

What is the optimal level of population alcohol consumption for chronic disease prevention in England? Modelling the impact of changes in consumption patterns

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-000957
Article Type:	Research
Date Submitted by the Author:	30-Jan-2012
Complete List of Authors:	Nichols, Melanie; Deakin University, Faculty of Health; Scarborough, Peter; University of Oxford, Department of Public Health Allender, Steven; Deakin University, Faculty of Health; University of Oxford, Department of Public Health Rayner, Mike; University of Oxford, Department of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Health policy
Keywords:	Alcohol, Chronic disease prevention, Cardiac Epidemiology < CARDIOLOGY, modelling, EPIDEMIOLOGY, PUBLIC HEALTH

Page 2 of 33	5	BMJ Open
1		
2 3	1	What is the optimal level of population alcohol consumption for chronic disease prevention in
4 5 6	2	England? Modelling the impact of changes in consumption patterns
7 8	2	Malayia Nijahala $\frac{1}{2}$ Datas Casula ang $\frac{1}{2}$ Change Allay da $\frac{1}{2}$ Mila Daugar ²
9 10	3	Melanie Nichols ^{1,2} , Peter Scarborough ² , Steven Allender ^{1,2} , Mike Rayner ²
11 12	4	
13 14 15	5	¹ Population Health Strategic Research Centre, Deakin University, Geelong, Australia
16 17	6	² British Heart Foundation Health Promotion Research Group, Department of Public Health,
18 19 20	7	University of Oxford, United Kingdom
21 22 23 24	8	
25 26 27	9	Corresponding author:
	10	Dr Melanie Nichols
	11	British Heart Foundation Health Promotion Research Group
	12	Department of Public Health,
33	13	University of Oxford
34	14	Old Road Campus, Headington, Oxford, OX3 7LF
35	15	Email: melanie.nichols@deakin.edu.au
36	16	Ph: +61 3 5227 8446
37	17	
40 41	18	Word count (excluding abstract and references): 3232
42 43 44	19	Word count (excluding abstract and references): 3232 Number of references: 23 Number of tables: 2
45 46	20	
47 48	21	Number of figures: 2
49 50 51	22	Number of supplementary (web only) tables and figures: 7
52 53	23	Keywords: Alcohol, chronic disease, prevention, modelling, cardiovascular disease, cancer, liver
55	24	cirrhosis
56 57 58 59 60	25	1
		For near raviou anly http://bmianan.hmi.com/aita/about/quidalinas.yhtml

2
2
3
4
5
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 20 1 22 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 20 1 22 3 24 25 26 7 8 9 30 1 32 33 4 35 6 7 8 20 30 1 32 33 4 35 6 7 8 20 10 10 10 10 10 10 10 10 10 10 10 10 10
7
,
ð
9
10
44
11
12
13
14
14
15
16
17
17
18
19
20
20
21
22
22
23
24
25
26
20
27
28
20
29
30
31
20
32
33
34
25
35
36
37
20
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

26	Contributors: PS conceived the study and developed the methods, with support from MN, SA and
27	MR. MN conducted literature searches to inform the model, PS and MN built the model and
28	conducted analysis. All authors contributed to interpretation of the results. MN prepared the initial
29	draft and led the preparation of the manuscript. All authors were involved in drafting and reviewing
30	the manuscript. MN and PS act as guarantors for the manuscript.
31	Copyright: The Corresponding Author has the right to grant on behalf of all authors and does grant
32	on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd to
33	permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and
34	sublicences such use and exploit all subsidiary rights, as set out in our licence.
35	Funding: This research received no specific grant from any funding agency. PS, SA and MR are
36	supported by the British Heart Foundation (grant numbers PPC/Jul05/5b and PPC/JAN05/6biii). MN
37	and SA were partially supported by the Australian Government Department of Health and Ageing.
38	Competing interests: The authors declare no competing interests. All authors have completed the
39	Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the
40	corresponding author) and declare: there was no specific funding for the submitted work; no
41	financial relationships with any organisations that might have an interest in the submitted work in
42	the previous three years, no other relationships or activities that could appear to have influenced
43	the submitted work
44	Ethical approval was not required, as no human or animal subjects were involved.
45	Study sponsors – None.
46	Data sharing: The PRIME-Alcohol model is available for use upon request from PS
47	(peter.scarborough@dph.ox.ac.uk).

BMJ Open

	48	Abstract	
	49	Objective To estimate the impact of achieving alternative population alcohol consumption patterns	s
	50	on chronic disease mortality in England.	
) 1	51	Design A macro-simulation model was built to simultaneously estimate the number of deaths from	I
3	52	coronary heart disease, stroke, hypertensive disease, diabetes, liver cirrhosis, epilepsy and five	
1 2 3 4 5 5 6 7 7 3 9 9 0	53	cancers that would be averted or delayed annually as result of changes in alcohol consumption	
7 3	54	among English adults. Counterfactual scenarios assessed the impact on alcohol-related mortalities	of
9 9	55	changing a) the percentage of non-drinkers; b) the median alcohol consumption of drinkers; c) both	n
1 2	56	factors simultaneously.	
2 3 4 5 6 7	57	Data sources Risk relationships were drawn from published meta-analyses. Age and sex specific	
	58	distributions of alcohol consumption (g/d) for the English population in 2006 were drawn from the	
3 9 0 1	59	General Household Survey 2006, and age, sex and cause specific mortality data for 2006 were	
	60	provided by the Office for National Statistics.	
2 3 4 5 6 7	61	Results The optimum percentage of non-drinkers in the model was zero. If achieved, this would	
5 6 7	62	avert or delay 4,160 (95% credible intervals: 908 to 6,962) chronic disease deaths per year. Increase	es
3 9	63	of 2,771 (2,443 to 3,898) deaths from cancer and 1,265 (1,166 to 1,360) deaths from liver cirrhosis	
) 1	64	were more than offset by averting 7,705 (5,248 to 11,934) deaths from cardiovascular diseases. The	e
2 3	65	optimum median consumption level for drinkers in the model was 5g/d (about half a unit), which	
4 5	66	would avert or delay 4,579 (2,544 to 6,590) deaths per year. Achieving both a median consumption	n
2 3 4 5 6 7 7 3 9 0 1	67	of 5g/d and zero non-drinkers would delay or avert 10,794 (6,601 to 14,504) deaths each year.	
9) 1	68	Conclusions Current government recommendations for alcohol consumption are well above the	
	69	level likely to minimise chronic disease. Public health targets should aim for a reduction in	
2 3 4 5 6 7	70	population alcohol consumption to half a unit per day, in order to achieve the optimum level of	
6 7	71	reduced chronic disease mortality.	
3 9			3

72 Article Summary

73 Article focus

74	•	Alcohol consumption is a risk factor for many chronic diseases, while providing protection
75		from others. Assessments of the impact of alcohol on individual chronic diseases can
76		therefore result in contradictory advice about the level of alcohol consumption that is
77		optimal for health.
78	•	The UK government currently recommends that men should consume no more than three to
79		four units per day (24 to 32 g/d of pure alcohol) and women should drink no more than two
80		to three units per day (16 to 24 g/d). However the true optimum population level of alcohol
81		consumption is unclear.
82	•	The aim of this study was to estimate the impact of achieving alternative population alcohol
83		consumption patterns on chronic disease mortality in England.
84	Key me	essages
85	•	Results suggest that the optimum population level of alcohol consumption for minimising
86		chronic disease mortality in England is 5g/day (approximately half a unit per day).
87	•	Current recommendations for alcohol consumption are well above this level and may not be
88		compatible with optimum protection of public health. Substantial reductions in
89		recommendations and in population alcohol consumption levels would be needed to
90		minimise the chronic disease burden associated with alcohol consumption in England.
91	Streng	ths and limitations of this study
92	•	The study used a detailed modelling approach to synthesise the best available evidence from
93		meta-analysis of prospective cohort studies and provide for the first time an estimate of the
94		level of alcohol associated with theoretical minimum risk of a range of chronic diseases,
95		considering both harmful and protective effects simultaneously.
		4

BMJ Open

1		
2		
3	96	• The approach used relies on chronic (average) consumption of alcohol and is not able to
4	50	
5	97	take account of to take account of patterns of drinking (e.g. binge drinking).
6	57	take account of to take account of patterns of uninking (e.g. binge uninking).
7		
8	98	 Results are based on the assumption of a steady state relationship between alcohol
9		
10	99	consumption patterns and relative risk of disease, and cannot estimate the time required
11		
12	100	between changes in population alcohol consumption levels occurring and the achievement
13		
14	101	of changes in mortality rates.
15		
16		
17	102	
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38 20		or changes in mortality rates.
39 40		
40 41		
41		
42 43		
43 44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50		

1
2
4
5
6
7
8
9
10
12
13
14
15
16
17 10
10 19
20
21
22
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
24
25
20 27
28
29
30
31
32
33
34 35
36
37
38
39
40
41 42
42 43
44
45
46
47
48
49 50
50 51
52
53
54
55
56
57
58 59
59 60
00

1

103 Introduction

104	Alcohol consumption has significant impacts on chronic disease risk. ¹⁻³ In the UK, it has been
105	estimated that alcohol-related ill-health is responsible for £3.3 billion in direct costs to the National
106	Health Service annually. ⁴ The effects of episodes of heavy alcohol consumption are clearly
107	detrimental to health, for example increasing risk from injuries and violence. ⁵⁻⁷ Less is known about
108	the overall effects of long term alcohol consumption on chronic disease risk in the whole population,
109	due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g.
110	liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes).
111	The World Cancer Research Fund has recommended that there is no safe level of alcohol
112	consumption in relation to cancer risk ⁸ , and Schutze and colleagues ⁹ report that up to 10% of all
113	cancers in men and 3% in women in some European countries may be attributable to alcohol
114	consumption. This has led to calls for public health messages to encourage abstinence or significant
115	reductions in alcohol consumption. ^{9 10} There is, however, a substantial body of evidence that
116	suggests that moderate alcohol consumption protects against other chronic diseases, including
117	cardiovascular disease (CVD) and diabetes. ¹¹⁻¹³ Particularly in the case of CVD, which accounts for a
118	significant proportion of mortality in high income countries, this evidence suggests that significantly
119	reducing alcohol consumption could lead to an increase in mortality.
120	Substantial research has examined the effects of alcohol consumption on various chronic diseases;
121	however there has been little integration of the findings across disease outcomes, thereby
122	precluding the development of comprehensive and evidence-based recommendations for
123	population alcohol consumption. The UK government currently recommends that men should
124	consume no more than three to four units per day (one unit = 8g of pure alcohol) and women should
125	drink no more than two to three units per day. ¹⁴ A large proportion of the literature supporting
126	alcohol policy in the UK, however, appears to focus on alcohol 'misuse', episodes of heavy drinking

128

129

130

131

1 2

BMJ Open

and the social consequences of alcohol consumption¹⁴; it is not clear that there is evidence that the

UK Government recommended drinking levels offer the maximum protection for public health.

The aim of this study was to estimate the impact of achieving alternative population alcohol

consumption patterns on chronic disease mortality in England. The research question was: what

proportion of non-drinking in the English population and what level of alcohol consumption among

3	
4	
5 6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
9 10 11 12 13 14 15 16 17 18 19 20	
∠∪ ⊃4	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34 25	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

132 drinkers would result in the greatest number of chronic disease deaths delayed or averted in 133 England compared to recent levels? 134 135 Methods 136 A macro-simulation model was built that assessed the impact on mortality from chronic disease of 137 changing the distribution of alcohol consumption (g/day) within the population of England. The 138 Preventable Risk Integrated ModEl for Alcohol (PRIME-Alcohol) estimates the impact of population 139 changes in alcohol consumption on chronic disease mortality. Developing the PRIME-Alcohol model 140 involved: identifying chronic diseases associated with alcohol consumption; identifying the current 141 (baseline) distribution of alcohol consumption; and parameterising the association between alcohol 142 consumption and chronic disease. 143 Selection of mortality outcomes 144 The initial list of chronic diseases was generated from those linked to alcohol consumption in the World Health Organization Global Burden of Disease 'Global Health Risks' report¹⁵ and the World 145 Cancer Research Fund Report⁸ was used to select site-specific cancers associated with alcohol 146 147 consumption. Excluding those resulting in small numbers of deaths (fewer than 500 deaths in 2006 148 in England), 11 chronic diseases were included as outcomes in the PRIME-Alcohol model, including 149 five cancer sites.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

150	The PubMed and Cochrane databases were searched for meta-analyses of prospective cohort or
151	case-control studies that quantified chronic disease risk for different levels of alcohol consumption.
152	The relationships between alcohol consumption were diverse, including protective effects, linear
153	increases in risk and 'U' or 'J' shaped relationships. Where multiple suitable meta-analyses were
154	available, preference was given to meta-analyses of cohort studies over case-control studies, and to
155	those using lifetime abstainers as the reference category. Age- and sex-specific estimates of risk
156	relationships and estimates adjusted for potential confounders were used where available.
157	Details of the chronic disease outcomes and the meta-analyses that were included in the model ^{8 11 12}
158	¹⁶⁻¹⁸ are shown in table 1.
159	(table 1 here)
160	Identifying the current (baseline) distribution of alcohol consumption in England
161	The General Household Survey (GHS) from 2006 ¹⁹ provided baseline distributions of alcohol
162	consumption for adults aged 16 years and over. The GHS is a multi-purpose survey conducted by the
163	Office for National Statistics in the UK. In 2006, it included 18,214 adults aged 16 years and over
164	(overall response rate 74%). To establish average weekly alcohol consumption, respondents were
165	asked how often over the last year they drank alcoholic beverages and the amount usually
166	consumed on any one day. This information is combined to give an estimate of the respondent's
167	weekly alcohol consumption in units of alcohol. ²⁰ For the current analyses, units of alcohol per week
168	was converted to grams per day and only participants from England were included (n =15,616). The
169	distribution of alcohol consumption in the GHS is shown in supplementary figure S1 – there is a large
170	spike of non-drinkers and very low alcohol consumers (<=1g/d) and a long tail of higher alcohol
171	consumers. Non-drinkers and very low alcohol consumers were removed and analysed as a separate
172	category (referred to as non-drinkers henceforth). Excluding this group, alcohol consumption was
173	shown to be approximately log-normally distributed (supplementary figure S2).
	8

BMJ Open

2 3 4	174	
5 6 7	175	The three parameters for the baseline distribution of alcohol consumption derived from the GHS for
8 9	176	each of 30 age-sex groups were therefore: percentage of non-drinkers; the mean of In-transformed
10 11	177	alcohol consumption of drinkers; and the standard deviation of In-transformed alcohol consumption
12 13 14	178	of drinkers. Counterfactual scenarios were modelled by altering one or more of these parameters.
15 16 17	179	
18 19 20	180	Parameterising the association between alcohol consumption and chronic disease
21 22	181	The meta-analyses identified by the literature search provided estimates of the relative risk of
23 24	182	different levels of alcohol consumption on chronic disease (table 1). The relative risks used in the
25 26	183	PRIME-Alcohol model are shown in supplementary table S1. These risks were used in conjunction
27 28 20	184	with the baseline distribution of alcohol consumption to attribute risk for chronic disease
29 30 31	185	throughout the age-sex specific populations. Baseline age, sex and cause specific number of
32 33	186	mortalities (England 2006) were provided by the Office for National Statistics. For each chronic
34 35	187	disease and age-sex group, mortality rates were assigned to each level of alcohol consumption such
36 37	188	that the relative risks from the meta-analyses were maintained, and the total risk in the population
38 39	189	produced the recorded number of mortalities. These mortality rates were then applied to the
40 41 42	190	counterfactual distributions to calculate the number of deaths that would be expected under the
42 43 44	191	counterfactual scenario. An example is provided in supplementary table S2.
45 46 47	192	
48 49 50	193	Uncertainty analysis
51 52	194	The alcohol-chronic disease association parameters were allowed to vary stochastically according to
53 54 55	195	the distributions reported in the literature. Five thousand Monte Carlo iterations were run, and the
56 57	196	results were used to calculate 95% credible intervals around the estimates. Because of the
58 59 60		9

Page 11 of 33

3
4
5
6
7
8
0
9 10 11 12 13 14 15 16 17
10
11
12
13
14
15
16
17
10
18
18 19
20
21
22
23
24 25 26
25
26
26 27
21
28
29
30
31
32
33
33 34 35 36
35
26
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

computing requirements of the Monte Carlo iterations, credible intervals are only presented for keyresults.

