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1 Analytical calculation of the

Asymmetry

The Asymmetry of certain models can be calculated an-
alytically in closed form. For example, the Asymmetry
(Eq. (2) of main text) of the infinite gradient model can
be calculated by considering that the nestedness model
is purely additive, with sj = d(j) − 1 and rj = 1, where
d(j) is the degree of the node j. The associated nest-
ing tree of such a model is shown in Fig. S1(a) and the
Asymmetry QT (tn) reads:

QT (tn) =
1

w(tn)

d(n)−1
∑

j=1

wj

d(j) − 2

d(j) − 1
(1)

Using the weight function:

wj = d(j) − 1, (2)
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Figure 1: (a) Purely additive nesting tree. (b) Self-similar
tree, with an additive building block of ν elements. (c) Asym-
metry Q0(t(1,M)) as a function of the maximum network order
M . (d) Asymmetry of self similar models as a function of the
building block size ν.

it is trivial to show that:

QT (tn) = 1 −
2

d(n)
. (3)

The Asymmetry of a self similar model with an addi-
tive building block that consists of ν elements can simi-
larly be calculated in closed form. This model is con-
structed as follows. At iteration order m = M , the
graph consists of just the additive building block (see
e.g. Fig. 2(d)(ii)) of the main text). At iteration or-
der m = M − 1, the graph is augmented by adding the
additive building block, with appropriately rescaled link
weights, inside each of the ultimate loops of the order
m = M graph. We continue this nesting procedure until
m = 0. It should be noted that the graph at m = M
does not need to be the complete building block, just a
subgraph of the original building block.

The nesting tree of such a model is shown in
Fig. S1(b). If m is the iteration order of node J , then
it is easy to see that sJ = d(J) − νm and rJ = νm.
If we now define j ≡ d(J)/νm − 1, then the partition
asymmetry simply reads:

q(rJ , sJ) =
j − 1

j
. (4)

Any node J of the nesting tree can be characterized with
the two numbers (m, j), and any quantity α(m, j) (e.g.
the partition asymmetry) can be summed over the tree
rooted at (M, jF ) as follows:

A(tJF
) = (jF +1)

M−1
∑

m=0

νM−m−1
ν−1
∑

j=1

α(m, j)+

jF
∑

j=1

α(M, j).

(5)
The parameter M is the iteration order of the root node,
and jF ≡ d(JF )/νM − 1, where JF is the root node.

If α(m, j) is the partition asymmetry of Eq.4, the sum
Eq.5 can be simplified significantly and the Asymmetry
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finally reads:

QT (tJF
) =

1

w(tJF
)
(1 −

(

νM − 1
)

H[jf ]

+
1 + jf

2
(−2 + jf + M(−1 + ν))νM

−
(1 + jf )H[ν − 1]

(ν − 1)ν

(

ν + (M(ν − 1) − ν)νM
)

)

(6)

with:

w(tJF
) = 1 +

νM
(

−2 + jf + j2
f

)

2

+
νM−1M(1 + jf )

(

−2 + ν + ν2
)

2
(7)

and H [n]:

H [J ] =

J
∑

k=1

1

k
. (8)

In Fig. S1(c) we plot the Asymmetry QT as a func-
tion of the iterative order M for various self similar trees
of the type shown in Fig. S1(b). The cases shown are
ν = 3 (green), ν = 5 (red) and ν = 15 (cyan). Note that
jF is set to 1, and in this case d(t(1,M)) = 2νM . The
Asymmetry QT approaches quickly an M independent
value that increases with ν. The dependency of QT with
ν is shown in Fig. S1(d). Here we set M = 103, jF = 1,
and we can see that, as expected, QT increases mono-
tonically with ν. Using the QT values, we can determine
that the Bursersa and Protium architecture (main text,
Fig. 5 and Fig. 6) are consistent with a self similar nest-
ing model with ν ≃ 4 and ν ≃ 6 respectively.

2 Asymmetry weight functions

The Asymmetry values QT depend on the choice of
weight function wj . Provided that the choice of weight
is consistent when comparing two or more graphs, the
qualitative results from the Asymmetry metric are ro-
bust. In Fig. S2 we show the asymmetry values for three
different weights.

The Asymmetry QT is calculated with the weight
function used in the main text, shown in Eq. 2. The
Asymmetry Q4 is calculated over a weighted moving win-
dow, four nodes deep (the nodes included in calculating
the Asymmetry Q4 of the subtree are separated from the
root of the subtree by at most four nodes). The weight
function now is set to depend not only on the node j but
also on the distance h(j, n) of that node from the root
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Figure 2: Asymmetry scatter plots of the random links
and nested5 model. The size of the circles at each point
(d, Q) indicates the number of nodes of the nesting tree with
d(n) = d and Q(tn) = Q. (a),(b),(c): random links model,
(d),(e),(f): nested 5. (a),(d): wj = wj = d(j) − 1, (b),(e):

wj(n) = d(j)−1
h(j,n)+1

Θ(h(j, n) < 4), (c),(f): wj(n) = δj,n.

node n of the subtree:

wj(n) =
d(j) − 1

h(j, n) + 1
Θ(h(j, n) < 4). (9)

Θ(x) is the step function, and imposes that the distance
h(j, n) cannot be larger than 4. This weight will produce
a finite size averaging window, heavily weighted towards
the root of the subtree.

