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FIGURE S1. Calculation of the number of nucleotides (N) involved in the tetraplex 
structures.  The diagram shows that unfolding of a tetraplex structure, a G-quadruplex for 
example (top, green frames represent the G-quartets), leads to a dsDNA (bottom).  The 
red double-head arrow represents the end-to-end distance (X) for the structure.  The 
number of nucleotides (N) involved in the structure is calculated using the following 
equation (1-4), 
 
N * Lbp – X= ∆L ………………(1) 
 
where N is the total number of nucleotides involved in the tetraplex structure,  Lbp is the 
contour length of each base pair (bp) in the B form of dsDNA (0.34 nm) (5), X is the end-
to-end distance, and ∆L is the change in contour length due to the unfolding of the 
structure.  
 

With ∆L = 6.7 (± 0.2) nm (Table 1) and an estimation of X from various G-
quadruplex structures after counting for different number of G-quartet stacks (X = 1.5 nm 
for the parallel G-quadruplex [PDB code, 1KF1]; X = 1.6 nm for the hybrid-1 and hybrid-
2 quadruplexes [PDB codes, 2HY9 and 2GKU]; and X = 2.1 nm for the basket type 
quadruplex [PDB code, 143D]) (6-9), we obtained N as 24 ± 1, 25 ± 1, and 26 ± 1 nts for 
respective structures.  Similarly, with ∆L = 7.2 (± 0.1) nm (Table 1) and an estimation of 
X from various i-motif structures (PDB codes, 1ELN, 1A83 and 1YBR, X = 0.8 nm for 
average narrow groove distance and X =1.3 nm for average wide groove distance) (10-12), 
we obtained N as 24 ±1 and 25 ±1 nts for respective structures.  These calculations 
confirmed the formation of fully folded tetraplex structures in the ILPR duplex.    
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FIGURE S2. Histogram of change in contour length (∆L) in a pH 7.4 Tris buffer with 
100 mM Li+ at 23 °C. The histogram was fitted with a two-peak Gaussian function (red 
solid curve) and further deconvoluted randomly into left (black-dotted curve) and right 
(blue-dotted curve) populations (see Materials and Methods).  These two populations 
represent a partially folded (left) and a fully folded (right) species. 
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TABLE S1. The percentage of mechanical unfolding events for the control experiments 
in different buffers at 23 °C. 
 

Buffer/pH Ion DNA Construct Unfolding Events 
(%) 

10 mM Tris/pH 7.4 100 mM K+ dsDNA handles only 1.9 (Fully Folded) 

10 mM MES/pH 5.5 100 mM Li+ dsDNA handles only 1.0 (Part. Folded) 
1.6 (Fully Folded) 

10 mM Tris/pH 7.4 100 mM Li+ dsDNA with G/C rich 
sequences 

3.1 (Part. Folded) 
3.2 (Fully Folded) 

 
As shown in Table S1, we observed rare unfolding events (< 2%) when a DNA 

construct without G-quadruplex/i-motif forming sequences (dsDNA handles only) was 
mechanically stretched at pH 5.5 with 100 mM Li+ or at pH 7.4 with 100 mM K+.  When 
a DNA construct with ILPR G-quadruplex/i-motif forming sequence was used, ~ 3% 
unfolding events were observed for partially or fully folded populations (Figure S3) at pH 
7.4 with 100 mM Li+.  These results were consistent with the DMS footprinting of a 87-
bp dsDNA in the same buffer where no protection of the G4 tracts (Figure 1A, lane 7) or 
the C4 tracts (Fig.1B, lane 1) was observed.  As a comparison, 18% unfolding events 
were observed at pH 7.4 with 100 mM K+, 44% were observed at pH 5.5 with 100 mM 
Li+ (10% partially folded and 34% fully folded, see Figure 2C, middle panel, and Table 
1); and 33% were observed at pH 5.5 with 100 mM K+ (14% left peak population and 
19% right peak population, see Figure 2D, bottom panel, and Table 1).  These results 
confirmed the formation of G-quadruplex or i-motif in the DNA construct containing the 
ILPR G-quadruplex/i-motif forming sequence.  
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