199

1 2

200 Defining the counterfactual scenarios

201 To assess the number of chronic disease mortalities in England under different alcohol consumption 202 scenarios, three counterfactual scenarios were analysed: 1) varying the proportion of non-drinkers in 203 the population while holding the median consumption among drinkers constant; 2) varying the 204 median consumption among drinkers while holding the proportion of non-drinkers constant; and 3) 205 varying both the proportion of non-drinkers and the median intake among drinkers. 206 In the analysis of the first scenario, the total percentage of non-drinkers in the population was 207 allowed to vary between 0% and 100% such that the age-sex distribution of non-drinkers was 208 maintained, whilst the amount of alcohol consumed by drinkers remained constant. In the analysis 209 of the second scenario, the percentage of non-drinkers was kept constant while the amount of 210 alcohol consumed by drinkers in the population was varied between 1g/d and 48g/d (6 units), such 211 that the age-sex distribution of mean alcohol consumption was maintained. In the analysis of the 212 third scenario, both the percentage of non-drinkers and the amount consumed by drinkers were 213 varied. The aim of the analyses was to find the distribution of alcohol consumption for England that 214 would result in the lowest number of chronic disease mortalities. The funding bodies supporting the 215 authors of this work had no role in the present study.

216

BMJ Open

1 2 3	217	Results
4 5		
5 6 7	218	In 2006, 29% of English adults were non-drinkers according to the definitions used here (including
8 9	219	those who consume less than 1g/d). Rates of non-drinking varied substantially by age group and sex
10 11 12	220	(supplementary table S3). Overall, 20% of men and 36% of women were non-drinkers.
13 14	221	In the first counterfactual scenario, varying the proportion of non-drinkers in the whole population,
15 16	222	optimal results were achieved when there were zero non-drinkers in the population (figure 1 and
17 18	223	supplementary table S4), which resulted in 4,160 (95% credible intervals: 908 to 6,962) chronic
19 20	224	disease deaths averted or delayed compared to 2006 mortality rates. Although having the whole
21 22 23	225	population drinking some alcohol would increase deaths from cancer by 2,771 (2,443 to 3,898) and
23 24 25	226	from liver cirrhosis by 1,265 (1,166 to 1,360), this was more than offset by averting 7,705 (5,248 to
26 27	227	11,934) deaths from CVD. As the proportion of non-drinkers was increased in the counterfactual
28 29	228	scenarios, the reductions in mortality were attenuated. When the modelled rates of non-drinking
30 31	229	exceeded the 2006 levels there was a net increase in chronic disease mortality, up to an additional
32 33 34	230	3,160 (-436 to 6,409) lives lost annually if the entire population were to abstain from alcohol.
35 36 37	231	Analysis by gender showed that at low proportions of non-drinkers, greater numbers of deaths were
38 39	232	averted among women, while at higher proportions of non-drinkers there was a smaller increase in
40 41	233	mortality among women than among men, reflecting the fact that the baseline proportion of non-
42 43	234	drinkers is higher in women than in men. When premature deaths (before age 75) were examined,
44 45	235	the trend was opposite to that displayed for all ages: among people aged under 75 years, higher
46 47	236	levels of non-drinkers resulted in larger numbers of deaths delayed or averted (supplementary table
48 49 50	237	S4).
51 52	238	In the second counterfactual scenario, varying the median population level of alcohol consumption
53 54 55	239	among current drinkers between 1g and 48g per day, results showed that approximately 5g/day (just
55 56 57 58	240	over half of one unit) was the optimal level of alcohol consumption, resulting in 4,579 (2,544 to 11

2	
3	
4 5	
5	
6	
7	
8	
ă	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
<u>~</u> 」 つつ	
9 9 10 11 23 14 15 16 7 8 9 0 11 12 13 14 15 16 7 8 9 0 11 12 13 14 15 16 7 8 9 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
31	
25	
20	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

1 2

> 241 6,590) deaths delayed or averted (figure 2 and supplementary table S5). In counterfactual scenarios 242 with lower levels of alcohol consumption, the shift of a large proportion of the population into the 243 non-drinker category resulted in an increase in deaths from cardiovascular disease, which was not 244 offset by reductions in cancer, liver cirrhosis and other chronic conditions. Above 5g/day the 245 additional protective effect of alcohol on CVD was not enough to offset the additional risk from 246 cancer, liver cirrhosis and other chronic conditions. For men and women aged under 75 years, the 247 optimum level of consumption was slightly lower than for the whole population, at 3g/d, at which 248 level 4,381 (3,327 to 5,400) deaths before age 75 would be delayed or averted each year.

249 (table 2 here)

250 In the third counterfactual scenario, the proportion of non-drinkers was set at the optimum level 251 (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d 252 (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 253 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption 254 above optimal levels increased more rapidly due to all of the population being exposed to the risk. 255 There would be a simultaneous reduction in deaths from all three of the major alcohol-related 256 chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 257 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from liver cirrhosis by 2,704 (2,296 to 2,994).

258

259 Discussion

The PRIME-Alcohol model effectively demonstrates the impact of population usual alcohol
consumption on chronic disease mortality, bringing together a wide range of risk and protective
effects of alcohol, including the increased risks of many cancers and the protective effect of low to
moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum
population median alcohol consumption level appears to be substantially lower than the

Page 14 of 33

1

BMJ Open

1
2
3 1
-3 4 5 6 7 8 9 112 134 15 16 17 18 201 223 242 267 289 31 323 345 367 389 333 356 378 39 39 312 3345 567 39 39 312 3345 357 39
0 6
0
0
0
9 10
10
12
12
1/
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

265	recommended safe levels in current UK public health guidance. Reducing the median population
266	alcohol consumption among current drinkers to around half a unit (5g of alcohol) per day, would
267	result in around 4,600 fewer deaths annually, primarily due to reductions in cancers and liver
268	cirrhosis. If this same median consumption level were to be applied to the whole population (i.e.,
269	including current non-drinkers), more than double this number of deaths could be delayed or
270	averted. However, there are a number of reasons why it may not be prudent to encourage current
271	non-drinkers to start drinking. These include: encouraging abstainers to start drinking whilst
272	encouraging drinkers to reduce their alcohol consumption is a mixed message that may be difficult
273	to communicate and promote; reducing the number of non-drinkers may have an adverse impact on
274	non-chronic disease health (e.g. accidents and injuries); and the modelled results show that while
275	reducing the proportion of non-drinkers would decrease chronic disease deaths overall, it would
276	increase the number of premature deaths (before 75 years; see supplementary table 3). On this
277	basis, we recommend that the public health target for alcohol consumption in England should be to
278	reduce median alcohol consumption to half a unit per day for both men and women, and to
279	maintain the current level of non-drinkers within the population.
280	Public health behavioural recommendations should ideally be based on the best available evidence
281	for optimising population health outcomes. In practice, public health goals in the UK have often
282	been based on a mixture of evidence of health risks and pragmatic considerations about setting a
283	goal that is considered achievable. A counterfactual modelling analysis such as the type reported in
284	this paper is particularly useful for setting public health goals, as its flexibility can provide results for
285	a range of counterfactual scenarios, which can then inform policy makers both of the optimum goal

and the strength of any pragmatic goal that they may consider.

A limitation of the PRIME-Alcohol model is that it is based on usual average levels of alcohol
consumption and is unable to take account of patterns of drinking (e.g. binge drinking). There is
evidence that patterns of drinking play an important role in disease risk²¹, and particularly in

290	morbidity and mortality from accidents and injuries. ²⁵ The central recommendation from the results
291	of this paper – that a target consumption level for England should be half a unit per day – is,
292	however, likely to be consistent with low levels of risk for accidents and injuries. In addition, it is not
293	possible to include wholly alcohol attributable conditions (e.g. mental and behavioural disorders due
294	to alcohol use) in the model. The PRIME-Alcohol model is necessarily limited by the availability of
295	robust meta-analytic estimates of relative risk for mortality. Sex-specific estimates of relative risk at
296	varying levels of alcohol consumption were available only for hypertensive disease and liver
297	cirrhosis, and no age-specific estimates were available, which limits the specificity of the
298	counterfactual scenarios analysed by the model. Furthermore, results are based on the assumption
299	of a steady state relationship between alcohol consumption patterns and relative risk of disease,
300	while in reality there is a lag time between changes in alcohol consumption levels and mortality risk.
301	For some conditions included in the model, relative risk estimates from appropriate meta-analysis
302	were available only for incidence of the disease, rather than mortality.
303	This study is an important addition to the current debate around alcohol consumption and public
304	health, combining and balancing risk and protective factors to identify an optimal population level of
305	alcohol consumption. This is in contrast to recent publications on the associations between alcohol
306	and specific conditions. For example, Schutze and colleagues concluded that their analyses of the
307	association between alcohol intake and cancer "support current political efforts to reduce or to
308	abstain from alcohol consumption to reduce the incidence of cancer". ⁹ On behalf of the Australian
309	Cancer Council, Winstanley and colleagues recommend that "to reduce their risk of cancer, people
310	limit their consumption of alcohol, or better still avoid alcohol altogether". ¹⁰ In contrast, a recent
311	systematic review of the impact of alcohol on cardiovascular disease concluded that "alcohol, in
312	moderation, may have overall health benefits that outweigh the risks in selected subsets of
313	patients". ¹¹ Only by systematically combining the effects of alcohol on all alcohol-related conditions
314	can appropriate public health messages be developed.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3
4
5
6
4 5 6 7
0
0
9
10
11
12
13
14
15
16
17
18
10
13
20
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
49 50
50 51
51 52
5Z
53 54
54
55
56
57
58
59
59 60
00

315	The findings from this paper are consistent with those from a meta-analysis of alcohol consumption
316	and total mortality ²² , which also found lowest mortality risk around 5g of alcohol per day, and a
317	Europe-wide study ²³ which found minimum risk for alcohol attributable deaths at 10g per day or less
318	(the smallest consumption category included in that study). A strength of our modelling approach, in
319	comparison to cross-sectional studies or fixed meta-analyses of total mortality, is that it can account
320	for differences between populations in underlying risk of various chronic diseases, and can therefore
321	be used to predict population-specific curves of potential changes in chronic disease mortality for
322	international comparisons. Future work should therefore produce comparable results for
323	international populations with varying current levels of exposure and outcomes. Furthermore, there
324	is a significant interaction between alcohol consumption and other lifestyle risk factors for chronic
325	disease mortality, and future work should seek to integrate alcohol consumption with risk
326	behaviours such as poor nutrition, low physical activity and smoking to compare the relative
327	contributions that improvements in these risk factors, both independently and in combination, could
328	have on population health.
329	
330	have on population health. Conclusions

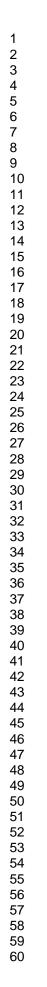
Current government recommendations for alcohol consumption are well above the level likely to
minimise chronic disease. Public health targets for alcohol should aim for a reduction in population
level alcohol consumption to half a unit per day, in order to achieve the optimum level of reduced
chronic disease mortality.

	336	References	
	337	1. Corrao G, Bagnardi V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption and the	1
	338	risk of 15 diseases. Prev Med 2004;38(5):613-9.	
1	339	2. Rehm J, Baliunas D, Borges GL, Graham K, Irving H, Kehoe T, et al. The relation between differen	nt
	340	dimensions of alcohol consumption and burden of disease: an overview. Addiction	
	341	2010;105(5):817-43.	
	342	3. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of	
	343	death in the United States: comparative risk assessment of dietary, lifestyle, and metabol	ic
1	344	risk factors. <i>PLoS Med</i> 2009;6(4):e1000058.	
	345	4. Scarborough P, Bhatnagar P, Wickramasinghe KK, Allender S, Foster C, Rayner M. The economic	2
	346	burden of ill health due to diet, physical inactivity, smoking, alcohol and obesity in the UK	: an
	347	update to 2006-07 NHS costs. J Public Health (Oxf) 2011.	
1	348	5. Taylor B, Irving HM, Kanteres F, Room R, Borges G, Cherpitel C, et al. The more you drink, the	
	349	harder you fall: a systematic review and meta-analysis of how acute alcohol consumption	
	350	and injury or collision risk increase together. <i>Drug Alcohol Depend</i> 2010;110(1-2):108-16.	
	351	6. Cherpitel CJ. Alcohol and injuries: a review of international emergency room studies since 1995	
1	352	Drug Alcohol Rev 2007;26(2):201-14.	
1	353	7. Borges G, Cherpitel C, Orozco R, Bond J, Ye Y, Macdonald S, et al. Multicentre study of acute	
	354	alcohol use and non-fatal injuries: data from the WHO collaborative study on alcohol and	
	355	injuries. Bull World Health Organ 2006;84(6):453-60.	
	356	8. World Cancer Research Fund / American Institute for Cancer Research. Food, nutrition, physica	I
	357	activity, and the prevention of cancer: a global perspective. Washington DC: AICR, 2007.	
	358	9. Schutze M, Boeing H, Pischon T, Rehm J, Kehoe T, Gmel G, et al. Alcohol attributable burden of	
	359	incidence of cancer in eight European countries based on results from prospective cohort	
	360	study. <i>BMJ</i> 2011;342:d1584.	
			16

Page 18 of 33		BMJ Open	
1			
2 3	361	10. Winstanley MH, Pratt IS, Chapman K, Griffin HJ, Croager EJ, Olver IN, et al. Alcohol and cancer: a	
4 5	362	position statement from Cancer Council Australia. Med J Aust 2011;194(9):479-82.	
6 7 8	363	11. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with	
9 10	364	selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ	
11 12	365	2011;342:d671.	
13 14	366	12. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers	
15 16	367	the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes	
17 18	368	Care 2005;28(3):719-25.	
19 20 21	369	13. Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. Alcohol as a risk factor	
22 23	370	for type 2 diabetes: A systematic review and meta-analysis. <i>Diabetes Care</i> 2009;32(11):2123-	
24 25	371	32.	
26 27	372	14. Department of Health, Home Office (United Kingdom). Safe. Sensible. Social. The next steps in	
28 29	373	the National Alcohol Strategy London: Department of Health and Home Office, 2007.	
30 31 32	374	15. World Health Organization. Global health risks: mortality and burden of disease attributable to	
33 34	375	selected major risks. Geneva: World Health Organization, 2009.	
35 36	376	16. Taylor B, Irving HM, Baliunas D, Roerecke M, Patra J, Mohapatra S, et al. Alcohol and	
37 38	377	hypertension: gender differences in dose-response relationships determined through	
39 40	378	systematic review and meta-analysis. Addiction 2009;104(12):1981-90.	
41 42 43	379	17. Samokhvalov AV, Irving H, Mohapatra S, Rehm J. Alcohol consumption, unprovoked seizures, and	
43 44 45	380	epilepsy: a systematic review and meta-analysis. <i>Epilepsia</i> 2010;51(7):1177-84.	
46 47	381	18. Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, et al. Alcohol as a risk factor for liver	
48 49	382	cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev 2010;29(4):437-45.	
50 51	383	19. Office for National Statistics. Overview report. General Household Survey, 2006. United Kingdom,	
52 53	384	2008.	
54 55 56			
57 58		17	
59 60			
		For near review only a later. We wish on their complete left out and a lines we trad	

3 4	385	20. Goddard E. Smoking and drinking among adults 2006. General Household Survey 2006: Office for
5 6	386	National Statistics, 2008.
7 8	387	21. Bagnardi V, Zatonski W, Scotti L, La Vecchia C, Corrao G. Does drinking pattern modify the effect
9 10	388	of alcohol on the risk of coronary heart disease? Evidence from a meta-analysis. J Epidemiol
11 12	389	Community Health 2008;62(7):615-9.
13 14	390	22. Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G. Alcohol dosing
15 16	391	and total mortality in men and women: an updated meta-analysis of 34 prospective studies.
17 18 19	392	Arch Intern Med 2006;166(22):2437-45.
20 21	393	23. Rehm J, Zatonksi W, Taylor B, Anderson P. Epidemiology and alcohol policy in Europe. Addiction
22 23	394	2011;106 Suppl 1:11-9.
24 25 26 27	395	2011;106 Suppl 1:11-9.
28 29 30	396	
31 32 33	397	
34 35 36 37		
38 39		
40 41		
42 43		
44 45		
45 46		
47		
48 49		
49 50		
51		
52		
53		
54 55		
55 56		
50 57		
58		18
59		10

 BMJ Open


2 3	398	LIST OF FIGURES:
4		
5 6	399	
7 8	400	Figure 1 Deaths delayed or averted in the counterfactual scenario varying percentages of non-
9 10	401	drinkers.
11 12	402	The percentage of non-drinkers was allowed to vary between 0% and 100% of the total population
13 14	403	using England 2006 as the baseline. The median consumption of alcohol among those drinking was
15 16 17	404	held constant.
18 19	405	
20 21	406	Figure 2 Deaths delayed or averted in the counterfactual scenario varying median consumption of
22 23	407	alcohol in drinkers.
24 25	408	The median consumption of alcohol among drinkers was allowed to vary from 0g/d to 24g/d using
26 27	409	England 2006 as the baseline. The percentage of non-drinkers in the population was held constant.
28 29 30	410	
31 32 33	411	
34		
35 36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		19

