Strain	Genotype	Origin
972	h	(39)
NG25	h⁺ caf4/trr1::ura4⁺ ura4-D18	(40)
EHH14	h ⁻ his2 ura4 pap1::ura4 ⁻ leu1–32 nmt::GFP-pap1::leu1 ⁺	(41)
EHH14.C523D	h ⁻ his2 ura4 pap1::ura4-D18 leu1–32 nmt::GFP	
	pap1C523D::leu1 ⁺	(41)
AV19	h ⁺ trr1::ura4 ⁺ ura4-D18 ade6-704 leu1-32 nmt::GFP-pap1::leu1	This work
caf1 ⁺ ::ura4 ⁺	h^+ caf1/hba1::ura4 ⁺ ura4-D18 ade6-704 leu1-32	(42)
EA33	h ⁺ caf1::ura4 ⁺ ura4-D18 ade6-704 leu1–32 nmt::GFP-pap1::leu1 ⁺	(41)
IC1	h ⁻ pap1::ura4⁺ ura4-D18 leu1-32	This work
IC2	h ⁻ pap1 ura4-D18 leu1-32	This work
IC2.C523D	h ⁻ pap1.C523D ura4-D18 leu1-32	This work
MS46	h⁺ atf1::kanMX6 ura4-D18 leu1-32	This work
MC16	h ⁻ prr1::kanMX6 ura4-D18 leu1-32	This work
MC18	h⁻ pap1::ura4⁺ ura4-D18 prr1::kanMX6 leu1-32	This work
MC40	h ⁻ prr1-HA::kanMX6 ura4-D18 leu1-32	This work
IC64	h ⁻ prr1-HA::kanMX6 pap1::natMX6 ura4-D18 leu1-32	This work
MC41	h ⁻ prr1-GFP::kanMX6 ura4-D18 leu1-32	This work
MC42	h ⁻ pap1-GFP::kanMX6 ura4-D18 leu1-32	This work
IC81	h ⁻ prr1::kanMX6 leu1-32 nmt::GFP-pap1::leu1 ⁺ ura4-D18	This work
IC83	h ⁺ pap1::ura4 ⁺ prr1-GFP::kanMX6 his2 ura4-D18 leu1-32	This work
PG3	h⁺ prr1-HA::kanMX6 pap1.C523D::natMX6 ura4-D18 leu1-32	This work
PG7	h ⁻ caf4::ura4 ⁺ prr1-HA::kanMX6 leu1-32	This work
IC70	h ⁻ pap1-HA::kanMX6 ura4-D18 leu1-32	This work
IC102	h ⁻ trr1::ura4 ⁺ prr1-GFP::natMX6 leu1-32	This work
PG20	h ⁻ hba1::ura4 ⁺ prr1-GFP::natMX6 ade6-704 leu1-32	This work
IC97	h⁻ pap1.C523D::ura4⁺ prr1-GFP::natMX6 leu1-32	This work
PG21	h ⁻ prr1::kanMX6 pap1::natMX6 ura4-29 leu1-32	This work
PG15	h ⁻ pap1::ura4 ⁺ atf1::natMX6 leu1-32	This work
EP137	h ⁻ mpr1::natMX6 ura4-D18 leu1-32	This work
IC86	h ⁻ mpr1::natMX6 prr1-HA::kanMX6 ura4-D18 leu1-32	This work

Supplementary Table S1. Strains used in this study

Supplementary references

- 39. Leupold, U. (1970) Genetical methods for *Schizosaccharomyces pombe*. *Methods Cell Physiol.*, **4**, 169-177.
- 40. Calvo, I.A., Gabrielli, N., Iglesias-Baena, I., Garcia-Santamarina, S., Hoe, K.L., Kim, D.U., Sanso, M., Zuin, A., Perez, P., Ayte, J. *et al.* (2009) Genome-wide screen of genes required for caffeine tolerance in fission yeast. *PLoS One*, **4**, e6619.
- Castillo, E.A., Ayte, J., Chiva, C., Moldon, A., Carrascal, M., Abian, J., Jones, N. and Hidalgo, E. (2002) Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. *Mol.Microbiol.*, **45**, 243-254.
- 42. Benko, Z., Sipiczki, M. and Carr, A.M. (1998) Cloning of caf1+, caf2+ and caf4+ from Schizosaccharomyces pombe: their involvement in multidrug resistance, UV and pH sensitivity. *Mol.Gen.Genet.*, **260**, 434-443.

