [1], meaning that its dual representation is the contact process
itself. Therefore, duality does not provide any useful help in this case, and one needs to resort to standard
forward-time simulations. Here below we briefly sketch the algorithm we used and discuss some related
issues.

We implemented a multispecies generalization of standard algorithms for the contact process [2]. A
L× L two-dimensional lattice with periodic boundary conditions is initialized by placing and individual
at each lattice site; its species is labeled by a positive integer s (s = 0 means that the site is empty).
Initially, a single species occupies the whole system. We keep track of occupied sites in a list, containing
Nocc = L2 entries at time t = 0. At each step, time is incremented by L2/Nocc and a random individual
(in the list of non-empty sites) is chosen:
(i) with probability δ/(β+δ) it is killed and removed from the list (Nocc decreases in one unit)
(ii) with probability β/(β + δ), reproduction at a randomly chosen neighbor site is attempted:

(iia) if the chosen neighbor site was non-empty, reproduction is unsuccessful, and the state of the
system does not change

(iib) if it was empty, reproduction is successful (Nocc increases in one unit)
(iib.1) with probability 1 − ν the site becomes occupied by an individual from the parent species

and is added to the list of occupied sites;
(iib.2) with probability ν the newborn mutates from the parent, giving birth to a new species. A

new species-label is created by increasing in unity the largest existing one, and it is assigned to this site
(which, on its turn, is added to the list of non-empty sites).

When γ = β/δ > γc, the system evolves to a dynamical equilibrium, with new species appearing and
older ones becoming eventually extinct. The number of extant species is monitored. Once equilibration
of the density of non-empty sites is reached, on longer time scales (on the order of ν−1) also the number
of extant species equilibrate fluctuating around a mean value. After equilibration, configurations of the
system are periodically sampled, and used to compute the SAR. Notice that, in order to have statistically
independent measurements, the sampling interval should be also on the order of ν−1. Simulations are
terminated when enough statistics have been collected.

At variance with the backward algorithm for the SSM and MVM, here boundaries play and important
role, requiring rather large lattices to avoid finite size effects. In particular, L must be larger than 1/

√
ν,

which sets (similarly to the SSM and MVM) an approximate scale on which individuals are expected to
diffuse before speciation. If L is taken too small, the measured effective value z underestimates the true
one. By comparing SARs obtained at equal parameters and different system sizes, we determined that a
safe choice to neglect finite size effect is L2 = 10/ν. We also checked that for this system size and large
values of γ the results for the MVM are recovered.

Consequently, at decreasing ν simulations become more and more demanding both because a larger
system size is required and because relevant time scales become slower and slower. Owing to these
limitations, we could not simulate systems with ν smaller than 10−6 with enough statistics.

References

1. Liggett T (1985) Interacting particle systems. Berlin: Springer Verlag.

2. Marro J, Dickman R (1999) Nonequilibrium Phase Transitions in Lattice Models. Cambridge:
Cambridge University Press.