412 Table 1: Details of mortality outcomes included in the model

	Outcome (ICD-10 codes)	Total deaths, England 2006	Deaths <75years, England 2006 n (%)	Meta-analysis details	Nature of risk relationship
	Coronary Heart Disease (I20-25)	76,806	24,364 (31.7%)	31 cohort studies ¹¹ , total 1,925,106 subjects. Adjusted for up to 18 confounders by study. 23 studies adjusted for smoking.	Protective at all levels of consumption
	Stroke (160-69)	45,219	7,966 (17.6%)	10 cohort studies ¹¹ , total 723,571 subjects. Adjusted for up to 18 confounders by study. 8 studies adjusted for smoking.	'U' or 'J' shaped: protection only at low to moderate consumption
	Hypertensive disease (I10-15)	3,742	995 (26.6%)	12 cohort studies ¹⁶ , 27,603 cases. Adjusted for age, BMI and up to 5 others by study. 4	Dose-response increased risk
	Diabetes (E11,E14)	4,831	1,450 (30.0%)	studies adjusted for smoking. 15 cohort studies ¹² , 11,959 cases among 369,862 subjects. Adjusted for up to 14 confounders by study. 8 studies adjusted for smoking.	Protective 'U'- shaped: greatest protection at low to moderate
	Epilepsy (G40-41)	932	715 (76.7%)	4 case-control studies ¹⁷ , 698 cases, 1,162 controls. Not adjusted for smoking. Other adjustments varied by study.	consumption Dose-response increased risk
	Liver cirrhosis (K70,K74)	5,783	5,137 (88.8%)	13 cohort and case-control studies ¹⁸ , 2383 cases among 1,469,323 subjects. Adjusted for age and gender plus others by study. 11 studies adjusted for smoking.	Dose-response increased risk
	Cancer	2 496			
	Liver (C22)	2,486	1,305 (52.5%)	WCRF/AICR 6 cohort studies ⁸ . Adjustment varied by study. 4	Dose-response increased risk
	Mouth, larynx,	1,572	1,033 (65.7%)	adjusted for smoking. WCRF/AICR 2 cohort studies ⁸ .	Dose-response
	pharynx (C00-14) Oesophagus (C15)	6,068	3,104 (51.2%)	Adjusted for smoking. WCRF/AICR 20 case-control studies ⁸ . Adjustment varied by	increased risk Dose-response increased risk
	Breast (C50)	10,302	5,644 (54.8%)	study. All adjusted for smoking. WCRF/AICR 9 cohort studies ⁸ . Adjustment varied by study (including age and reproductive factors). Not adjusted for smoking.	Dose-response increased risk
	Colo-rectum (C18-20)	12,876	5,587 (43.4%)	WCRF/AICR 9 cohort studies ⁸ . Adjustments varied by study. 6 adjusted for smoking.	Dose-response increased risk
413					
414					
415					
					20

		1	2	3	4	5	6	7	8	12	16	20	24	32	40	48
Total		1,742	6,333	8,954	10,288	10,794	10,754	10,341	9,668	5,539	386	-5,154	-10,910	-23,046	-36,436	-51,897
Sex – all	Males	964	3,566	4,895	5,481	5,622	5,483	5,159	4,710	2,252	-675	-3,803	-7,086	-14,239	-22,610	-32,948
ages	Females	777	2,766	4,060	4,807	5,172	5,272	5,182	4,957	3,287	1,061	-1,351	-3,824	-8,807	-13,826	-18,949
Sex – age <75 years	Males <75y	2,274	3,197	3,508	3,504	3,320	3,027	2,663	2,253	365	-1,699	-3,857	-6,114	-11,086	-17,071	-24,731
only	Females <75y	1,346	1,730	1,875	1,860	1,742	1,558	1,329	1,069	-120	-1,393	-2,672	-3,939	-6,434	-8,918	-11,453
Major	CVD	-5,267	-432	2,712	4,743	6,064	6,917	7,454	7,772	7,861	7,144	6,185	5,168	3,179	1,328	-397
conditions	Cancer	3,670	3,202	2,723	2,234	1,735	1,223	701	166	-2,099	-4,590	-7,339	-10,387	-17,573	-26,642	-38,309
	Liver cirrhosis	3,622	3,620	3,421	3,101	2,704	2,259	1,785	1,293	-714	-2,640	-4,416	-6,032	-8,823	-11,120	-13,027

A positive number indicates lives saved, a decrease in mortality compared to 2006 rates, a negative number denotes a net increase in mortality compared to 2006 rates

10,000 Number of deaths delayed or averted per year 8,000 6,000 4,000 Liver cirrhosis 2,000 0 -2,000 Total -4,000 deaths -6,000 Baseline percentage of non-drinkers = 29% -8,000 ····· -10,000 ·••• CVD -12,000 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% 0% 5% 10% Percentage of non-drinkers

Figure 1. Deaths delayed or averted in the counterfactual scenario varying percentages of non-drinkers 114x76mm (300 x 300 DPI)

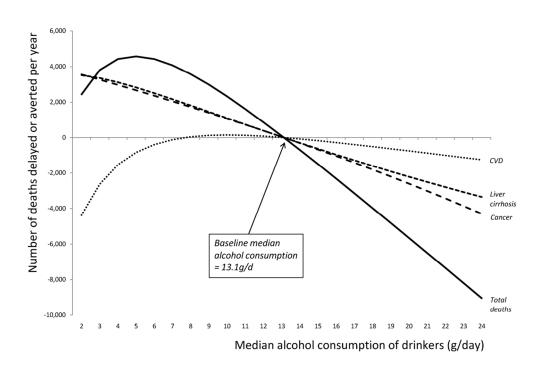


Figure 2. Deaths delayed or averted in the counterfactual scenario varying median consumption of alcohol in drinkers 114x76mm (300 x 300 DPI)

Supplementary information

Table S1. Relative risks used in modelling

Outcome	Alcohol consumption	Relative Risk for
	level (g/day)	mortality
CHD	0	1.00
(Ronksley et al., 2011)	<2.5	0·92 (0·80 to 1·06
	2.5 - 15	0·79 (0·73 to 0·86
	15 - 30	0·79 (0·71 to 0·88
	30 - 60	0·77 (0·72 to 0·83
	>60	0·75 (0·63 to 0·89
Stroke	0	1.00
(Ronksley et al., 2011)	<2.5	1.00 (0.75 to 1.34
	2.5 - 15	0.86 (0.75 to 0.99
	15 - 30	1·15 (0·86 to 1·54
	30 - 60	1·10 (0·85 to 1·45
	>60	1·44 (0·99 to 2·10
Diabetes	0	1.00
(Koppes et al., 2005)	<6	0·88 (0·80 to 0·95
(6-12	0.73 (0.62 to 0.86
	12-24	0.66 (0.59 to 0.75
	24-48	0.74 (0.63 to 0.88
	>48	0.93 (0.74 to 1.18
Hypertensive disease –		0 33 (0 74 10 1 10
men	per 10g	1·09 (1·07 to 1·12
(Taylor et al., 2009)	periog	105 (107 10 1 12
Hypertensive disease –		
women	per 10g	1·10 (1·06 to 1·14
(Taylor et al., 2009)	periog	110(10010114
Epilepsy	0	1.00
(Samokhvalov et al., 2010)	<12	1.00
	12 - 48	1·17 (1·13 to 1·21
	48 – 72	1·81 (1·59 to 2·07
	72 -96	2·44 (2·00 to 2·97
	>96	3·27 (2·52 to 4·26
Liver cirrhosis – men	0	1.00
(Rehm et al., 2010)	<12	1·0 (0·6 to 1·6
(12-24	1.6 (1.4 to 2.0
	24-36	2·8 (2·3 to 3·4
	36-48	5.6 (4.5 to 7.0
	48-60	7·0 (5·8 to 8·5
	48-00 >60	14 (11·7 to 16·7
Liver cirrhosis – women	0	14 (11 / 10 10 /
(Rehm et al., 2010)	<12	1·9 (1·1 to 3·1
	12-24	5·6 (4·5 to 6·9
	24-36	7·7 (6·3 to 9·5
	36-48	10·1 (7·5 to 13·5
	48-60	14·7 (11·0 to 19·6
	×60	22·7 (17·2 to 30·1
Cancer	200	22 / (1/ 2 10 30 1
(WCRF / AICR, 2007)		
Liver	Per 10g	1·10 (1·02 to 1·07
	LEI TOR	1.10 (1.02 (0 1.07
Mouth, larynx,	Dor drink nor weak	1.71 /1 10 +- 1 20
pharynx	Per drink per week	1.24 (1.18 to 1.30
Oesophagus Broast	Per drink per week	1.04 (1.03 to 1.05
Breast	10g	1·10 (1·06 to 1·14
Colorectum	10g	1·09 (1·03 to 1·14

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
20
∠∪ 24
∠ I 20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

Alcohol	Relative	Baseline	Baseline	Mortality	Counterfactual	Counterfactual
consumption	risk ¹	population ²	deaths ³	rate per	population ⁵	deaths ⁶
(g/d)				1,000 ⁴		
<=1	1.0	229,532	24	0.11	229,532	24
1 - <=12	1.0	232,024	24	0.11	146,491	15
12 - <=24	1.6	126,930	21	0.17	130,440	22
24 - <=36	2.8	54,831	16	0.29	73,789	22
36 - <=48	5.6	27,303	16	0.59	43,678	26
48 - <=60	7.0	15,076	11	0.74	27,400	20
>60	14.0	28,404	42	1.47	68,950	101
		TOTAL	154		TOTAL	230

Table S2. Calculating impact on deaths from liver cirrhosis of increasing consumption of alcohol by 8g/d (one unit). Results shown for men aged 75-79 as example

¹ Taken from meta-analysis of prospective cohort studies(Rehm et al., 2010); ² The total population of men aged 75-79 in England in 2006, following the distribution of alcohol consumption described by the General Household Survey 2006; ³ The total number of deaths from liver cirrhosis in men aged 75-59 in England in 2006, split so that mortality rates respect the e risk drinkers (counterfactu. relative risks; ⁴ Mortality rates, which follow the relative risks shown in the earlier column; ⁵ The population of men aged 75-79 under the counterfactual scenario, in which all drinkers drink one unit per day more; ⁶ The counterfactual number of deaths, calculated using the mortality rates and the counterfactual population.

BMJ Open

Sex	Age group, years	Population size ¹	Non-drinkers (<1g/day) ²	Daily intake (g/day) among drinkers, median ²
Male	15-19	1,719,800	30.9%	14.9
	20-24	1,716,200	15.3%	18·0
	25-29	1,636,900	16.5%	19.3
	30-34	1,714,100	16.2%	14.8
	35-39	1,933,300	16.5%	17.3
	40-44	1,939,700	16.5%	17.5
	45-49	1,717,700	15.6%	17.0
	50-54	1,511,900	18.6%	18·0
	55-59	1,608,900	17.4%	17.5
	60-64	1,320,600	18.3%	17.4
	65-69	1,074,300	20.6%	14.8
	70-74	906,300	23.4%	13.3
	75-79	714,100	31.6%	12.5
	80-84	476,000	32.7%	10.9
	85+	323,700	43.7%	10.1
Female	15-19	1,614,800	33.4%	10.4
	20-24	1,654,200	25.6%	10.9
	25-29	1,633,900	26.4%	9.9
	30-34	1,719,100	33.3%	10.9
	35-39	1,946,400	30.1%	10.0
	40-44	1,971,700	27.2%	9.8
	45-49	1,740,000	30.5%	11.0
	50-54	1,546,900	29.4%	11.3
	55-59	1,652,000	36.3%	10.6
	60-64	1,376,400	41.7%	9.9
	65-69	1,155,800	54.5%	9.4
	70-74	1,034,900	49.7%	8.2
	75-79	923,800	54.6%	7.8
	80-84	746,000	61·2%	7.2
	85+	731,200	68·7%	7.9

Table S3. Population size and alcohol consumption in England, 2006

1 Population estimates from Office for National Statistics; 2 Estimates taken from the General Household Survey 2006(Office for National Statistics, 2008) (n = 14,306) Table S4. Annual chronic disease deaths averted or delayed in counterfactual scenarios in which the percentage of non-drinkers in the population varies from 0% to 100%

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Total	4,160	2,727	1,259	-59	-441	-844	-1,269	-1,714	-2,178	-2,660	-3,160
Males	1,462	960	444	-42	-312	-602	-910	-1,236	-1,578	-1,936	-2,309
Females	2,698	1,767	815	-18	-129	-243	-359	-479	-600	-725	-851
Males under 75											
years	-201	-124	-54	23	157	276	379	468	544	607	659
Females under 75 years	-472	-300	-134	22	159	293	426	557	685	812	937
	-472	-300	-134	22	139	295	420	337	063	012	937
CVD	7,705	4,994	2,280	-228	-1,649	-3,071	-4,494	-5,918	-7,342	-8,767	-10,193
Cancer	-2,771	-1,765	-792	104	738	1,351	1,943	2,516	3,071	3,608	4,129
Liver disease	-1,265	-819	-374	77	558	1,039	1,521	2,002	2,483	2,964	3,445

A positive number indicates lives saved compared to 2006 mortality, a negative number denotes a net increase in mortality compared to 2006. Assumes that the distribution of consumption in drinkers remains constant.

Females

75 years

75 years

CVD

Males under

Females under

12 13

14

15

16

17 18

19

20 21

22 23

47 48 10

BMJ Open

Table S5. Annu to 48g/day	al chronic o	disease de	eaths aver	rted or de	layed in c	ounterfac	tual scen	arios in wł	nich the r	median in	take of al	cohol in c	lrinkers va	aries from	1g/day
-0,,	1	2	3	4	5	6	7	8	12	16	20	24	32	40	48
Total	-148	2,436	3,808	4,428	4,579	4,427	4,073	3,579	867	-2,327	-5,661	-9,043	-15,936	-23,180	-31,097
Males	43	1,847	2,739	3,107	3,164	3,027	2,763	2,414	577	-1,543	-3,754	-6,015	-10,725	-15,873	-21,758

1,310

2,256

1,080

-120

1,165

1,929

921

42

290

441

208

80

-784

-1,158

-539

-283

-1,907

-2,793

-1,277

-759

-3,028

-4,458

-1,995

-1,259

-5,211

-7,952

-3,370

-2,223

-7,307

-11,850

-4,682

-3,108

-9,339

-16,430

-5,956

-3,923

Cancer	3,846	3,559	3,267	2,970	2,668	2,360	-1,159	1,728	392	-1,050	-2,610	-4,304	-8,166	-12,817	-18,500
Liver disease	3,543	3,514	3,356	3,117	2,828	2,507	2,167	1,816	390	-971	-2,221	-3,354	-5,301	-6,893	-8,208
A positive number		lives saved		d to 2006 i					t increase	in mortali	•				
percentage of no			-		,,						-,				
percentage of the			Jiistant												

-191

1,953

1,170

-7,150

589

2,690

1,377

-4,377

1,069

2,936

1,445

-2,639

1,321

2,930

1,421

-1,543

1,415

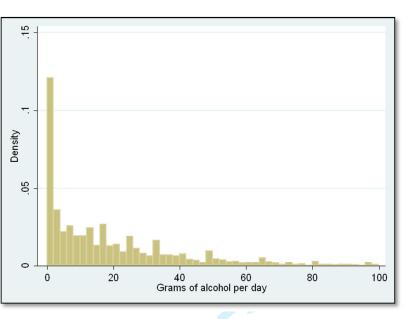
2,781

1,340

-843

1,400

2,546


1,222

-397

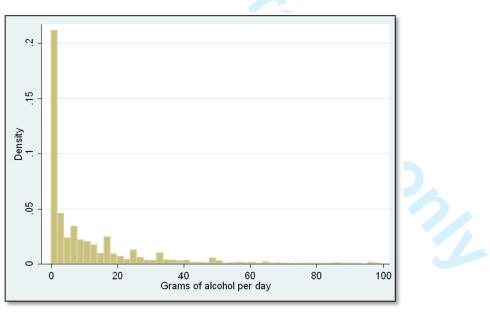
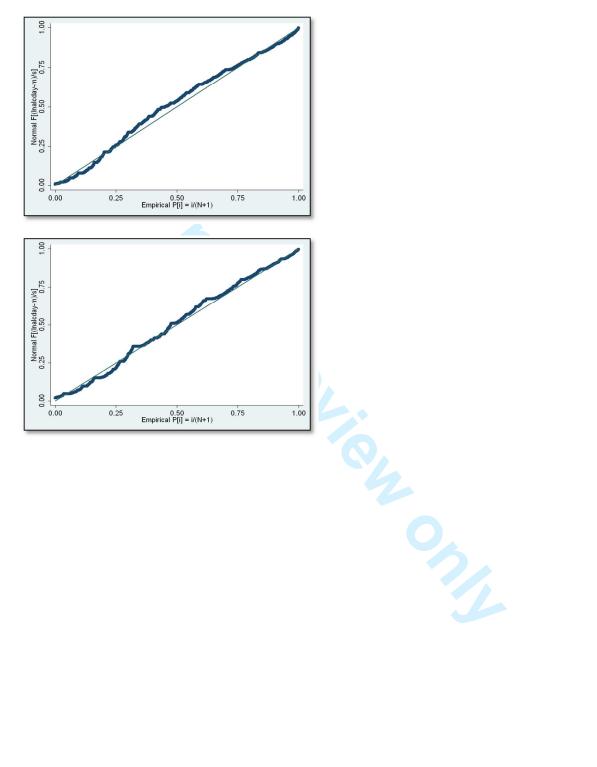

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1. Population distribution of alcohol consumption for men and women, England, 2006: General Household Survey data (Office for National Statistics, 2008) (n = 14,306)

Men



Women

BMJ Open

Figure S2. P-norm plots for normality of In-transformed variable of alcohol consumption among men and women, England, 2006: General Household Survey data (Office for National Statistics, 2008) (n = 14,306).