SUPPLEMENTARY FIGURE LEGENDS – Calvo et al. 2012

Supplementary Figure S1. Constitutively reduced/nuclear Pap1 can only bind and activate a subset of all Pap1-dependent genes. (A) Stress-dependent transcriptional analysis of wild-type and mutant strains. Total RNA from strains IC2 (WT) and $\Delta hba1$ (*caf1::ura4*⁺) was obtained from cultures treated or not with 0.2 mM H₂O₂ for the indicated times and analyzed by Northern blot as described in Figure 2A. (B) Binding of reduced/nuclear Pap1 to DNA *in vivo*. Cultures of strains such as those used in A were treated with 0.2 mM H₂O₂ for 5 min. ChIP analysis was performed as described in Figure 2B.

Supplementary Figure S2. Regulation of Prr1 by Mpr1 is not necessary for induction of Pap1dependent genes. (A) Total RNA from strains IC2 (WT) and EP137 ($\Delta mpr1$) was obtained from cultures treated with 0.2 mM H₂O₂ for the indicated times, and analyzed by Northern blot as described in Figure 2A. (B) Binding of Prr1-HA to DNA *in vivo* in $\Delta mpr1$ strain. Cultures of strains MC40 (*prr1-HA*) and IC86 ($\Delta mpr1 \ prr1-HA$) were treated or not with 0.2 mM H₂O₂ for 5 min. ChIP of Prr1-HA using anti-HA antibody was performed as described in Figure 2B.

Supplementary Figure S3. Over-expression of reduced/nuclear Pap1 triggers constitutive transcription of not only *caf5* but also *trr1*. (**A**) The redox state and relative protein levels of Pap1 of extracts from strains EHH14 ($\Delta pap1 nmt::pap1$; the expression of GFP-Pap1 is under the control of the *nmt41* promoter), EHH14.C523D ($\Delta pap1 nmt::pap1.C523D$), IC2 (WT) and IC2.C523D (pap1.C523D), before (-) or after 5 min of 0.2 mM H₂O₂ stress, was analyzed by Western blot using polyclonal anti-Pap1 antibodies. (**B**) Northern blot analysis of antioxidant Pap1-dependent gene (*trr1*) and drug tolerance gene (*caf5*) expression. Total RNA from strains as in Figure S3A was obtained from cultures treated or not (-) with 0.2 mM H₂O₂ for 15 min and analyzed by Northern blot as described in Figure 2A. (**C**) Prr1 over-expression does not trigger induction of Pap1-dependent genes. Total RNA from strains IC2 (WT), IC1 ($\Delta pap1 \Delta prr1$), PG15 ($\Delta pap1 \Delta atf1$) and PG21 with p397.41 ($\Delta pap1 \Delta prr1$ with *pnmt41::pr1*), treated or not (-) with 0.2 mM H₂O₂ for 15 min and analyzed by Northern blot as described in Figure 2A.

Supplementary Figure S4. Diethylmaleate and Leptomycin B do not induce the antioxidant response. **(A)** Total RNA from strains IC2 (WT) and IC1 ($\Delta pap1$) was obtained from cultures treated with 0.2 mM H₂O₂ for 15 min (H) and 4 mM diethylmaleate for 30 min (D) and analyzed by Northern blot as described in Figure 2A. **(B)** RNA from wild-type strain IC2 was obtained from cultures treated with 0.2 mM H₂O₂ for 15 min (H) or 100 uM of Leptomycin B (LMB) for 60 and 90 min and analyzed by Northern blot as described in Figure 2A.