Finally, Q0 is calculated with a zero size averaging
window, implemented with a Kroenecker delta weight
function wj(n) = δj,n, so that:

Q0(tn) = q(rn, sn). (10)

Q0(tn) has zero memory and contains no information
about the architecture of the two subtrees that join at
node n.

The nesting trees that can be mapped to each other
by successive reflections with respect to the vertical axes
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passing through nodes are considered identical in our im-
plementation. The number of non-homeomorphic binary
trees of a certain degree d can in principle be enumer-
ated (see Ref. [1] and references therein). As a result,
the number of distinct Asymmetry values that map to
a certain degree d is finite. For example, there are only
two trees of root degree d(n) = 4.

Similarly, it can be trivially shown that

Q0(tn) =
d(n) − 2j

d(n) − j
(11)

with j ∈ {1, ..., ⌊j/2⌋}, where ⌊p⌋ is the integer smallest
or equal to p. The Asymmetry values Q0(tn) of the ran-
dom links and nested5 models are shown in Fig. S2(c)
and (f). For small d(n), it is easy to enumerate the dis-
tinct Asymmetry values. The size of the data points in
Fig. S2 is proportional to the number of vertices of the
nesting trees that share the same order and Asymmetry
(d(n), Q0(tn)). The distribution of (d(n), Q0(tn)) values
carries information about the network architecture. For
example, the periodicity of Fig. S2(f), highlighted with
the black lines, is a signature of the self-similar nested
model with ν = 4, from which the nested5 model was
created by random permutation of 5 lines. The data
points with 22 < d(n) < 24 that do not coincide with
the black line are due to the five swapped lines in this
realization of the random model.

The Asymmetry Q4 (finite size averaging window)
produces qualitatively similar results. In this case, each
Q4(tn) carries some information about the architecture
of the subtrees that join at node n. The periodicity of
Fig. S2(f) is still present in (e), albeit with a smaller am-
plitude. When the averaging window is of infinite size,
as in QT in Fig. S2(d) the amplitude of the oscillations
will asymptotically relax to a zero, and QT (tn→∞) will
be a constant that depends on the overall architecture.

These observations are reproduced when consider-
ing the average asymmetry Q̄0(d) and Q̄4(d), shown in
Fig. S3(a) and (b).

3 Dual graphs and spanning

trees.

In this section we discuss the connection between the
nesting tree of the planar graph and the dual graph. The
dual G′of a loopy planar graph G with no tree compo-
nents (no tree subgraphs connected to G by a single edge)
is a loopy planar graph with edges crossing the links of
G and connecting adjacent loops (akin to the Delaunay
triangulation of a Voronoi diagram). This graph has no
tree components (no bridges) apart possibly from the

outer edges connecting the peripheral loops to infinity
(the outside of the finite graph). This graph is weighted,
and we set the weight of each edge to be equal to the
weight of G that it crosses.

The Economy tree T (G′) [2] of G′ is a spanning tree of
G′ that is created as follows. The first edge of T (G′) is
the edge E1 with the minimum weight. The second edge,
is the edge of G′

1 = G′−E′

1 (the remaining graph) having
minimum value. For any subsequent edge, we similarly
choose the minimum value edge of the remaining G′

k =
G′

k−1 − Ek, provided that it does not form a loop with
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Figure 3: Average Asymmetry of computer generated
graphs. The average Asymmetry is plotted as a function
of the subtree degree d(n). (a) Q̄0(d) (no averaging over
the node subtree in Q0(tn)) (b) Q̄4(d) : averaging four
deep. Black line: nested model. Magenta: nested5. Green:
nested10. Red: random lines. Blue: random edges. The
colored area represents the standard error after averaging
over 20 realizations of each model. When the asymmetry
is not averaged over the whole subtree, the oscillations in the
self-similar model are not damped. The results qualitatively
follow those of Fig. 3(d) of the main text and Fig. 2.
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Figure 4: The tree representation can be projected on the
dual graph of the original network. It will be a spanning tree
on that graph. The thickness of the edge of the dual graph
represents the thickness of the edge that separates the two
real space loops.

the previously formed edges. Knowledge of the topology
of T (G′) is not enough to characterize the architecture of
G, as graphs with distinctly different architectures can
share the same economy tree. An example of that can
be seen in Fig. S4(b), where (if we ignore the connection
to infinity) the two planar graphs shown have a linear
economy tree T (G′).

The nesting tree G̃ is related to T (G′) as follows.
When we choose the first edge of T (G′) E1, we also cre-
ate a new “lifted node” that connects the nodes of E1.
We repeat for all subsequent chosen edges of T (G′), as
shown in Fig. S4. If they are contiguous to edges that
have already been chosen, the new lifted node connects
the lifted nodes of the contiguous edges rather than the
actual nodes of the edges. This way, at every iteration of
the process each connected part of the forming economy
graph will be represented only by one lifted node. This
node is the root node of that connected binary tree. The
final tree that is produced when all nodes of G′ have been
connected by the economy tree is the nesting tree. Its
projection onto the initial plane is the original economy
tree.
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