References for supplementary information:

- KOPPES, L. L., DEKKER, J. M., HENDRIKS, H. F., BOUTER, L. M. & HEINE, R. J. 2005. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. *Diabetes Care*, 28, 719-25.
- OFFICE FOR NATIONAL STATISTICS 2008. Overview report. *General Household Survey, 2006.* United Kingdom.
- REHM, J., TAYLOR, B., MOHAPATRA, S., IRVING, H., BALIUNAS, D., PATRA, J. & ROERECKE, M. 2010. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. *Drug Alcohol Rev*, 29, 437-45.
- RONKSLEY, P. E., BRIEN, S. E., TURNER, B. J., MUKAMAL, K. J. & GHALI, W. A. 2011. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. *BMJ*, 342, d671.
- SAMOKHVALOV, A. V., IRVING, H., MOHAPATRA, S. & REHM, J. 2010. Alcohol consumption, unprovoked seizures, and epilepsy: a systematic review and meta-analysis. *Epilepsia*, 51, 1177-84.
- TAYLOR, B., IRVING, H. M., BALIUNAS, D., ROERECKE, M., PATRA, J., MOHAPATRA, S. & REHM, J. 2009. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. *Addiction*, 104, 1981-90.
- WCRF / AICR 2007. World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: AICR.

What is the optimal level of population alcohol consumption for chronic disease prevention in England? Modelling the impact of changes in average consumption levels

	-
Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-000957.R1
Article Type:	Research
Date Submitted by the Author:	01-Apr-2012
Complete List of Authors:	Nichols, Melanie; Deakin University, Faculty of Health; Scarborough, Peter; University of Oxford, Department of Public Health Allender, Steven; Deakin University, Faculty of Health; University of Oxford, Department of Public Health Rayner, Mike; University of Oxford, Department of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Health policy
Keywords:	Alcohol, Chronic disease prevention, Cardiac Epidemiology < CARDIOLOGY, modelling, EPIDEMIOLOGY, PUBLIC HEALTH

3			
4			
5			
6			
7			
8			
9			
10	1	What is the optimal level of population alcohol consumption for chronic disease prevention in	
11	2	England? Modelling the impact of changes in average consumption levels	Polotodi antiano
12	2	England? Wodening the impact of changes in <u>average</u> consumption <u>revers</u>	Deleted: patterns
13			
14	3	Melanie Nichols ^{1,2} , Peter Scarborough ² , Steven Allender ^{1,2} , Mike Rayner ²	
15			
16	4		
17	-		
18			
19	5	¹ Population Health Strategic Research Centre, Deakin University, Geelong, Australia	
20			
21	6	² British Heart Foundation Health Promotion Research Group, Department of Public Health,	
22			
23	7	University of Oxford, United Kingdom	
24			
25	8		
26	0		
27			
28	9	Corresponding author:	
29 20			
30 31	10	Dr Melanie Nichols	
32			
32 33			
33 34	11	British Heart Foundation Health Promotion Research Group	
34 35	12 13	Department of Public Health, University of Oxford	
36	14	Old Road Campus, Headington, Oxford, OX3 7LF	
37	15	Email: melanie.nichols@deakin.edu.au	
38	16	Ph: +61 3 5227 8446	
39	17		
40			
41	18	Word count (excluding abstract and references): 3269	Deleted: 32
42	10		
43	19	Number of references: 28	Deleted: 3
44			
45	20	Number of tables: 2	
46	21	Number of figures: 2	
47			
48	22	Number of supplementary (web only) tables and figures: <u>4</u>	Deleted: 7
49			
50	23	Keywords: Alcohol, chronic disease, prevention, modelling, cardiovascular disease, cancer, liver	
51	_0		
52	24	cirrhosis	
53			
54	25		
55	23	1	
56		1	
57			
58			
59			
60			

30	Contributors: PS conceived the study and developed the methods, with support from MN, SA and
31	MR. MN conducted literature searches to inform the model, PS and MN built the model and
32	conducted analysis. All authors contributed to interpretation of the results. MN prepared the initial
33	draft and led the preparation of the manuscript. All authors were involved in drafting and reviewing
34	the manuscript. MN and PS act as guarantors for the manuscript.
35	Copyright: The Corresponding Author has the right to grant on behalf of all authors and does grant
36	on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd to
37	permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and
38	sublicences such use and exploit all subsidiary rights, as set out in our licence.
39	Funding: This research received no specific grant from any funding agency. PS, SA and MR are
40	supported by the British Heart Foundation (grant numbers PPC/Jul05/5b and PPC/JAN05/6biii). MN
41	and SA were partially supported by the Australian Government Department of Health and Ageing.
42	Competing interests: The authors declare no competing interests. All authors have completed the
43	Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the
44	corresponding author) and declare: there was no specific funding for the submitted work; no
45	financial relationships with any organisations that might have an interest in the submitted work in
46	the previous three years, no other relationships or activities that could appear to have influenced
47	the submitted work
48	Ethical approval was not required, as no human or animal subjects were involved.
49	Study sponsors – None.
50	Data sharing: The PRIME-Alcohol model is available for use upon request from PS
	(peter.scarborough@dph.ox.ac.uk).
51	
51	
51	2

52	Abstract		
53	Objective To estimate the impact of achieving alternative <u>average</u> population alcohol consumption		
54	levels on chronic disease mortality in England.		Deleted: patterns
55	Design A macro-simulation model was built to simultaneously estimate the number of deaths from		
56	coronary heart disease, stroke, hypertensive disease, diabetes, liver cirrhosis, epilepsy and five		
57	cancers that would be averted or delayed annually as result of changes in alcohol consumption		
58	among English adults. Counterfactual scenarios assessed the impact on alcohol-related mortalities of		
59	changing a) the median alcohol consumption of drinkers; , b) the percentage of non-drinkers,		Deleted: the percentage of non-drinkers;
			Deleted: median alcohol consumption of drinkers; c) both factors simultaneously
60	Data sources Risk relationships were drawn from published meta-analyses. Age and sex specific	l	uninkers, c) but factors simulateously
61	distributions of alcohol consumption (g/d) for the English population in 2006 were drawn from the		
62	General Household Survey 2006, and age, sex and cause specific mortality data for 2006 were		
63	provided by the Office for National Statistics.		
64	Results The optimum median consumption level for drinkers in the model was 5g/d (about half a		
65	unit), which would avert or delay 4,579 (2,544 to 6,590) deaths per year. Approximately equal		
66	numbers of deaths from cancers and liver disease would be delayed or averted (~2800 for each),		
00			
67	while there was a small increase in cardiovascular mortality. The model showed, however, no		
68	benefit in terms of reduced mortality when the proportion of non-drinkers in the population was		Deleted: The optimum percentage of non-drinkers in the model was zero. If
69	increased.		achieved, this would avert or delay 4,160 (95% credible intervals: 908 to 6,962)
			chronic disease deaths per year
70	Conclusions Current government recommendations for alcohol consumption are well above the	$\left\{ \right\}$	Deleted: . Increases of 2,771 (2,443 to 3,898) deaths from cancer and 1,265 (1,166 to 1,360) deaths from liver cirrhosis
71	level likely to minimise chronic disease. Public health targets should aim for a reduction in		were more than offset by averting 7,705 (5,248 to 11,934) deaths from cardiovascular diseases. The optimum
72	population alcohol consumption to half a unit per day, in order to achieve the optimum level of		median consumption level for drinkers in the model was 5g/d (about half a unit),
73	reduced chronic disease mortality		which would avert or delay 4,579 (2,544 to 6,590) deaths per year.
			Deleted: Achieving both a median consumption of 5g/d and zero non-drinkers
			would delay or avert 10,794 (6,601 to 14,504) deaths each year.
		Y	Deleted: ¶
	3		

3 4			
4 5			
6			
7			
8			
9			
10	98	Article Summary	
11			
12	99	Article focus	
13	1		
14 15	100	 Alcohol consumption is a risk factor for many chronic diseases, while providing <u>modest</u> 	
16	101	protection from others. Assessments of the impact of alcohol on individual chronic diseases	
17	102	can therefore result in contradictory advice about the level of alcohol consumption that is	
18	102		
19 20	103	optimal for health.	
21 22	104	The UK government currently recommends that men should consume no more than three to	
23 24	105	four units per day (24 to 32 g/d of pure alcohol) and women should drink no more than two	
25	106	to three units per day (16 to 24 g/d). However the <u>net impact of this level of consumption on</u>	Deleted: true optimum population level
26			of alcohol consumption is unclear
27	107	chronic disease mortality is unclear.	
28 29	108	The aim of this study was to estimate the impact of achieving alternative population alcohol	
30 31	109	consumption levels on chronic disease mortality in England.	Deleted: patterns
32			
33	110	Key messages	
34 35	111	Results suggest that the optimum population level of alcohol consumption for minimising	
36 37	112	chronic disease mortality in England is just 5g (approximately half a unit) per day,	Deleted: /day
38 39	113	Current recommendations for alcohol consumption are well above this level and may not be	Deleted:)
40	114	compatible with optimum protection of public health. Substantial reductions in	
41 42	115	recommendations and in population alcohol consumption levels would be needed to	
43	116	minimise the chronic disease burden associated with alcohol consumption in England.	
44 45			
45 46	447		
47	117	<u>Community beliefs in the protective role of alcohol in cardiovascular disease is widespread</u> ,	
48 49	118	however our modelling shows that when multiple conditions are considered simultaneously,	
50	119	the levels of alcohol that would actually be likely to be associated with reduced risk of	
51 52	120	chronic disease, are much lower than is generally accepted, or recommended by	
53 54	121	government.	
54 55			
55 56	I	4	
57			
58			
59			
60			

1 2				
3 4				
5 6				
7 8				
9 10	127	Streng	ths and limitations of this study	
11 12	128	•	The study used a detailed modelling approach to synthesise the best available evidence from	
13 14	129		meta-analysis of prospective cohort studies and provide for the first time an estimate of the	
15 16	130		level of alcohol associated with theoretical minimum risk of a range of chronic diseases,	
17	131		considering both harmful and protective effects simultaneously.	
18 19	132	•	The model is dependent on the meta-analyses selected to define the parameters. Results	Deleted: , however, sensitive to the quality of the data
20 21	133		may vary significantly in other contexts with varying levels of disease, alcohol consumption	Deleted: used
22 23	134		and other risk factors. Furthermore, results depend on the quality of the available	
24 25	135		epidemiological evidence, which remains contested in some areas.	
26 27	136	٠	The approach used <u>also</u> relies on chronic (average) consumption of alcohol and is not able to -	Formatted: Space After: 0 pt
28	137		take account of to take account of patterns of drinking (e.g. binge drinking). <u>Furthermore,</u>	Deleted: ¶
29 30	138		the results are based on the assumption of a steady state relationship between alcohol	Deleted: R
31 32	139		consumption patterns and relative risk of disease, and cannot estimate the time required	
33 34	140		between changes in population alcohol consumption levels occurring and the achievement	
34 35 36	141		of changes in mortality rates.	
37	142			
38 39				
40 41				
42 43				
44				
45 46				
47 48				
49 50				
51				
52 53				
54 55				
56 57			5	
58				
59 60				

BMJ Open

164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; which accounts for a significant proport of mortality in high income countries, the evidence suggests that significantly			
449 Alcohol consumption has significant impacts on chronic disease risk, ¹⁻³ In the UK, it has been Field Code Changed 150 estimated that alcohol-related ill-health is responsible for £3.3 billion in direct costs to the National Field Code Changed 151 Health Service annually, ⁶ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed 152 detrimental to health, for example increasing risk from injuries and violence, ⁵⁰ Less is known about Field Code Changed 153 the overall effects of long term alcohol consumption on chronic disease risk in the whole population, Field Code Changed 154 the overall effects of long term alcohol consumption on chronic disease outcomes (e.g., Iver cirrhosis and cancer), yet decreasing risk of others (e.g. cardiovascular disease and diabetes). If the Code Changed 155 The World Cancer Research Fund has recommended that there is no safe level of alcohol If the Code Changed 156 consumption. In elation to cancer risk ¹ , and Schutze and colleagues ² report that up to 10% of all Field Code Changed 157 consumption. This has led to calls for public health messages to encourage abstinence or significant Field Code Changed 158 suggests that moderate alcohol consumption protects against other chronic diseases, including Field Code Changed 159 pecluding the development of com			
449 Alcohol consumption has significant impacts on chronic disease risk, ¹⁻³ In the UK, it has been Field Code Changed 150 estimated that alcohol-related ill-health is responsible for £3.3 billion in direct costs to the National Field Code Changed 151 Health Service annually, ⁶ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed 152 detrimental to health, for example increasing risk from injuries and violence, ⁵⁰ Less is known about Field Code Changed 153 the overall effects of long term alcohol consumption on chronic disease risk in the whole population, Field Code Changed 154 the overall effects of long term alcohol consumption on chronic disease outcomes (e.g., Iver cirrhosis and cancer), yet decreasing risk of others (e.g. cardiovascular disease and diabetes). If the Code Changed 155 The World Cancer Research Fund has recommended that there is no safe level of alcohol If the Code Changed 156 consumption. In elation to cancer risk ¹ , and Schutze and colleagues ² report that up to 10% of all Field Code Changed 157 consumption. This has led to calls for public health messages to encourage abstinence or significant Field Code Changed 158 suggests that moderate alcohol consumption protects against other chronic diseases, including Field Code Changed 159 pecluding the development of com			
Alcohol consumption has significant impacts on chronic disease risk, ¹⁻¹ In the UK, it has been Field Code Changed Iterative annuality, ⁴ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed Iterative annuality, ⁴ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed Iterative annuality, ⁴ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed Iterative annuality, ⁴ The effects of long term alcohol consumption on chronic disease risk in the whole population, Field Code Changed Iter our circle annuality, ⁴ and cancer), yet decreasing risk of others (e.g. cardiovascular disease and diabetes). Field Code Changed Iter circle annuality, ⁴ and cancer, yet decreasing risk of others (e.g. cardiovascular disease and diabetes). Field Code Changed Iter circle annuality in relation to cancer risk, and Schutze and colleagues, ⁴ report that up to 10% of all Field Code Changed Iter ductions in alcohol consumption protects against other chronic diseases, including Field Code Changed Iter our ductions in alcohol consumption protects against other chronic diseases, including Field Code Changed Iter our ductions in alcohol consumption protects against other chronic diseases, including Field Code Changed Iterature ductions in alcohol consumption of the findings across disease outcomes, thereby Field Code Changed Iteratur	148	Introduction	
estimated that alcohol-related III-health is responsible for £3.3 billion in direct costs to the National Health Service annually, ¹ The effects of episodes of heavy alcohol consumption are clearly detrimental to health, for example increasing risk form injuries and violence, ⁵ ² Less is known about the overall effects of long term alcohol consumption on chronic disease risk in the whole population, due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g. liver cirrhosis and cancer), yet decreasing risk so others (e.g. cardiovascular disease and diabetes). The World Cancer Research Fund has recommended that there is no safe level of alcohol consumption in relation to cancer risk ⁰ , and Schutze and colleagues ⁰ report that up to 10% of all reductions in alcohol consumption, ²¹⁴ There is, however, a substantial body of evidence that suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease, ¹¹⁻¹⁴ . Substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	140		
Health Service annually, ¹ The effects of episodes of heavy alcohol consumption are clearly Field Code Changed 152 detrimental to health, for example increasing risk from injuries and violence, ²⁷ Less is known about Field Code Changed 153 the overall effects of long term alcohol consumption on chronic disease risk in the whole population, due to alcohol consumption at various levels increasing risk for some chronic disease and diabetes). 154 the overall effects of long term alcohol consumption on chronic disease and diabetes). 155 The World Cancer Research Fund has recommended that there is no safe level of alcohol Field Code Changed 156 consumption in relation to cancer rist ⁴ , and Schutze and colleagues ³ report that up to 10% of all Field Code Changed 157 consumption. This has led to calls for public health messages to encourage abstinence or significant Field Code Changed 158 suggests that moderate alcohol consumption protects against other chronic diseases, including Field Code Changed 159 however there has been little integration of the findings across disease outcomes, thereby Pield Code Changed 159 however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for 159 population alcohol consumption. The UK government currently recommends that men s	149	Alcohol consumption has significant impacts on chronic disease risk. ¹⁻³ In the UK, it has been	Field Code Changed
detrimental to health, for example increasing risk from injuries and violence, ** Less is known about Fleid Code Changed 153 the overall effects of long term alcohol consumption on chronic disease risk in the whole population, due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g. 155 liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes). The World Cancer Research Fund has recommended that there is no safe level of alcohol 156 consumption in relation to cancer risk, and Schutze and colleagues, report that up to 10% of all Fleid Code Changed 157 consumption. This has led to calls for public health messages to encourage abstinence or significant Fleid Code Changed 158 usgests that moderate alcohol consumption protects against other chronic diseases; including Fleid Code Changed 159 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease; ¹¹⁴ , 163 substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for 164 consume no more than three to four units per day (one unit = & (10mi)) of pure alcohol, one pint of ta ani increase in moraling. 165 sundard beer usu	150	estimated that alcohol-related ill-health is responsible for £3.3 billion in direct costs to the National	
153 the overall effects of long term alcohol consumption on chronic disease risk in the whole population, 154 due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g. 155 liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes). 156 The World Cancer Research Fund has recommended that there is no safe level of alcohol 157 consumption in relation to cancer risk ⁸ , and Schutze and colleagues ⁹ report that up to 10% of all 158 cancers in men and 3% in women in some European countries may be attributable to alcohol 159 consumption. This has led to calls for public health messages to encourage abstinence or significant 160 reductions in alcohol consumption protects against other chronic diseases, including 161 suggests that moderate alcohol consumption protects against other chronic diseases; including 162 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of 163 disease, ¹¹⁻¹ , 164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; 165 population alcohol consumption. The UK government currently recommendations for 166 consume no more than three to four units per day (one unit = 8g.(10ml) of pure alcohol_one pint of 167 sta	151	Health Service annually. ⁴ The effects of episodes of heavy alcohol consumption are clearly	Field Code Changed
4 due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g., 1155 liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes). 1156 The World Cancer Research Fund has recommended that there is no safe level of alcohol 1157 consumption in relation to cancer risk ⁴ , and Schutze and colleagues ³ report that up to 10% of all 1158 cancers in men and 3% in women in some European countries may be attributable to alcohol 1159 consumption. This has led to calls for public health messages to encourage abstinence or significant 1160 reductions in alcohol consumption protects against other chronic diseases, including 1161 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of 1162 disease ^{11,13} . 1163 Substantial research has examined the effects of alcohol consumption on various chronic diseases; 1164 Substantial research has examined the effects of alcohol consumption on various chronic disease; 1164 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of 1165 standard beer usually contains between 2 and 3 units, and a 175mi glass of wine approximately 2 1166 consume no more than three to four units per day (one unit = 8g (10ml) of mic alcohol 'misuse',	152	detrimental to health, for example increasing risk from injuries and violence. ⁵⁻⁷ Less is known about	Field Code Changed
155 liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes). 156 The World Cancer Research Fund has recommended that there is no safe level of alcohol 157 consumption in relation to cancer risk ⁰ , and Schutze and colleagues ⁰ report that up to 10% of all 158 cancers in men and 3% in women in some European countries may be attributable to alcohol 159 consumption. This has led to calls for public health messages to encourage abstinence or significant 160 reductions in alcohol consumption, ^{3,10} / ₂ There is, however, a substantial body of evidence that 161 suggests that moderate alcohol consumption protects against other chronic diseases, including 162 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of 163 disease ¹¹⁻¹³ 164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; 165 precluding the development of comprehensive and evidence-based recommendations for 166 population alcohol consumption. The UK government currently recommends that men should 167 summe no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of 168 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of 168 st	153	the overall effects of long term alcohol consumption on chronic disease risk in the whole population,	
156 The World Cancer Research Fund has recommended that there is no safe level of alcohol 157 consumption in relation to cancer risk ⁰ , and Schutze and colleagues ⁰ report that up to 10% of all 158 cancers in men and 3% in women in some European countries may be attributable to alcohol 159 consumption. This has led to calls for public health messages to encourage abstinence or significant 160 reductions in alcohol consumption ⁹¹⁰ / ₉₁₀ There is, however, a substantial body of evidence that 161 suggests that moderate alcohol consumption protects against other chronic diseases, including 162 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of 163 disease ¹¹⁻³ / ₁ . 164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; 165 however there has been little integration of the findings across disease outcomes, thereby 166 precluding the development of comprehensive and evidence-based recommendations for 167 population alcohol consumption. The UK government currently recommends that men should 168 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of 169 sundard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 170 units) and wom	154	due to alcohol consumption at various levels increasing risk for some chronic disease outcomes (e.g.	
 consumption in relation to cancer risk⁸, and Schutze and colleagues⁹ report that up to 10% of all cancers in men and 3% in women in some European countries may be attributable to alcohol consumption. This has led to calls for public health messages to encourage abstinence or significant reductions in alcohol consumption, ⁵¹⁰/₅. There is, however, a substantial body of evidence that suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease. ¹¹⁻¹³ Substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consumption could be to an increase in mortality. consume no more than three to four units per day ¹⁴ A large proportion of the field Code Changed Units. And a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the field Code Changed Iterature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 	155	liver cirrhosis and cancer), yet decreasing risks of others (e.g. cardiovascular disease and diabetes).	
 consumption in relation to cancer risk⁸, and Schutze and colleagues⁹ report that up to 10% of all cancers in men and 3% in women in some European countries may be attributable to alcohol consumption. This has led to calls for public health messages to encourage abstinence or significant reductions in alcohol consumption, ⁵¹⁰/₅. There is, however, a substantial body of evidence that suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease. ¹¹⁻¹³ Substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consumption could be to an increase in mortality. consume no more than three to four units per day ¹⁴ A large proportion of the field Code Changed Units. And a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the field Code Changed Iterature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 			
158 cancers in men and 3% in women in some European countries may be attributable to alcohol Field Code Changed 159 consumption. This has led to calls for public health messages to encourage abstinence or significant Field Code Changed 160 reductions in alcohol consumption, 910, There is, however, a substantial body of evidence that Field Code Changed 161 suggests that moderate alcohol consumption protects against other chronic diseases, including Field Code Changed 162 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease, ¹¹⁻¹³ , 163 disease, ¹¹⁻¹³ , Field Code Changed 164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby 165 precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should 164 standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed 170 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed 171 l			
 cancers in men and 3% in women in some European countries may be attributable to alcohol consumption. This has led to calls for public health messages to encourage abstinence or significant reductions in alcohol consumption ²¹⁰/₂. There is, however, a substantial body of evidence that suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease, ¹¹⁻¹³/₂. Field Code Changed Deleted: ²¹⁰ Deleted: and the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed 	.57	consumption in relation to cancer risk ⁶ , and Schutze and colleagues ⁹ report that up to 10% of all	
 reductions in alcohol consumption⁹¹⁰, There is, however, a substantial body of evidence that suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease ¹¹⁻¹³, Field Code Changed Deleted: ⁹⁻¹⁰ <li< td=""><td>L58</td><td>cancers in men and 3% in women in some European countries may be attributable to alcohol</td><td></td></li<>	L58	cancers in men and 3% in women in some European countries may be attributable to alcohol	
161 suggests that moderate alcohol consumption protects against other chronic diseases, including 162 cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of 163 disease, ¹¹⁻¹³ , 164 Substantial research has examined the effects of alcohol consumption on various chronic diseases; 165 however there has been little integration of the findings across disease outcomes, thereby 166 precluding the development of comprehensive and evidence-based recommendations for 167 population alcohol consumption. The UK government currently recommends that men should 168 consume no more than three to four units per day (one unit = 8g (10mil) of pure alcohol, one pint of 169 standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 170 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the 171 literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	159	consumption. This has led to calls for public health messages to encourage abstinence or significant	
 suggests that moderate alcohol consumption protects against other chronic diseases, including cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of disease,¹¹⁻¹³, Substantial research has examined the effects of alcohol consumption on various chronic diseases; however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day,¹⁴ A large proportion of the Field Code Changed 	160	reductions in alcohol consumption	Field Code Changed
Image: Interview Image: Interview Field Code Changed Interview Substantial research has examined the effects of alcohol consumption on various chronic diseases; Image: Interview Deleted: Particularly in the case of CV which accounts for a significant proport of mortality in high income countries, thereby Image: Interview Deleted: Particularly in the case of CV which accounts for a significant proport of mortality in high income countries, thereby Image: Interview Deleted: Particularly in the case of CV which accounts for a significant proport of mortality in high income countries, thereby Image: Interview Deleted: Particularly in the case of CV which accounts for a significant proport of mortality in high income countries, thereby Image: Interview Deleted: Particularly in the case of CV which accounts for a significant proport of mortality in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Particularly in high income countries, thereby Image: Interview Deleted: Image: Interview Deleted: Image: Ima	L61	suggests that moderate alcohol consumption protects against other chronic diseases, including	Deleted: ⁹¹⁰
L64 Substantial research has examined the effects of alcohol consumption on various chronic diseases; Deleted: Particularly in the case of CV L65 however there has been little integration of the findings across disease outcomes, thereby reducing alcohol consumption could lea L66 precluding the development of comprehensive and evidence-based recommendations for reducing alcohol consumption. The UK government currently recommends that men should L68 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 L70 units) and women should drink no more than two to three units per day. ¹⁴ A large proportion of the Field Code Changed L71 literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	162	cardiovascular disease (CVD) and diabetes, which are responsible for a substantial burden of	
L64 Substantial research has examined the effects of alcohol consumption on various chronic diseases; Deleted: Particularly in the case of CV L65 however there has been little integration of the findings across disease outcomes, thereby reducing alcohol consumption could lea L66 precluding the development of comprehensive and evidence-based recommendations for reducing alcohol consumption. The UK government currently recommends that men should L68 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 L70 units) and women should drink no more than two to three units per day. ¹⁴ A large proportion of the Field Code Changed L71 literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	L63	disease, ¹¹⁻¹³ _	Field Code Changed
 however there has been little integration of the findings across disease outcomes, thereby precluding the development of comprehensive and evidence-based recommendations for population alcohol consumption. The UK government currently recommends that men should consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 		4	Deleted: Particularly in the case of CVD which accounts for a significant proporti of mortality in high income countries, thi
 population alcohol consumption. The UK government currently recommends that men should consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 	.65	however there has been little integration of the findings across disease outcomes, thereby	reducing alcohol consumption could lead
 consume no more than three to four units per day (one unit = 8g (10ml) of pure alcohol, one pint of standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 	.66	precluding the development of comprehensive and evidence-based recommendations for	
 69 standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2 70 units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed 71 literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse', 	.67	population alcohol consumption. The UK government currently recommends that men should	
units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the Field Code Changed .71 literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	.68	consume no more than three to four units per day (one unit = $8g (10ml)$ of pure alcohol, one pint of	
literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	L69	standard beer usually contains between 2 and 3 units, and a 175ml glass of wine approximately 2	
	L70	units) and women should drink no more than two to three units per day, ¹⁴ A large proportion of the	Field Code Changed
6	171	literature supporting alcohol policy in the UK, however, appears to focus on alcohol 'misuse',	
Ö			
		6	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2			
3 4			
5			
6 7			
8 9			
9 10	179	episodes of heavy drinking and the social consequences of alcohol consumption ¹⁴ ; it is not clear that	Field Code Changed
11 12	180	there is evidence that the UK Government recommended drinking levels offer the maximum	
13 14	181	protection for public health.	
15			
16 17	182	The aim of this study was to estimate the impact of achieving alternative population <u>average</u> alcohol	
18	183	consumption <u>levels</u> on chronic disease mortality in England. The research question was: what	Deleted: patterns
19 20	184	proportion of non-drinking in the English population and what level of alcohol consumption among	
21 22	185	drinkers would result in the greatest number of chronic disease deaths delayed or averted in	
23	186	England compared to recent levels?	
24 25 26	187		
27			
28 29	188	Methods	
30 31	189	A macro-simulation model was built that assessed the impact on mortality from chronic disease of	
32 33	190	changing the distribution of alcohol consumption (g/day) within the population of England. The	
34	191	Preventable Risk Integrated ModEl for Alcohol (PRIME-Alcohol) estimates the impact of population	
35 36 27	192	changes in alcohol consumption on chronic disease mortality. Developing the PRIME-Alcohol model	
37 38	193	involved: identifying chronic diseases associated with alcohol consumption; identifying the current	
39 40	194	(baseline) distribution of alcohol consumption; and parameterising the association between alcohol	
41 42	195	consumption and chronic disease.	
43 44 45	196	Selection of mortality outcomes	
46 47	197	The initial list of chronic diseases was generated from those linked to alcohol consumption in the	
48	198	World Health Organization Global Burden of Disease 'Global Health Risks' report ¹⁵ and the World	Field Code Changed
49 50	199	Cancer Research Fund Report ⁸ was used to select site-specific cancers associated with alcohol	Field Code Changed
51 52 53 54 55 56 57	200	consumption. Excluding those resulting in small numbers of deaths (fewer than 500 deaths in 2006	
58 59 60			

3 4			
5 6			
7 8			
9 10	202	in England), 11 chronic diseases were included as outcomes in the PRIME-Alcohol model, including	
11 12	203	five cancer sites.	
13 14	204	The PubMed and Cochrane databases were searched for meta-analyses of prospective cohort or	
15 16	205	case-control studies that quantified chronic disease risk for different levels of alcohol consumption.	
17 18	206	The relationships between alcohol consumption were diverse, including protective effects, linear	
19 20	207	increases in risk and 'U' or 'J' shaped relationships. Where multiple suitable meta-analyses were	
21 22	208	available, preference was given to meta-analyses of cohort studies over case-control studies, and to	
23 24	209	those using lifetime abstainers as the reference category. Age- and sex-specific estimates of risk	
25 26	210	relationships and estimates adjusted for potential confounders were used where available.	
27 28	211	Details of the chronic disease outcomes and the meta-analyses that were included in the model	 Field Code Changed
29 30	212	16-18 are shown in table 1.	 Deleted: 8 11 12 16-18
31 32	213	(table 1 here)	
33 34 35	214	Identifying the current (baseline) distribution of alcohol consumption in England	
36 37	215	The General Household Survey (GHS) from 2006 ¹⁹ provided baseline distributions of alcohol	 Field Code Changed
38 39	216	consumption for adults aged 16 years and over. The GHS is a multi-purpose survey conducted by the	
40 41	217	Office for National Statistics in the UK. In 2006, it included 18,214 adults aged 16 years and over	
42	218	(overall response rate 74%). To establish average weekly alcohol consumption, respondents were	
43 44	219	asked how often over the last year they drank alcoholic beverages and the amount usually	
45 46	220	consumed on any one day. This information is combined to give an estimate of the respondent's	
47 48	221	weekly alcohol consumption in units of alcohol. ²⁰ For the current analyses, units of alcohol per week	 Field Code Changed
49 50	222	was converted to grams per day and only participants from England were included (n =15,616).	
51	223	Non-drinkers and very low alcohol consumers were removed and analysed as a separate category	Deleted: The distribution of alcohol consumption in the GHS is shown in supplementary figure S1 – there is a large
52 53	224	(referred to as non-drinkers henceforth). Excluding this group, alcohol consumption was shown to be	spike of non-drinkers and very low alcohol consumers (<=1g/d) and a long tail of higher alcohol consumers.
54 55	225	approximately log-normally distributed, 8	 Deleted: (supplementary figure S2)
56 57		0	
58 59			
60			

4		
5		
6 7		
8		
9		
10	234	
11		
12	235	The three parameters for the baseline distribution of alcohol consumption derived from the GHS for
13		
14 15	236	each of 30 age-sex groups were therefore: percentage of non-drinkers; the mean of In-transformed
16	237	alcohol consumption of drinkers; and the standard deviation of In-transformed alcohol consumption
17	238	of drinkers. Counterfactual scenarios were modelled by altering one or more of these parameters.
18	230	of uninkers. Counterfactual scenarios were modelled by altering one of more of these parameters.
19 20		
20	239	
22		
23	240	Parameterising the association between alcohol consumption and chronic disease
24		
25	241	The meta-analyses identified by the literature search provided estimates of the relative risk of
26 27	242	different levels of alcohol consumption on chronic disease (table 1). The relative risks used in the
28		
29	243	PRIME-Alcohol model are shown in supplementary table S1. These risks were used in conjunction
30	244	with the baseline distribution of alcohol consumption to attribute risk for chronic disease
31 32	- <i>.</i>	
33	245	throughout the age-sex specific populations. Baseline age, sex and cause specific number of
34	246	mortalities (England 2006) were provided by the Office for National Statistics. For each chronic
35 36	247	disease and age-sex group, mortality rates were assigned to each level of alcohol consumption such
37		
38	248	that the relative risks from the meta-analyses were maintained, and the total risk in the population
39 40	249	produced the recorded number of mortalities. These mortality rates were then applied to the
41	250	counterfactual distributions to calculate the number of deaths that would be expected under the
42 42	251	counterfectual connexia. An exemple is exercided in supplementary table C2
43 44	251	counterfactual scenario. An example is provided in supplementary table S2.
45		
46	252	
47		
48	253	Uncertainty analysis
49 50		
50 51	254	The alcohol-chronic disease association parameters were allowed to vary stochastically according to
52	255	the distributions reported in the literature. Five thousand Monte Carlo iterations were run, and the
53		
54 55	256	results were used to calculate 95% credible intervals around the estimates. Because of the
55 56		9
57		
58		
59		
60		

2
3
4
4
5
6
7
0
8
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 101 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 20 \\ 31 \\ 23 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 37 \\ 38 \\ 9 \\ 101 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
22
23
24
25
26
20
27
28
29
30
24
31
32
33
34
35
20
30
37
38
39
10
40
- T I
42
43
44
45
46
47
48
49
4 3 50
51
52
53
54
54 55
56
57
58
59
03
60

	computing requirements of the Monte Carlo iterations, credible intervals are only presented for key results.	
	Defining the counterfactual scenarios	
	To assess the number of chronic disease mortalities in England under different alcohol consumption	
I	scenarios, three counterfactual scenarios were analysed: 1) varying the median consumption among	
	drinkers while holding the proportion of non-drinkers and the distribution of consumption levels	
	constant; and 2) varying the proportion of non-drinkers in the population while holding the median	
	consumption among drinkers constant.	 Deleted: ; 2) varying the median
	In the analysis of the first scenario, the percentage of non-drinkers was kept constant while the	consumption among drinkers while holding the proportion of non-drinkers constant; and 3) varying both the proportion of non- drinkers and the median intake among drinkers.
	amount of alcohol consumed by drinkers in the population was varied between 1g/d and 48g/d (6	
	units), such that the age-sex distribution of mean alcohol consumption was maintained. In the	
	analysis of the second scenario, the total percentage of non-drinkers in the population was allowed	
I	to vary between 0% and 100% such that the age-sex distribution of non-drinkers was maintained,	
ĺ	whilst the amount of alcohol consumed by drinkers remained constant. The aim of the analyses was	 Deleted: In the analysis of the second scenario, the percentage of non-drinkers
	to find the <u>median_level_of average</u> alcohol consumption for England that would <u>be likely to</u> result in the lowest number of chronic disease mortalities.	was kept constant while the amount of alcohol consumed by drinkers in the population was varied between 1g/d and 48g/d (6 units), such that the age-sex distribution of mean alcohol consumption was maintained. In the analysis of the third
	The funding bodies supporting the authors of this work had no role in the present study.	scenario, both the percentage of non- drinkers and the amount consumed by drinkers were varied.
		Deleted: distribution
	10	

Results

1 2

3
4
5
6
6 7
י פ
9
9 10
10
11
12
12 13 14 15
14
15
16
17
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 38 9
22
23
24
25
26
27
28
29
30
31
32
0 <u>2</u> 22
33
34
35
36
37
38
39
40
41
42
42 43
40 44
44
45
46
47
48
49
50
51
52
53
ევ 54
55
56
57
58
59

60

304

305

306

307

age 75).

295	In 2006, 29% of English adults were non-drinkers according to the definitions used here (including
296	those who consume less than 1g/d). Rates of non-drinking varied substantially by age group and sex
297	(supplementary table S3). Overall, 20% of men and 36% of women were non-drinkers. In total, there
298	were 170,558 deaths in England in 2006 from the causes of death considered in this study.
299	In the <u>first</u> counterfactual scenario, varying the median population level of alcohol consumption
300	among current drinkers between 1g and 48g per day, results showed that approximately 5g/day (just
301	over half of one unit) was the optimal level of alcohol consumption, resulting in 4,579 (2,544 to
302	6,590) deaths delayed or averted (table 2 and figure 1), or approximately 3% of all deaths from
303	partially alcohol-related chronic diseases. At this level of consumption, a small predicted increase in

risk of CVD (843 additional deaths per year, +0.7% from 2006 levels) is counteracted by large decreases in cancer (2668 fewer deaths, -8%) and liver disease (2828 fewer deaths, -49%). At this

level of consumption, the vast majority (90%) of deaths delayed or averted were premature (before

In variations of the scenario, with lower levels of median alcohol consumption, the shift of a large 308 309 proportion of the population into the non-drinker category resulted in a modelled increase in deaths 310 from cardiovascular disease, which was not offset by reductions in cancer, liver cirrhosis and other 311 chronic conditions. Above 5g/day the additional protective effect of alcohol on CVD was not enough 312 to offset the additional risk from cancer, liver cirrhosis and other chronic conditions. For men and 313 women aged under 75 years, the optimum level of consumption was slightly lower than for the whole population, at 3g/d, at which level 4,381 (3,327 to 5,400) deaths before age 75 would be 314 315 delayed or averted each year, a decrease of 8% from 2006 levels.

scenario, varying the proportion of nondrinkers in the whole population, optimal results were achieved when there were zero non-drinkers in the population (figure 1 and supplementary table S4), which resulted in 4,160 (95% credible intervals: 908 to 6,962) chronic disease deaths averted or delayed compared to 2006 mortality rates. Although having the whole population drinking some alcohol would increase deaths from cancer by 2,771 (2,443 to 3,898) and from liver cirrhosis by 1,265 (1,166 to 1,360), this was more than offset by averting 7,705 (5,248 to 11,934) deaths from CVD. As the proportion of non-drinkers was increased in the counterfactual scenarios, the reductions in mortality were attenuated. When the modelled rates of non-drinking exceeded the 2006 levels there was a net increase in chronic disease mortality, up to an additional 3,160 (-436 to 6,409) lives lost annually if the entire population were to abstain from alcohol. ¶ Analysis by gender showed that at low proportions of non-drinkers, greater numbers of deaths were averted among women, while at higher proportions of non-drinkers there was a smaller increase in mortality among women than among men, reflecting the fact that the baseline proportion of non-drinkers is higher in women than in men. When premature deaths (before age 75) were examined, the trend was opposite to that displayed for all ages: among people aged under 75 years, higher levels of non-drinkers resulted in larger numbers of deaths delayed or averted (supplementary table S4). ¶ Deleted: second Deleted: 2 and supplementary table S5

Deleted: In the first counterfactual

Deleted: counterfactual Deleted: s Deleted: n

(table 2 here) 316

3
4
5
6
5 6 7
8
a
10
10
10
12
13
14
15
16
1/
18
8 9 10 11 12 13 14 15 16 17 18 19
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
41
42 43
43
44 45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

362

363

364

365

366

367

368

369 370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

In the second counterfactual scenario, varying the proportion of non-drinkers in the whole	
population, the model showed a net increase in mortality in all versions of the scenario for which the	
modelled rates of non-drinking exceeded the 2006 levels, up to an additional 3,160 (-436 to 6,409)	
lives lost annually if the entire population were to abstain from alcohol.	
Theoretically optimal results were achieved when there were zero non-drinkers in the population	
(figure 2 and supplementary table S4), which resulted in 4,160 (95% credible intervals: 908 to 6,962)	
chronic disease deaths averted or delayed compared to 2006 mortality rates. Although a modelled	
situation in which the whole population consumes some alcohol would increase predicted deaths	
from cancer by 2,771 (credible interval 2,443 to 3,898, +8% from 2006 levels) and from liver cirrhosis	
by 1,265 (1,166 to 1,360, +22%), this was more than offset by averting 7,705 (5,248 to 11,934, -6%)	
deaths from CVD. As the proportion of non-drinkers was increased in the counterfactual scenarios,	
the reductions in mortality were attenuated.	
	Deleted: In the third counterfactual
Discussion	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal
	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In
Discussion	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum population median alcohol consumption level appears to be substantially lower than the <u>currently</u>	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from liver cirrhosis by 2,704 (2,296 to 2,994). ¶
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum population median alcohol consumption level appears to be substantially lower than the <u>currently</u> recommended safe levels in current UK public health guidance. <u>Based on this model, r</u> educing the	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from liver cirrhosis by 2,704 (2,296 to 2,994). ¶
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum population median alcohol consumption level appears to be substantially lower than the <u>currently</u> recommended safe levels in current UK public health guidance. <u>Based on this model, reducing the</u> median population alcohol consumption among current drinkers to around half a unit (5g of alcohol)	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from liver cirrhosis by 2,704 (2,296 to 2,994). ¶
Discussion The PRIME-Alcohol model effectively demonstrates the <u>potential</u> impact of population usual alcohol consumption on chronic disease mortality, bringing together a wide range of risk and protective effects of alcohol, including the increased risks of many cancers and the protective effect of low to moderate consumption on cardiovascular disease. Modelling demonstrated that the optimum population median alcohol consumption level appears to be substantially lower than the <u>currently</u> recommended safe levels in current UK public health guidance. <u>Based on this model, reducing the</u> median population alcohol consumption among current drinkers to around half a unit (5g of alcohol) per day, would result in around 4,600 fewer deaths annually, primarily due to reductions in cancers	scenario, age-sex the proportion of non- drinkers was set at the optimum level (0%) and median alcohol consumption in drinkers was allowed to vary between 0g/d and 48g/d (table 2). The optimal population median intake remained 5g/day, at which level 10,794 (6,601 to 14,504) deaths were averted or delayed. In this scenario, the increased risks of alcohol consumption above optimal levels increased more rapidly due to all of the population being exposed to the risk. There would be a simultaneous reduction in deaths from all three of the major alcohol- related chronic disease categories under this scenario; deaths from CVD would be reduced by 6,064 (1,732 to 9,791), from cancer by 1,735 (1,355 to 2,078) and from liver cirrhosis by 2,704 (2,296 to 2,994). ¶

407	The model showed no additional benefit to chronic disease mortality if the proportion of the		
408	population abstaining from alcohol were to be increased. Results indicated that increasing the		
409	proportion of alcohol consumers in the population (drinking moderately) would result in reduced		
410	cardiovascular disease mortality, however this is of little practical relevance given that there are		
411	safer and more socially acceptable means of reducing cardiovascular disease risk, and there are a		Deleted: If this same median consumption level were to be applied to
412	number of reasons why it would be imprudent to encourage current non-drinkers to start drinking.		the whole population (i.e., including current non-drinkers), more than double
413	These include: encouraging abstainers to start drinking whilst encouraging drinkers to reduce their	\setminus	this number of deaths could be delayed or averted. However,
414	alcohol consumption is a mixed message that may be difficult to communicate and promote;		Deleted: may not be
415	reducing the number of non-drinkers may have an adverse impact on non-chronic disease health		
416	(e.g. accidents and injuries). Furthermore, modelled results show that while reducing the proportion		Deleted: ; and the
417	of non-drinkers would decrease chronic disease deaths overall, it would increase the number of		
418	premature deaths (before 75 years; see supplementary table <u>4), increasing the impact on years of</u>		Deleted: 3
419	life lost. On this basis, we recommend that the public health target for alcohol consumption in		
420	England should be to reduce median alcohol consumption to half a unit per day for both men and		
421	women, and to maintain the current level of non-drinkers within the population. The		
422	recommendations and public messages around restriction of alcohol consumption that would be		
423	required to achieve this target median level of consumption are beyond the scope of this work, but		
424	should take account of the likely impacts on chronic disease as modelled here, as well as aiming to		
425	reduce other known risks and address patterns of consumption.		
426	Public health behavioural recommendations should ideally be based on the best available evidence		
427	for optimising population health outcomes. In practice, public health goals in the UK have often		
428	been based on a mixture of evidence of health risks and pragmatic considerations about setting a		
429	goal that is considered achievable. A counterfactual modelling analysis such as the type reported in		
430	this paper is particularly useful for setting public health goals, as its flexibility can provide <u>predicted</u>		
	13		

BMJ Open

1 2	
3 4 5	
6 7	
o 9 10	
11 12 13	
14 15 16	
17 18 19	
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 7 \\ 18 \\ 19 \\ 21 \\ 22 \\ 3 \\ 24 \\ 26 \\ 27 \\ 28 \\ 9 \\ 30 \\ 13 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33$	
23 24 25	
26 27 28	
29 30 31	
32 33	
34 35 36	
39	
40 41 42 43	
44 45	
46 47 48	
49 50 51 52	
53 54	
55 56 57	
58 59 60	

440	impacts for a range of counterfactual scenarios, which can then inform policy makers both of the	 Deleted: results
441	optimum goal and the strength of any pragmatic goal that they may consider.	
442	A limitation of the PRIME-Alcohol model is that it is based on usual average levels of alcohol	
443	consumption and is unable to take account of patterns of drinking (e.g. binge drinking) or provide	
444	any evidence about the least harmful pattern of alcohol consumption. There is evidence that	
445	patterns of drinking play an important role in disease risk ²¹ , and particularly in morbidity and	 Field Code Changed
446	mortality from accidents and injuries, ²⁵ The central recommendation from the results of this paper –	 Field Code Changed
447	that a target consumption level for England should be half a unit per day – is, however, likely to be	
448	consistent with low levels of risk for accidents and injuries. <u>Heavy, irregular drinking has also been</u>	
449	linked with increased risk of CVD ²¹ . Guidance to the public about avoiding heavy drinking sessions	
450	remains a very important component of any public health guidance around alcohol consumption. In	
451	addition, it is not possible to include wholly alcohol attributable conditions (e.g. mental and	
452	behavioural disorders due to alcohol use) in the model.	
453	The PRIME-Alcohol model is necessarily limited by the availability of robust meta-analytic estimates	
454	of relative risk for mortality and estimates generated are limited by the quality of available evidence	
455	to parameterise the model. The observational studies included in the meta-analyses used to	
456	parameterise the PRIME-Alcohol model used self-report of alcohol consumption, which may result in	
457	an under-estimate of actual alcohol consumption ²² , and results from observational studies cannot	 Field Code Changed
458	account for within-individual variability in alcohol consumption. Although there is a strong body of	
459	epidemiological evidence over many years linking moderate alcohol consumption with lower rates of	
460	CVD ²³⁻²⁵ , concerns remain about possible residual confounding or other methodological explanations	
461	for the observed relationship ²⁵⁻²⁶ .	
462	Sex-specific estimates of relative risk at varying levels of alcohol consumption were available only for	
463	hypertensive disease and liver cirrhosis, and no age-specific estimates were available, which limits	
	14	

BMJ Open

4				
5				
6				
7 8				
9				
10	465	the specificity of the counterfactual scenarios analysed by the model. Furthermore, results are based		
11 12	466	on the assumption of a steady state relationship between alcohol consumption levels and relative		Deleted: patterns
13 14	467	risk of disease, while in reality there is a lag time between changes in alcohol consumption levels and		
15 16	468	mortality risk. For some conditions included in the model, relative risk estimates from appropriate		
17	469	meta-analysis were available only for incidence of the disease, rather than mortality, however this is		
18 19	470	unlikely to significantly impact on the accuracy of estimates unless there was an additional effect of		
20 21	471	alcohol consumption on case-fatality ratios for the included conditions.		
22 23 24	472	The predicted results, in terms of increases or decreases in mortality expected at varying levels of		
25	473	alcohol consumption, are entirely dependent upon the baseline population inputs – particularly		
26 27	474	current alcohol consumption levels and current levels of mortality from the included chronic		
28 29	475	diseases (which will reflect among other things, prevalence of other risk factors and both treatment		
30 31	476	and prevention related health care variables). The level of alcohol consumption associated with the		
32	477	most favourable predicted change from existing mortality levels may vary substantially between		
33 34	478	populations. It is also important to emphasise that the results indicate predicted impacts on		
35 36	479	mortality only, and do not account for alcohol-related chronic disease morbidity, which has a		
37 38	480	significant impact on population health and the health system.		
39 40	481	This study is an important addition to the current debate around alcohol consumption and public		
41 42	482	health, combining and balancing risk and protective factors to identify an optimal population level of		
43 44	483	alcohol consumption associated with reduced levels of chronic disease mortality. This is in contrast		
45 46	484	to recent publications focusing on the associations between alcohol and specific conditions. For		
47	485	example, Schutze and colleagues concluded that their analyses of the association between alcohol		
48 49	486	intake and cancer "support current political efforts to reduce or to abstain from alcohol		Field Code Changed
50 51	487	consumption to reduce the incidence of cancer". ⁹ In contrast, a recent systematic review of the	Þ	Deleted: On behalf of the Australian Cancer Council, Winstanley and colleagues
52 53	488	impact of alcohol on cardiovascular disease concluded that "alcohol, in moderation, may have		recommend that "to reduce their risk of cancer, people limit their consumption of alcohol, or better still avoid alcohol
54	489	overall health benefits that outweigh the risks in selected subsets of patients". 11 Only by		altogether". ¹⁰ Field Code Changed
55 56		15		oouo onangou
50 57				
58				

1
2
3
4
Ē
2 3 4 5 6
6
7
Q
0
9
10
11
40
12
13
14
15
10
16
17
18
10
19
$1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10112341516171819212234252627282930133333333333333333333333333333333333$
21
21
22
23
24
25
20
26
27
28
20
29
30
31
22
32
33
34
25
30
36
37
20
50
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 59
50
59 60
60

497	systematically combining the effects of alcohol on all alcohol-related conditions can appropriate	
498	public health messages be developed. The results of this modelling exercise contribute to further	
499	building all of the evidence required to make such an assessment.	
500	The findings from this paper are consistent with those from a meta-analysis of alcohol consumption	
501	and total mortality ²⁷ which also found lowest mortality risk around 5g of alcohol per day, and a	 Deleted: ²³
502	Europe-wide study ²⁸ which found minimum risk for alcohol attributable deaths at 10g per day or less	Field Code Changed Deleted: ²⁴
503	(the smallest consumption category included in that study). A strength of our modelling approach, in	Field Code Changed
504	comparison to cross-sectional studies or fixed meta-analyses of total mortality, is that it can account	
505	for differences between populations in underlying risk of various chronic diseases, and can therefore	
506	be used to predict population-specific curves of potential changes in chronic disease mortality for	
507	international comparisons. Future work should therefore produce comparable results for	
508	international populations with varying current levels of exposure and outcomes. Furthermore, there	
509	is a significant interaction between alcohol consumption and other lifestyle risk factors for chronic	
510	disease mortality, and future work should seek to integrate alcohol consumption with risk	
511	behaviours such as poor nutrition, low physical activity and smoking to compare the relative	
512	contributions that improvements in these risk factors, both independently and in combination, could	
513	have on population health.	
514		
515	Conclusions	
540	Our modelling an analytic that the antiguna level of a dura dahar is discuss and talks in Earland	
516	Our modelling suggests that the optimum level of reduced chronic disease mortality in England	 Deleted: Current government recommendations for alcohol consumption are well above the level likely to minimise
517	would be achieved at an average alcohol consumption level of around 5g per day, which should be	chronic disease.
518	taken into account in the formulation of health guidance. It is likely that government	
519	recommendations would need to be set at a much lower level than the current 'low risk' drinking	Deleted Dublic backton of the training
520	guidelines in order to achieve this level.	Deleted: Public health targets for alcohol should aim for a reduction in population level alcohol consumption to half a unit per
521	16	day, in order to achieve the optimum level of reduced chronic disease mortality.
171	10	

4			
5			
6			
7			
8			
9		- /	
10	533	References	
11			
12	534	1. Corrao G, Bagnardi V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption and the	
13	535	risk of 15 diseases. Prev Med 2004;38(5):613-9.	Formatted: Font: Italic, Do not check
14	536	2. Rehm J, Baliunas D, Borges GL, Graham K, Irving H, Kehoe T, et al. The relation between different	spelling or grammar
15	537	dimensions of alcohol consumption and burden of disease: an overview. <u>Addiction</u>	Formatted: Font: Italic, Do not check
16	538	<u>2010;105(5):817-43.</u>	spelling or grammar
17	539	3. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of	
18	540 541	death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic rick factors. PLoS Med 2009;6(4):o1000058	Correction Font: Italia Do not shook
19	541 542	risk factors. <u>PLoS Med 2009;6(4):e1000058.</u> 4. Scarborough P, Bhatnagar P, Wickramasinghe KK, Allender S, Foster C, Rayner M. The economic	Formatted: Font: Italic, Do not check spelling or grammar
20	543	burden of ill health due to diet, physical inactivity, smoking, alcohol and obesity in the UK: an	
21	544	update to 2006-07 NHS costs. J Public Health (Oxf) 2011.	Formatted: Font: Italic, Do not check
22	545	5. Taylor B, Irving HM, Kanteres F, Room R, Borges G, Cherpitel C, et al. The more you drink, the	spelling or grammar
23	546	harder you fall: a systematic review and meta-analysis of how acute alcohol consumption	
24	547	and injury or collision risk increase together. Drug Alcohol Depend 2010;110(1-2):108-16.	Formatted: Font: Italic, Do not check
25	548	6. Cherpitel CJ. Alcohol and injuries: a review of international emergency room studies since 1995.	spelling or grammar
26	549	Drug Alcohol Rev 2007;26(2):201-14.	Formatted: Font: Italic, Do not check
27	550	7. Borges G, Cherpitel C, Orozco R, Bond J, Ye Y, Macdonald S, et al. Multicentre study of acute	spelling or grammar
28	551	alcohol use and non-fatal injuries: data from the WHO collaborative study on alcohol and	
29	552 553	injuries. <u>Bull World Health Organ 2006;84(6):453-60.</u> 8. WCRF / AICR. World Cancer Research Fund and American Institute for Cancer Research. Food,	Formatted: Font: Italic, Do not check spelling or grammar
30	553 554	<u>autrition, physical activity, and the prevention of cancer: a global perspective. Washington</u>	
31	555	DC: AICR, 2007.	
32	556	9. Schutze M, Boeing H, Pischon T, Rehm J, Kehoe T, Gmel G, et al. Alcohol attributable burden of	
33	557	incidence of cancer in eight European countries based on results from prospective cohort	
34	558	study. BMJ 2011;342:d1584.	Formatted: Font: Italic, Do not check
35	559	10. Winstanley MH, Pratt IS, Chapman K, Griffin HJ, Croager EJ, Olver IN, et al. Alcohol and cancer: a	spelling or grammar
36	560	position statement from Cancer Council Australia. Med J Aust 2011;194(9):479-82.	Formatted: Font: Italic, Do not check
37	561	11. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with	spelling or grammar
38	562	selected cardiovascular disease outcomes: a systematic review and meta-analysis. <u>BMJ</u>	Formatted: Font: Italic, Do not check spelling or grammar
39	563	2011;342:d671.	spening of grammar
40	564 565	<u>12. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers</u> the risk of type 2 diabetes: a meta-analysis of prospective observational studies. <i>Diabetes</i>	Formatted: Font: Italic, Do not check
41	566	Care 2005;28(3):719-25.	spelling or grammar
42	567	<u>13. Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. Alcohol as a risk factor</u>	
43	568	for type 2 diabetes: A systematic review and meta-analysis. <i>Diabetes Care</i> 2009;32(11):2123-	Formatted: Font: Italic, Do not check
44	569	32.	spelling or grammar
45	570	14. Department of Health, Home Office (United Kingdom). Safe. Sensible. Social. The next steps in	
46	571	the National Alcohol Strategy London: Department of Health and Home Office, 2007.	
47	572	15. World Health Organization. Global health risks: mortality and burden of disease attributable to	
48	573	selected major risks. Geneva: World Health Organization, 2009.	
49	574	<u>16. Taylor B, Irving HM, Baliunas D, Roerecke M, Patra J, Mohapatra S, et al. Alcohol and</u>	
49 50	575 576	hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. <i>Addiction</i> 2009;104(12):1981-90.	Environte de Frante Martine Da mart abarale
	570	17. Samokhvalov AV, Irving H, Mohapatra S, Rehm J. Alcohol consumption, unprovoked seizures, and	Formatted: Font: Italic, Do not check spelling or grammar
51 52	578	epilepsy: a systematic review and meta-analysis. <i>Epilepsia</i> 2010;51(7):1177-84.	Formatted: Font: Italic, Do not check
	579	18. Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, et al. Alcohol as a risk factor for liver	spelling or grammar
53	580	cirrhosis: a systematic review and meta-analysis. <i>Drug Alcohol Rev</i> 2010;29(4):437-45.	Formatted: Font: Italic, Do not check
54 55			spelling or grammar
55 56		17	
56			
57			
58			

 Office for National Statistics. Overview report. <u>General Household Survey</u>, 2006. United Kingdom, 2008. 		Formatted: Font: Italic, Do no spelling or grammar
0. Goddard E. Smoking and drinking among adults 2006. <u>General Household Survey 2006: Office for</u>		Formatted: Font: Italic, Do no
National Statistics, 2008.		spelling or grammar
1. Bagnardi V, Zatonski W, Scotti L, La Vecchia C, Corrao G. Does drinking pattern modify the effect		
of alcohol on the risk of coronary heart disease? Evidence from a meta-analysis. <u>J Epidemiol</u> Community Health 2008;62(7):615-9.		Formatted: Font: Italic, Do no spelling or grammar
2. Koppes LL, Twisk JW, Snel J, Kemper HC. Concurrent validity of alcohol consumption		Formatted: Font: Italic, Do no spelling or grammar
measurement in a 'healthy' population; quantity-frequency questionnaire v. dietary history interview. <i>Br J Nutr</i> 2002;88(4):427-34.		Formatted: Font: Italic, Do no
3. Thun MJ, Peto R, Lopez AD, Monaco JH, Henley SJ, Heath CW, Jr., et al. Alcohol consumption and	- /	spelling or grammar
mortality among middle-aged and elderly U.S. adults. N Engl J Med 1997;337(24):1705-14.		Formatted: Font: Italic, Do no spelling or grammar
4. Wannamethee SG, Shaper AG. Lifelong teetotallers, ex-drinkers and drinkers: mortality and the	- /	Formatted: Font: Italic, Do no
incidence of major coronary heart disease events in middle-aged British men. Int J Epidemiol]]	spelling or grammar
<u>1997;26(3):523-31.</u> 5. Howie EK, Sui X, Lee DC, Hooker SP, Hebert JR, Blair SN. Alcohol consumption and risk of all-		Formatted: Font: Italic, Do no spelling or grammar
cause and cardiovascular disease mortality in men. J Aging Res 2011;2011(20):805062.	11	Formatted: Font: Italic, Do no
6. Di Castelnuovo A, Costanzo S, Donati MB, Iacoviello L, de Gaetano G. Prevention of	- / /	spelling or grammar
cardiovascular risk by moderate alcohol consumption: epidemiologic evidence and plausible	11.	Formatted: Font: Italic, Do no
mechanisms. <u>Intern Emerg Med 2010;5(4):291-7.</u>] []	spelling or grammar
7. Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G. Alcohol dosing	- 11 i	Formatted: Indent: Left: 0 cr Hanging: 1.27 cm, Space After
and total mortality in men and women: an updated meta-analysis of 34 prospective studies.	_///	Line spacing: single
<u>Arch Intern Med 2006;166(22):2437-45.</u>	J _	Deleted: 1. Corrao G, Bagnardi \
8. Rehm J, Zatonksi W, Taylor B, Anderson P. Epidemiology and alcohol policy in Europe. <u>Addiction</u>	J//	Zambon A, La Vecchia C. A meta-a alcohol consumption and the risk
<u>2011;106 Suppl 1:11-9.</u>		diseases. Prev Med 2004;38(5):61
	*/	2. Rehm J, Baliunas D, Borges GL,
		K, Irving H, Kehoe T, et al. The rela between different dimensions of a
		consumption and burden of diseas
		overview. Addiction 2010;105(5):8
		3. Danaei G, Ding EL, Mozaffarian B, Rehm J, Murray CJ, et al. The
		preventable causes of death in the
		States: comparative risk assessme
		dietary, lifestyle, and metabolic ris
		<i>PLoS Med</i> 2009;6(4):e1000058.¶ 4. Scarborough P, Bhatnagar P,
		Wickramasinghe KK, Allender S, Fo
		Rayner M. The economic burden of
		health due to diet, physical inactiv
		smoking, alcohol and obesity in th update to 2006-07 NHS costs. J Pu
		Health (Oxf) 2011.¶
		5. Taylor B, Irving HM, Kanteres F,
		Borges G, Cherpitel C, et al. The m drink, the harder you fall: a system
		review and meta-analysis of how
		alcohol consumption and injury or
		risk increase together. Drug Alcoh Depend 2010;110(1-2):108-16.¶
		6. Cherpitel CJ. Alcohol and injurie
		review of international emergence
		studies since 1995. Drug Alcohol H
		2007;26(2):201-14.¶ 7. Borges G, Cherpitel C, Orozco R
		Ye Y, Macdonald S, et al. Multicen
		of acute alcohol use and non-fata
		data from the WHO collaborative
		alcohol and injuries. Bull World He Organ 2006;84(6):453-60.¶

53

54

1 2			
3 4			
5 6			
7 8			
9 10	734	LIST OF FIGURES:	
11 12	735		
13 14	736	<u>۹</u>	 Deleted: Figure 1 Deaths delayed or
15	737	Figure 1 Deaths delayed or averted in the counterfactual scenario varying median consumption of	averted in the counterfactual scenario varying percentages of non-drinkers. ¶ The percentage of non-drinkers was
16 17	738	alcohol in drinkers.	allowed to vary between 0% and 100% of the total population using England 2006 as the baseline. The median consumption of
18 19	739	The median consumption of alcohol among drinkers was allowed to vary from 0g/d to 24g/d using	alcohol among those drinking was held constant.
20 21	740	England 2006 as the baseline. The percentage of non-drinkers in the population was held constant.	Deleted: 2
22 23	741		
24 25	742	Figure 2 Deaths delayed or averted in the counterfactual scenario varying percentages of non-	
26	743	drinkers.	
27 28	744	The percentage of non-drinkers was allowed to vary between 0% and 100% of the total population	
29 30	745	using England 2006 as the baseline. The median consumption of alcohol among those drinking was	
31 32	746	held constant.	
33 34	747		
35 36	748		
37 38			
39			
40 41			
42 43			
44 45			
46 47			
48 49			
50			
51 52			
53 54			
55 56		19	
57 58			
59 60			
50			

	Outcome (ICD-10 codes)	Total deaths, England 2006	Deaths <75years, England 2006 n (%)	Meta-analysis details	Nature of risk relationship	
	Coronary Heart Disease (120-25)	76,806	24,364 (31.7%)	31 cohort studies ¹¹ , total 1,925,106 subjects. Adjusted for up to 18 confounders by study. 23 studies adjusted for	Protective at all levels of consumption	Field Code Changed
•	Stroke (160-69)	45,219	7,966 (17.6%)	smoking. 10 cohort studies ¹¹ , total 723,571 subjects. Adjusted for up to 18 confounders by study.	'U' or 'J' shaped: protection only at low to moderate	Field Code Changed
	Hypertensive disease (I10-15)	3,742	995 (26.6%)	8 studies adjusted for smoking. 12 cohort studies ¹⁶ , 27,603 cases. Adjusted for age, BMI and up to 5 others by study. 4	consumption Dose-response increased risk	Field Code Changed
	Diabetes (E11,E14)	4,831	1,450 (30.0%)	studies adjusted for smoking. 15 cohort studies ¹² , 11,959 cases among 369,862 subjects. Adjusted for up to 14 confounders by study. 8 studies	Protective 'U'- shaped: greatest protection at low to moderate	Field Code Changed
	Epilepsy (G40-41)	932	715 (76.7%)	adjusted for smoking. 4 case-control studies ¹⁷ , 698 cases, 1,162 controls. Not adjusted for smoking. Other	consumption Dose-response increased risk	Field Code Changed
	Liver cirrhosis (K70,K74)	5,783	5,137 (88.8%)	adjustments varied by study. 13 cohort and case-control studies ¹⁸ , 2383 cases among 1,469,323 subjects. Adjusted for age and gender plus others by study. 11 studies adjusted for smoking.	Dose-response increased risk	Field Code Changed
	Cancer Liver (C22)	2,486	1,305 (52.5%)	WCRF/AICR 6 cohort studies ⁸ . Adjustment varied by study. 4	Dose-response increased risk	Field Code Changed
	Mouth, larynx,	1,572	1,033 (65.7%)	adjusted for smoking. WCRF/AICR 2 cohort studies ⁸ .	Dose-response	Field Code Changed
	pharynx (C00-14) Oesophagus (C15)	6,068	3,104 (51.2%)	Adjusted for smoking. WCRF/AICR 20 case-control studies ⁸ . Adjustment varied by	increased risk Dose-response increased risk	Field Code Changed
	Breast (C50)	10,302	5,644 (54.8%)	study. All adjusted for smoking. WCRF/AICR 9 cohort studies ⁸ . Adjustment varied by study (including age and reproductive factors). Not adjusted for	Dose-response increased risk	Field Code Changed
760	Colo-rectum (C18-20)	12,876	5,587 (43.4%)	smoking. WCRF/AICR 9 cohort studies <mark>⁸.</mark> Adjustments varied by study. 6 adjusted for smoking.	Dose-response increased risk	Field Code Changed
761						
762					20	

, *****

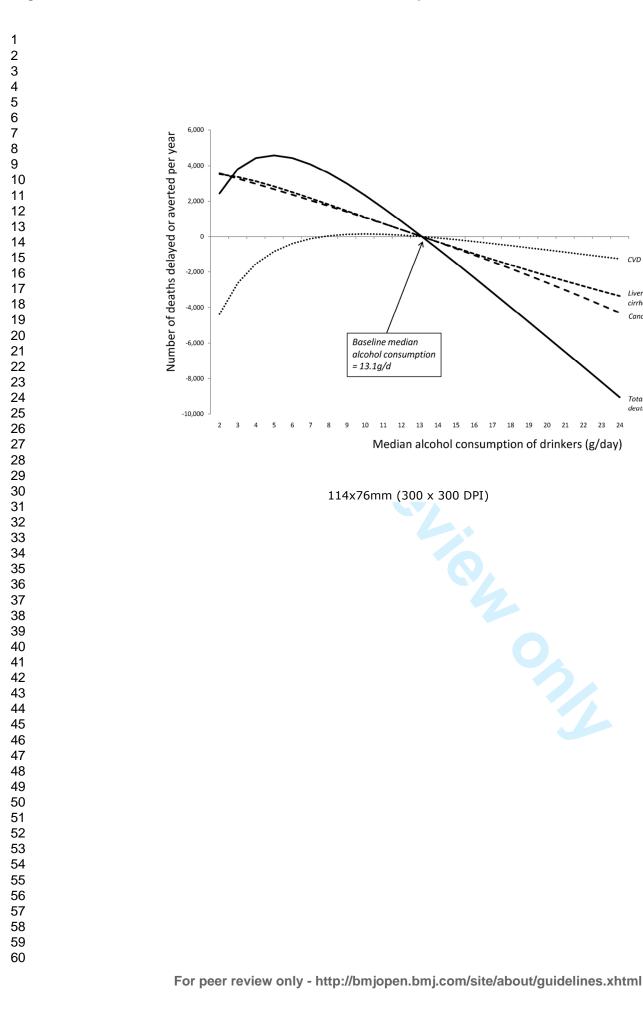
	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>12</u>	<u>16</u>	<u>20</u>	<u>24</u>	<u>32</u>	<u>40</u>	<u>48</u>
<u>Total</u>	<u>-148</u>	<u>2,436</u>	<u>3,808</u>	<u>4,428</u>	<u>4,579</u>	<u>4,427</u>	<u>4,073</u>	<u>3,579</u>	<u>867</u>	<u>-2,327</u>	<u>-5,661</u>	<u>-9,043</u>	<u>-15,936</u>	<u>-23,180</u>	<u>-31,097</u>
<u>Males</u>	<u>43</u>	<u>1,847</u>	<u>2,739</u>	<u>3,107</u>	<u>3,164</u>	<u>3,027</u>	<u>2,763</u>	<u>2,414</u>	<u>577</u>	<u>-1,543</u>	<u>-3,754</u>	<u>-6,015</u>	<u>-10,725</u>	<u>-15,873</u>	-21,758
<u>Females</u>	<u>-191</u>	<u>589</u>	<u>1,069</u>	<u>1,321</u>	<u>1,415</u>	<u>1,400</u>	<u>1,310</u>	<u>1,165</u>	<u>290</u>	<u>-784</u>	<u>-1,907</u>	<u>-3,028</u>	<u>-5,211</u>	<u>-7,307</u>	<u>-9,33</u>
Males under															
<u>75 years</u> Females under	<u>1,953</u>	<u>2,690</u>	<u>2,936</u>	<u>2,930</u>	<u>2,781</u>	<u>2,546</u>	<u>2,256</u>	<u>1,929</u>	<u>441</u>	<u>-1,158</u>	<u>-2,793</u>	<u>-4,458</u>	<u>-7,952</u>	<u>-11,850</u>	<u>-16,43</u>
75 years	<u>1,170</u>	<u>1,377</u>	<u>1,445</u>	<u>1,421</u>	<u>1,340</u>	<u>1,222</u>	<u>1,080</u>	<u>921</u>	<u>208</u>	<u>-539</u>	<u>-1,277</u>	<u>-1,995</u>	<u>-3,370</u>	<u>-4,682</u>	<u>-5,95</u>
<u>CVD</u>	<u>-7,150</u>	<u>-4,377</u>	<u>-2,639</u>	<u>-1,543</u>	<u>-843</u>	<u>-397</u>	<u>-120</u>	<u>42</u>	80	<u>-283</u>	<u>-759</u>	<u>-1,259</u>	<u>-2,223</u>	<u>-3,108</u>	<u>-3,923</u>
<u>Cancer</u>	<u>3,846</u>	<u>3,559</u>	<u>3,267</u>	<u>2,970</u>	<u>2,668</u>	<u>2,360</u>	<u>-1,159</u>	<u>1,728</u>	<u>392</u>	<u>-1,050</u>	<u>-2,610</u>	<u>-4,304</u>	<u>-8,166</u>	<u>-12,817</u>	-18,500
Liver disease	3,543	3,514	3,356	3,117	2,828	2,507	2,167	1,816	390	-971	-2,221	-3,354	-5,301	-6,893	<u>-8,20</u>

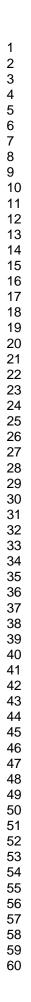
A positive number indicates lives saved compared to 2006 mortality, a negative number denotes a net increase in mortality compared to 2006.

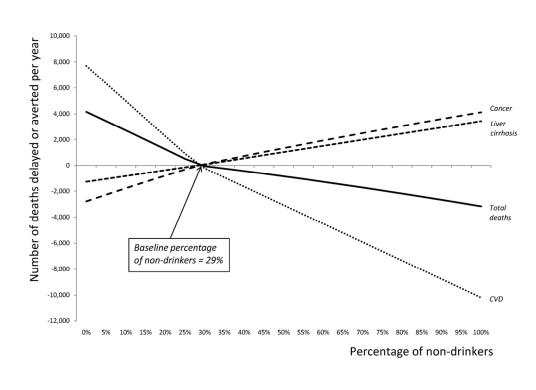
Analysis assumes that the percentage of non-drinkers, and the distribution of average consumption levels among drinkers remains constant.

Deleted: Table 2: Annual chronic disease deaths averted or delayed if there were no non-drinkers in the population, by population median intake of alcohol in g/day ¶

For beer texten on


CVD


Liver


cirrhosis

Cancer

Total deaths

Supplementary information

 Table S1. Relative risks used in modelling relationships between average alcohol consumption levels

 and chronic disease mortality in PRIME-Alcohol

Outcome	Alcohol consumption level (g/day)	Relative Risk for mortality
CHD	0	1.00
(Ronksley et al., 2011)	<2.5	0·92 (0·80 to 1·06)
	2.5 – 15	0·79 (0·73 to 0·86)
	15 – 30	0·79 (0·71 to 0·88)
	30 - 60	0·77 (0·72 to 0·83)
	>60	0·75 (0·63 to 0·89)
Stroke	0	1.00
(Ronksley et al., 2011)	<2.5	1·00 (0·75 to 1·34)
	2.5 – 15	0·86 (0·75 to 0·99)
	15 - 30	1·15 (0·86 to 1·54)
	30 - 60	1·10 (0·85 to 1·45)
	>60	1·44 (0·99 to 2·10)
Diabetes	0	1.00
(Koppes et al., 2005)	<6	0.88 (0.80 to 0.95)
	6-12	0.73 (0.62 to 0.86)
	12-24	0.66 (0.59 to 0.75
	24-48	0.74 (0.63 to 0.88)
	>48	0.93 (0.74 to 1.18)
Hypertensive disease – men (Taylor et al., 2009)	per 10g	1.09 (1.07 to 1.12)
Hypertensive disease – women (Taylor et al., 2009)	per 10g	1·10 (1·06 to 1·14)
Epilepsy	0	1.00
(Samokhvalov et al., 2010)	<12	1.00
	12 – 48	1·17 (1·13 to 1·21)
	48 – 72	1.81 (1.59 to 2.07)
	72 -96	2.44 (2.00 to 2.97)
	>96	3.27 (2.52 to 4.26)
Liver cirrhosis – men	0	1.00
(Rehm et al., 2010)	<12	1.0 (0.6 to 1.6)
	12-24	1.6 (1.4 to 2.0)
	24-36	2.8 (2.3 to 3.4)
	36-48	5.6 (4.5 to 7.0)
	48-60	7.0 (5.8 to 8.5)
	>60	14 (11·7 to 16·7
Liver cirrhosis – women	0	1.00
(Rehm et al., 2010)	<12	1·9 (1·1 to 3·1)
, , , ,	12-24	5·6 (4·5 to 6·9)
	24-36	7·7 (6·3 to 9·5)
	36-48	10·1 (7·5 to 13·5)
	48-60	14·7 (11·0 to 19·6)
	>60	22.7 (17.2 to 30.1)
Cancer (WCRF / AICR, 2007)		
Liver	Per 10g	1·10 (1·02 to 1·07)
Mouth, larynx, pharynx	Per drink per week	1·24 (1·18 to 1·30)
mouth, mayin, phurynx	Per drink per week	1.04 (1.03 to 1.05)
Oesonhagus		
Oesophagus Breast	10g	1·10 (1·06 to 1·14)

Formatted Table

Table S2. Calculating impact on deaths from liver cirrhosis of increasing consumption of alcohol by 8g/d (one unit). Results shown for men aged 75-79 as example

Alcohol	Relative	Baseline	Baseline	Mortality	Counterfactual	Counterfactual
consumption	risk ¹	population ²	deaths ³	rate per	population⁵	deaths⁵
(g/d)				1,000 ⁴		
<=1	1.0	229,532	24	0.11	229,532	24
1 - <=12	1.0	232,024	24	0.11	146,491	15
12 - <=24	1.6	126,930	21	0.17	130,440	22
24 - <=36	2.8	54,831	16	0.29	73,789	22
36 - <=48	5.6	27,303	16	0.59	43,678	26
48 - <=60	7.0	15,076	11	0.74	27,400	20
>60	14.0	28,404	42	1.47	68,950	101
		TOTAL	154		TOTAL	230

¹ Taken from meta-analysis of prospective cohort studies(Rehm et al., 2010); ² The total population of men aged 75-79 in scribe.
and in 200e,
in the earlier coue.
cone unit per day more,
al population. England in 2006, following the distribution of alcohol consumption described by the General Household Survey 2006; ³ The total number of deaths from liver cirrhosis in men aged 75-59 in England in 2006, split so that mortality rates respect the relative risks; ⁴ Mortality rates, which follow the relative risks shown in the earlier column; ⁵ The population of men aged 75-79 under the counterfactual scenario, in which all drinkers drink one unit per day more; ⁶ The counterfactual number of deaths, calculated using the mortality rates and the counterfactual population.

Table S3. Population size and alcohol consumption <u>characteristics by sex and 5-year age group</u> in England, 2006

Sex	Age group,	Population	Non-drinkers	Daily intake (g/day)		
	years	size ¹	(<1g/day) ²	among drinkers, median ²		
Male	15-19	1,719,800	30.9%	14.9		
	20-24	1,716,200	15.3%	18.0		
	25-29	1,636,900	16.5%	19.3		
	30-34	1,714,100	16.2%	14.8		
	35-39	1,933,300	16.5%	17.3		
	40-44	1,939,700	16.5%	17.5		
	45-49	1,717,700	15.6%	17.0		
	50-54	1,511,900	18.6%	18·0		
	55-59	1,608,900	17.4%	17.5		
	60-64	1,320,600	18.3%	17.4		
	65-69	1,074,300	20.6%	14.8		
	70-74	906,300	23.4%	13.3		
	75-79	714,100	31.6%	12.5		
	80-84	476,000	32.7%	10.9		
	85+	323,700	43.7%	10.1		
Female	15-19	1,614,800	33.4%	10.4		
	20-24	1,654,200	25.6%	10.9		
	25-29	1,633,900	26.4%	9.9		
	30-34	1,719,100	33.3%	10.9		
	35-39	1,946,400	30.1%	10.0		
	40-44	1,971,700	27.2%	9.8		
	45-49	1,740,000	30.5%	11.0		
	50-54	1,546,900	29.4%	11.3		
	55-59	1,652,000	36.3%	10.6		
	60-64	1,376,400	41.7%	9.9		
	65-69	1,155,800	54.5%	9.4		
	70-74	1,034,900	49.7%	8.2		
	75-79	923,800	54.6%	7.8		
	80-84	746,000	61.2%	7.2		
	85+	731,200	68·7%	7.9		

1 Population estimates from Office for National Statistics; 2 Estimates taken from the General Household Survey 2006(Office for National Statistics, 2008) (n = 14,306) Table S4. Annual chronic disease deaths averted or delayed in counterfactual scenarios in which the percentage of non-drinkers in the population varies from 0% to 100%

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Total	4,160	2,727	1,259	-59	-441	-844	-1,269	-1,714	-2,178	-2,660	-3,160
Males	1,462	960	444	-42	-312	-602	-910	-1,236	-1,578	-1,936	-2,30
Females	2,698	1,767	815	-18	-129	-243	-359	-479	-600	-725	-85
Males under 75											
years	-201	-124	-54	23	157	276	379	468	544	607	65
Females under											
75 years	-472	-300	-134	22	159	293	426	557	685	812	93
CVD	7,705	4,994	2,280	-228	-1,649	-3,071	-4,494	-5,918	-7,342	-8,767	-10,19
Cancer	-2,771	-1,765	-792	104	738	1,351	1,943	2,516	3,071	3,608	4,12
Liver disease	-1,265	-819	-374	77	558	1,039	1,521	2,002	2,483	2,964	3,44

A positive number indicates lives saved compared to 2006 mortality, a negative number denotes a net increase in mortality compared to 2006. Assumes that the distribution of consumption in drinkers remains constant

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References for supplementary information:

- KOPPES, L. L., DEKKER, J. M., HENDRIKS, H. F., BOUTER, L. M. & HEINE, R. J. 2005. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. *Diabetes Care*, 28, 719-25.
- OFFICE FOR NATIONAL STATISTICS 2008. Overview report. *General Household Survey, 2006.* United Kingdom.
- REHM, J., TAYLOR, B., MOHAPATRA, S., IRVING, H., BALIUNAS, D., PATRA, J. & ROERECKE, M. 2010. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. *Drug Alcohol Rev*, 29, 437-45.
- RONKSLEY, P. E., BRIEN, S. E., TURNER, B. J., MUKAMAL, K. J. & GHALI, W. A. 2011. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. *BMJ*, 342, d671.
- SAMOKHVALOV, A. V., IRVING, H., MOHAPATRA, S. & REHM, J. 2010. Alcohol consumption, unprovoked seizures, and epilepsy: a systematic review and meta-analysis. *Epilepsia*, 51, 1177-84.
- TAYLOR, B., IRVING, H. M., BALIUNAS, D., ROERECKE, M., PATRA, J., MOHAPATRA, S. & REHM, J. 2009. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. *Addiction*, 104, 1981-90.
- WCRF / AICR 2007. World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: AICR.